
 
 
 
 
 
 
 

   
 

                                                                                 ISSN 0104-6632                       
Printed in Brazil 

www.abeq.org.br/bjche 
 
            
    Vol. 23,  No. 01,  pp. 67 - 82,  January - March,  2006 

 
*To whom correspondence should be addressed 
 
 
 
 

Brazilian Journal 
of Chemical 
Engineering 

 
 

A BILEVEL DECOMPOSITION TECHNIQUE  
FOR THE OPTIMAL PLANNING OF  

OFFSHORE PLATFORMS 
 

M.C.A. Carvalho1 and J.M. Pinto1,2* 

 
1Department of Chemical Engineering, University of Sao Paulo, Sao Paulo - SP, 05508-900, Brazil. 

2Othmer Department of Chemical and Biological Sciences and Engineering, 
Polytechnic University, Brooklyn - NY 11201, USA. 

E-mail: jpinto@poly.edu 
 

(Received: January 21, 2004 ; Accepted: September 9, 2005) 
 

Abstract - There is a great incentive for developing systematic approaches that effectively identify strategies 
for planning oilfield complexes. This paper proposes an MILP that relies on a reformulation of the model 
developed by Tsarbopoulou (UCL M.S. Dissertation, London, 2000). Moreover, a bilevel decomposition 
technique is applied to the MILP. A master problem determines the assignment of platforms to wells and a 
planning subproblem calculates the timing for fixed assignments. Furthermore, a heuristic search procedure 
that relies on the distance between platforms and wells is applied in order to reduce the search region. Results 
show that the decomposition approach using heuristic generates optimal solutions for instances of up to 500 
wells and 25 platforms in 10 discrete time periods that otherwise could not be solved with a full-scale 
approach. One important feature regarding these instances is that they correspond to problems of real-world 
dimension. 
Keywords: Oilfield exploration; Integer programming; Discrete time; decomposition methods; Optimization. 

 
 
 

INTRODUCTION 
 

There is a great incentive for developing systematic 
approaches that effectively identify strategies for 
planning and designing oilfield complexes, due to the 
economic impact of the underlying decisions. On the 
other hand, the development and application of 
optimization techniques in problems that involve 
oilfield exploration represents a challenging and 
complex problem.  

The literature presents models and solution 
techniques for solving problems in the design and 
planning of infrastructure in oilfields. This problem 
has been initially presented in the literature by 
Devine and Lesso (1972) that proposed an 
optimization model for the development of offshore 
oilfields. 

According to Van den Heever and Grossmann 
(2000), in the past decisions that concerned platform 
capacities, scheduling of perforations and production 

yields had been frequently made separately. 
Moreover, certain assumptions were made in order to 
reduce the required computational effort. Another 
approach was to assume a fixed perforation schedule 
and then to determine the production yield from an 
LP (Linear Programming) model. A third approach 
was to determine the perforation schedule for a fixed 
production yield from an LP and subsequently round 
the non integer solution to integer values or even to 
solve directly the MILP in the simpler cases. 

Frair (1973) proposed independent models for 
calculating the number of production platforms, their 
capacities and the scheduling of well perforation. 
However, this approach has lead to infeasible or sub-
optimal decisions since these two levels of decision 
were not considered in an integrated model. 

Iyer et al. (1998) proposed a multiperiod MILP 
for the planning and scheduling of investment and 
operation in offshore oilfields. The formulation 
incorporates the nonlinear behavior of the reservoirs, 



 
 
 
 

68              M.C.A. Carvalho and J.M. Pinto 

 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

pressure constraints in the well surface and 
equipment constraints. The formulation presents a 
general objective function that optimizes a given 
economic indicator, such as the Net Present Value 
(NPV). A sequential decomposition technique is 
proposed to solve the problem that relies on the 
aggregation of time periods followed by successive 
disaggregating steps.  

Iyer and Grossmann (1998) proposed a 
decomposition algorithm originally designed for 
process network optimization that solves a design 
problem in the reduced space of binary variables to 
determine the assignment of wells to platforms. The 
planning model is then solved for fixed values 
determined in the design subproblem. 

Tsarbopoulou (2000) proposed an MILP model 
for the optimization of the exploration of oil and gas 
in a petroleum platform. The proposed model is 
based on binary variables to determine the existence 
of a given platform and the potential connection 
between wells and platforms.  

Ortíz-Gomez et al. (2002) developed multiperiod 
optimization models for the production planning of 
wells in an oil reservoir. The major decisions include 
the calculation of oil production profiles and 
operation/shut in times of the wells in each time 
period and the authors assume nonlinear time-
behavior for the well flowing pressure while 
calculating the oil production. Recently, Goel and 
Grossmann (2004) considered the optimal 
investment and operational planning of gas field 
developments under uncertainty in gas reserves. The 
authors showed that the proposed approach yields 
solutions with significantly higher expected net 
present value than that of solutions obtained using a 
deterministic approach.  

This paper proposes a reformulation of the MILP 
model of Tsarbopoulou (2000) that relies on a 
smaller number of binary variables that requires a 
smaller computational effort. Moreover, a bilevel 
decomposition technique proposed by Iyer and 

Grossmann (1998) is applied to the reformulated model 
that is composed of assignment and planning sub-
problems. The master problem determines the 
assignment of platforms to wells and the planning sub 
problem that calculates the timing for fixed 
assignments. With the decrease in the number of binary 
variables and with the application of the decomposition 
technique, it becomes possible to solve problems of 
realistic dimension. Furthermore, a heuristic-based 
constraint that limits the search region was developed 
and its impact on the optimal solution of the problem 
and computational time is studied. 

The paper is structured as follows. In the 
following section, the problem of planning the 
offshore oilfield infrastructure is defined. In section 
3, the problem formulation is reproduced as in 
Tsarbopoulou (2000). Section 4 presents the 
proposed reformulated model (model MR) that 
contains a smaller number of binary variables. In 
section 5, the decomposition algorithm proposed by 
Iyer and Grossmann (1998) is presented and applied 
to the reformulated model (model MD). Model MD 
is then modified to include the heuristic procedures 
to reduce the search region in section 6. Examples 
are given in sections 4 to 6 to validate the models 
and a detailed sensitivity analysis of the main 
parameters is performed. Finally, conclusions are 
drawn on the approach proposed in this work. 
 
 

PROBLEM DEFINITION 
 

This problem is concerned with the optimal 
planning of offshore oilfield infrastructure. An 
offshore oilfield consists of J wells that contain oil 
and gas. A set of I platforms are required to extract 
these substances from one or more wells. The 
planning decisions are related to the assignment of 
platforms to wells in addition to the timing of 
extraction and production. Figure 1 shows the 
oilfield infrastructure as well as its elements.  

 

 
Figure 1: Problem representation (Van den Heever and Grossmann, 2000) 
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Figure 1 represents the real-world problem in 
which several oilfields, reservoirs, wells and 
platforms are considered. The scope of this paper is 
the infrastructure planning of a single oilfield that 
contains a set of wells. Reservoirs are not explicitly 
considered and in principle all wells can be 
connected to all platforms. The cases of multiple 
fields and reservoirs will be considered in future 
work. 
 
 

MATHEMATICAL MODEL 
 

The planning of infrastructure in offshore oilfields 
includes discrete and continuous decisions along the 
project lifetime. Discrete variables represent the 
installation of platforms and wells in each period. 
Continuous variables are concerned with oil and gas 
production. Based on these considerations, the model 
that represents the infrastructure is a Mixed Integer 
Programming (MIP) problem.  

In the case of the planning of infrastructure of 
petroleum fields, MINLP models have been avoided 
in favor of MILP or even LP models, because of the 
inherent difficulties of treating nonlinear constraints 
and in the latter case because of the combinatorial 
explosion that results from discrete decisions. 

Despite the fact that many authors propose MINLP 
models that in principle are more suitable to represent 
the system behavior, in this paper we rely on a linear 
model. The main motivation is to generate models that 
are simpler and better structured to solve and therefore 
larger instances can be handled. 
 
Model Assumptions 
 

The following are the main assumptions of the 
proposed model: 
(A1) Only two substances are removed, which are oil 

and gas. 
(A2) The productivity index (PI) is constant for each 

well throughout the planning horizon.  
(A3) Whenever oil is removed from a reservoir, its 

pressure decreases linearly. 
(A4) The pressure is the same in each well at any 

given time period. 
(A5) There is no pressure loss along the pipelines 

that connect the wells and the platforms.  
(A6) A linear model represents the gas-to-oil rate.  
(A7) The initial amounts of each substance are 

known for each well. 
(A8) The production limit for each substance is 

known along the planning horizon. 
(A9) The area of the field is known and it is divided 

into a rectangular grid and it is possible to 
allocate a platform in the center of each rectangle. 

(A10) The wells are randomly distributed in the field. 
(A12) The planning time horizon is discretized in 

intervals of equal length. 
(A13) Production costs and yields for all substances 

are known for each time period. 
(A14) Interest and inflation rates are constant along 

the planning horizon. 
(A15) Investment costs are represented by fixed 

parameters and are not subject to depreciation. 
There are pertinent assumptions and those that are 

considered a relaxation for the model. Assumptions 
A1, A4, A7, A8 and A13 are pertinent and the others 
can be relaxed and are discussed in the sequence. 

Iyer et al. (1998) state that PI, a measure of the 
daily amount of fluids which an oil well can produce 
per unit of reservoir pressure, depends on the 
permeability-thickness product which is obtained 
from a geological map of each reservoir. Values for 
PI are obtained from random sampling from a 
normal distribution for a given mean and standard 
deviation for each reservoir. According to this paper, 
PI is assumed to be constant throughout the planning 
horizon, as presented in the second assumption. 

Van den Heever and Grossmann (2000) presented 
a model in which the non linear behavior of the 
reservoirs is incorporated directly in the formulation. 
Based on their assumptions, the reservoirs contain a 
substantial volume of gas so that a single linear 
constraint would be imprecise if the pressure varied 
over a long interval. Moreover, the gas-to-oil rate is 
treated as a nonlinear function of the oil removed 
from the well. Note that Iyer et al. (1998) already 
considered nonlinear behavior of the reservoir 
through a piecewise linear interpolation, including 
binary variables and Van den Heever and Grossmann 
(2000) included the nonlinear model directly, 
reducing the number of binary variables. Therefore, 
the third and sixth assumptions in the present model 
represent simplifications over previous ones in order 
to improve computational efficiency.  

The area of the field is known and platform 
allocation is determined at the project level. We 
adopt the assumption to allocate a platform in the 
center of the rectangle has the objective of 
discretizing the area into a finite number of 
locations. 

Potential location of the wells is known. In the 
absence of real data, their location is randomly 
distributed in the field. Information regarding taxes 
and inflation rates are time, dependent specific 
period and country dependent and can be easily 
adapted to the problem instance. 

Drilling and connection costs are considered 
fixed parameters. Iyer and Grossmann (1998) 
considered that drilling and production costs have 
fixed and variable components that depend on the 



 
 
 
 

70              M.C.A. Carvalho and J.M. Pinto 

 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

capacity of the platforms. The authors consider that 
the maximum capacity is equal to the largest value 
obtained in all time periods. In the model developed 
by Tsarbopoulou (2000) platform capacity was not 
considered and therefore variable costs are not 
included. 

In summary, assumptions A2, A3, A5, A6 and 
A15 are those that could be treated in a more realistic 
way by introducing non linearities to the model. 

Common methods of capital budgeting include 
net present value (NPV), i.e. the present value of 
cash inflow is subtracted from the present value of 
cash outflows. NPV compares the value of a 
currency unit today versus the value of that same 
currency unit in the future after taking inflation and 
return into account. If the NPV of a prospective 
project is positive then it should be accepted, 
otherwise the project probably should be rejected 
because cash flows are negative. In this context, the 
objective is to maximize the NPV. 

The MILP model originally proposed by 
Tsarbopoulou (2000) maximizes NPV and it is 
reproduced below (also denoted as Model MO). 

The objective function in Equation 1 includes the 
revenues of oil and gas defined as GAS and OIL, 
reduced by the drilling and connection costs, DR and 
CON, respectively. 
 
Max NPV=GAS+OIL-DR-CON        (1) 
s.t. 
 

o, j,t t t
j t

OIL F (APO PCO) D⎡ ⎤= × − ×⎣ ⎦∑∑      (2) 

 

g, j,t t t
j t

GAS F (APG PCG) D⎡ ⎤= × − ×⎣ ⎦∑∑          (3) 

 
Equations 2 and 3 are related to the revenues 

from oil and gas that depend on annual oil and gas 
prices at time period t, APOt and APGt, respectively. 
These prices are subtracted from their production 
costs, PCO and PCG. Moreover, revenues depend on 
depreciation Dt. The general equation for 
depreciation Dt is the following: 
 

t 1

t
1 INFLATIOND =     
1 INTEREST

−+⎛ ⎞
⎜ ⎟+⎝ ⎠

 t∀        (4) 

 
Equations 5 and 6 are based on assumption A15 

and are related to the drilling and connection costs, 
respectively. 
 

i i, j
i j

DR (100M 10 X ) 10000= + × ×∑ ∑       (5) 

i, j i, j
i j

CON COST X= ×∑∑          (6) 

 
The cost depends directly on the assignment of 

the well to the platform where connection cost 
COSTi,j between wells and platforms is the same as 
the one mentioned by Devine and Lesso (1972): 
 

i, j j

ij2 2
j i, j

j

COST 122.6 21.43 WD +2.39

H
WD +12.24 H +5 ( 1.5)

WD

= − × ×

× × −

 i,j∀     (7) 

 
where WDj is the depth of well j and Hi,j is the 
horizontal distance between well j to be connected to 
platform i. 

The horizontal distance shown in Equation 7 is a 
function of platform and well co-ordinates. Its 
corresponding equation may be written as: 
 

( )2 2
1
2

i, j i j i jH = (PX WX ) (PY WY )     − + −  i,j∀     (8) 
 

Process conditions are assumed to have linear 
behavior according to assumptions A3 and A6 and 
are represented as follows.  
 

s,t s,t 1 s, j,t
j

CUM CUM F      −= + ∑  s,t∀               (9) 

 
6

t o,tP 100 8.0 10 CUM    −= − × ×  t∀     (10) 
 

Equation 9 states that the cumulative production 
of each substance (oil/gas) is the same as the 
cumulative production in the previous time period 
increased by an amount equal to the flow from all 
wells at the present time. Equation 10 states that the 
initial pressure of the reservoir is 100 bar and that it 
decreases linearly with accumulated production (in 
barrels). 
 

o, j,t j tFMAX PI P       = ×  j,t∀                             (11) 
6

g, j,t j o,tFMAX PI (60 2.6 10 CUM )    

j,t

−= × − × ×

∀
  (12) 

 
s, j,t s, j,tF FMAX     ≤  s,j,t∀         (13) 

 

s, j,t s, j
t

F INVAL     ≤∑  s,j∀        (14) 

 
Equations 11 and 12 are related to the 

maximum flow of production of the oil and gas in 
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barrels, respectively. Equation 13 states that the 
flow of each substance from each well should not 
exceed the maximum production limits. Equation 
14 enforces that the flow of all substances 
throughout the time horizon should not exceed 
their initial amounts. 
 

j,t j,t 1 i, j,t
i

a a x        −= + ∑  j,t∀       (15) 

 
Equation 15 states that a well is opened only once 

and remains open throughout the whole time 
horizon. Note also that aj,0 = 0 for every well j; in 
other words, the well will eventually be made 
available during the planning horizon. 
 

o, j,t j,tF FOMAX a       ≤ ×  j,t∀       (16) 
 

g, j,t j,tF FGMAX a       ≤ ×  j,t∀       (17) 
 

o, j,t j,tF FOMIN a      ≥ ×       j,t∀       (18) 
 

g, j,t j,tF FGMIN a      ≥ ×  j,t∀        (19) 
 

Constraints 16 to 19 state that the oil and gas flow 
should not exceed upper and lower bounds. 
Furthermore, note that Equations 16 and 17 set the 
oil and gas flow rates to zero in case a well is not 
made available. 

Logical Constraints 20 to 24 relate the decision 
variables from the model. 
 

i, j i, j,t
t

X x      = ∑  i,j∀          (20) 

 

i,t i
t

Y M         ≤∑  i∀          (21) 

 

i, j,t i,t
t

x Y≤ ∑  i,j,t∀          (22) 

i, j,t
i t

x 1     ≤∑∑  j∀          (23) 

 

i, j,t i
t

x M≤∑  i,j∀          (24) 

 
Equation 20 states that a well is connected to a 

platform only if it has been connected to the same 
platform at one time period during the whole time 
horizon. Equation 21 enforces that every platform is 
installed at most once within the whole time horizon. 
Equation 22 states that if a well is connected to a 

platform during the whole time period, the 
corresponding platform has to be installed. Equation 
23 enforces that a well is connected to a platform at 
most once. Equation 24 states that a well is 
connected to a platform only if the same platform 
was allocated. 
 
 

REFORMULATED MODEL 
 

Problem MR corresponds to a reformulation of 
the model proposed by Tsarbopoulou (2000) and 
presented in the previous section. The main 
difference between both models relies on the 
representation of the binary decision variables.  
 
Model MR 
 

Tsarbopoulou (2000) considered five sets of 
binary variables. The first set assigns wells to 
platforms (Xi,j), the second and third represent the 
selection and the timing of platforms (Mi and Yi,t), 
fourth the availability of wells (aj,t) and the last one 
relates wells to platforms at every time period (xi,j,t). 
The reformulated model (MR) contains only the last 
three sets of variables, which is sufficient to model 
the discrete decisions of the problem. 
 
MR:  
Max NPV=GAS+OIL-DR-CON        (1) 
s.t. 
constraints  (2) and (3) 

       (9) to (17) 
(23) and (24) 

 

i i, j,t
i j t

DR (100 M 10 x ) 10000= × + × ×∑ ∑∑   (25) 

 

i, j i, j,t
i j t

CON COST x= ×∑∑∑       (26) 

 
s, j,tF 0    ≥  s, j,t∀           (27) 

 
Note that Constraints 18 and 19 were eliminated 

because the lower bounds for the flow rates (FOMIN 
and FGMIN) are set to zero. On the other hand, non 
negativity constraints for the flow rates are imposed 
in the model in 27. 

Model MO uses variable Xi,j to connect platform i 
to well j and xi,j,t to connect platform i to well j at 
time t. Furthermore, variables Yi,t denote the time t at 
which platform i is installed. All these decisions can 
be represented by xi,j,t. Therefore, Equations 20 to 22 
are unnecessary and Equations 5 and 6 are 
transformed into Equations 25 and 26, respectively.  
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RESULTS 
 

In this section we present in detail a case study as 
the one introduced by Tsarbopoulou (2000) that 
provides a comparison between MO and the 
proposed model MR. For this case, 16 platforms and 
30 wells are considered for a horizon of 10 years that 
is divided into equal time periods of 1 year each. In 
this problem, a rectangular oilfield of 10,000 ft by 

15,000 ft is considered (Figure 2). Upper production 
limits of oil and gas in each well are 1,250,000 ft3 
and 875,000 ft3, respectively.  

Interest and inflation rates were set by 
Tsarbopoulou (2000) to 15% and 3%, respectively. 
Data regarding productivity indexes (PI), initial 
amounts of substances (oil and gas), the coordinates 
in the field, and depth (WD) from each well are 
given in Table 1. 

    

 
Figure 2: Configuration of field 

 
Table 1: Data for each well 

 
INVAL 

(105 barrel/year) j WX 
(ft) 

WY 
(ft) 

WD 
(ft) 

PI 
barrel
yr.bar

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Oil Gas 
1 5336 1183 6.27 1840 8.5 5.95 
2 6136 4283 5.26 2000 11.0 7.70 
3 6338 6640 5.34 1760 12.0 8.40 
4 12911 1082 5.61 1920 9.5 6.65 
5 4528 8700 5.92 1980 10.0 7.00 
6 10862 8990 5.16 1680 10.5 7.35 
7 9683 4679 5.42 1620 8.0 5.60 
8 2716 2677 5.11 1629 9.0 6.30 
9 8808 4510 5.82 1740 10.0 7.00 
10 6007 5702 5.66 1940 11.5 8.05 
11 2999 6058 5.00 1840 8.5 5.95 
12 13090 2313 6.22 2000 11.0 7.70 
13 13855 5889 6.25 1760 12.0 8.40 
14 7713 6440 4.90 1920 9.5 6.65 
15 4369 2773 5.59 1980 10.0 7.00 
16 10260 8099 5.26 1680 10.5 7.35 
17 11416 4973 6.03 1620 8.0 5.60 
18 6648 3866 5.17 1629 9.0 6.30 
19 9834 3451 5.57 1740 10.0 7.00 
20 8006 3679 5.73 1940 11.5 8.05 
21 12096 2913 4.88 1840 8.5 5.95 
22 7000 7869 4.58 2000 11.0 7.70 
23 3477 1774 5.78 1760 12.0 8.40 
24 9153 3104 6.08 1920 9.5 6.65 
25 617 1034 4.76 1980 10.0 7.00 
26 1071 3328 5.06 1680 10.5 7.35 
27 4095 1249 5.06 1620 8.0 5.60 
28 7440 9979 5.98 1629 9.0 6.30 
29 7155 9232 6.29 1740 10.0 7.00 
30 1095 7980 6.36 1940 11.5 8.05 
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The problem is solved to illustrate the 
performance of the models and of the solution 
strategy. The MILP problems were modeled using 
GAMS (Brooke et al., 1998) and solved in full space 
using the LP-based branch and bound method 
implemented in the CPLEX solver (ILOG, 1999). 

The reformulated model (MR) presented better 
computational performance with respect to the 
original model (MO) proposed by Tsarbopoulou 
(2000), as shown in Table 2 that presents the CPU 
times obtained for a problem with 16 platforms as a 
function of the number of wells (NW). Interestingly, 
the integrality gap is the same for both models and 
increases with problem size.  

Table 3 presents the sizes of MO and MR, such as 
the number of single equations (SE), the number of 
continuous variables (SV) and the number of discrete 
variables (DV) for several numbers of wells (NW) 
and 16 platforms. Note from Table 3 that there is a 
linear increase in the number of equations as well as 

in the binary and continuous variables with the 
increment of the number of wells. 

It is important to note that the two models in 
principle might not have the same integrality gap 
because they are based on different formulations 
(Williams, 1999). In that respect, modeling is largely an 
art that has a large impact in mixed-integer 
programming (Biegler et al., 1997) and computational 
experiments are necessary to test and compare 
formulations. Solution performance depends on several 
factors such as model size (constraints, binary variables 
and continuous variables) and model formulation. In 
this particular case, the former played the most 
significant role in reducing computational effort. 

Figure 3 illustrates the computational time for 
MO and MR for different numbers of wells and 16 
platforms and shows that the latter is smaller than the 
one for MO under any configuration. However, the 
computational effort presents a non-linear behavior 
with the number of wells.  

 
Table 2: Computational performance of the models 

 
CPU time (s) Gap NW 

MO MR (%) 
05     0.9   0.7 0.10 
10     2.6   1.8 0.10 
15    6.4   4.0 0.10 
20                             23.8                            17.7 0.13 
25                           269.5                          179.0 0.17 
30                     8473.953                    7605.562 0.18 
35 * * - 

* No integer solution obtained after 18,000 CPU s. 
 

Table 3: Dimensions of MO and MR 
 

MO MR NW SE SV DV SE SV DV 
05 1486 295 1056 490 295 816 
10 2911 545 1936 935 545 1616 
15 4336 795 2816 1380 795 2416 
20 5761 1045 3696 1825 1045 3216 
25 7186 1295 4576 2270 1295 4016 
30 8611 1545 5456 2715 1545 4816 
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Figure 3: CPU times for MO and MR 
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Sensitivity Analysis 
 

A sensitivity analysis of the main model parameters 
was performed. Figures 4 to 6 show the relative change 
of the objective function (NPV) with respect to the base 
case the parameters in the -20% to +20% range.  

Figure 4 shows the results for the main 
parameters that impact the objective function that are 
INTEREST, INFLATION, PCO and PCG. Note that 
the first two parameters directly affect depreciation. 
The ones that most significantly impact NPV are 
PCO and INTEREST. 

Figure 5 presents the influence of FOMAX, 

FGMAX and INVAL. It can be seen that parameter 
INVAL has a small impact on the objective function, 
whereas there is no sensitivity of NPV on the two 
others because constraints (16) to (19) are not active 
at any time period. 

The main purpose of Figure 6 is to verify the 
influence of the parameters that take part in the 
pressure constraint (Equation 10). These parameters 
are α and β denote the intercept and the slope of 
Equation 10 (values 100 and 68.0 10−×  in the base 
case), respectively. Hence, it can be observed from 
Figure 6 that the initial pressure has a stronger 
influence than the decrease rate. 
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Figure 4: Sensitivity of the objective function 
parameters 

Figure 5: Sensitivity of FOMAX, FGMAX and 
INVAL 
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Figure 6: Sensitivity of the pressure constraints 

 
 

BILEVEL DECOMPOSITION APPROACH 
 

From the results of the previous section it 
becomes clear that neither model can efficiently 
solve problems of larger sizes if MILP solvers were 
to tackle them in full-scale. Therefore, a 
decomposition approach is applied to model MR. 

Iyer and Grossmann (1998) proposed a two-level 
decomposition approach for the planning of process 
networks. Van der Heever and Grossmann (2000) 
then applied this technique to an oilfield 
infrastructure-planning model. In this section, a 
similar approach is applied to the reformulated 
model MR. The resulting model is denoted as MD 

that is decomposed into two subproblems: the master 
subproblem that solves a model that assigns 
platforms to wells (problem AP) and the timing 
subproblem (problem TP). The latter relies on the 
assignments that are obtained in the master 
subproblem and decides on when to install the 
platforms. The decomposition algorithm as applied 
to model MR can be seen in Figure 7. In Figure 7, 
design cuts correspond to Constraints 35 to 37 that 
are described in item 5.1. The proposed technique is 
similar to the one proposed by Van den Heever and 
Grossmann (2000), which however have considered 
non convex nonlinearities in the sub-problem and 
therefore could not guarantee global solutions. 
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Figure 7: Bilevel decomposition algorithm. 

 
 
Model MD 
 

The model is solved iteratively such that the two 
MILP sub-problems AP and TP are optimized in 
each iteration r. 

The assignment problem (AP) is defined as 
follows: 
 
max NPV=GAS+OIL-DR-CON         (1) 
s.t.  
constraints  (2) and (3) 

(5) and (6) 
(9) to (14) and 27 

 

j i, j
i

A X         = ∑  j∀          (28) 

 
o, j,t jF FOMAX A         ≤ ×  j,t∀       (29) 

 
g, j,t jF FGMAX A         ≤ ×  j,t∀       (30) 

 

i, j
i

X 1     ≤∑  j∀           (31) 

 
ij iX M      ≤  i,j∀            (32) 

 
In (28), variable Aj is assigned to one when a well 

is opened. Note that the availability of the well is no 
longer associated to time and that the assignment 
variable Xi,j originally defined by Tsarbopoulou 
(2000) is introduced. 

In (29) and (30), the flow rates of both oil and gas 
should never be above specific limits FOMAX and 
FGMAX, respectively. 

In (31) it is clear that both wells and platforms are 
connected only once within the horizon. 
Furthermore, Equation 32 states that one well is 
connected to a platform only if this was installed.  

The solution of AP provides values for Xi,j. If this 
variable is fixed, denoted by i, jX , a feasible solution 
for TP is a feasible solution for MR and generates a 
lower bound for this problem. 

The timing problem (TPR), at iteration R, is 
defined as follows: 
 
max NPV=GAS+OIL-DR-CON         (1) 
s.t.  
constraints  (2) and (3) 

(9) to (17) 
(23) to (27) 

 

i, j,t i, jx X                ≤  i,j,t∀         (33) 
 

j,t ja A                  ≤  j,t∀                                  (34) 
 

Similarly to Iyer and Grossmann (1998), 
Constraints 33 and 34 select a subset of assignments 
for the planning problem. 

The following are the constraints (design cuts) 
used in the AP model in the algorithm to avoid 
subsets and supersets that would result in suboptimal 
solutions: 
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r
1

r r
n1,n2 i, j 1

(n1,n2) Z

r
0

X X Z

(i,j) Z ,r=1...R

∈

+ ≤

∀ ∈

∑
       (35) 

 

r
0

r
n1,n2 i, j

(n1,n2) Z

r
1

X X 1   

(i,j) Z , r=1...R

∈

+ ≥

∀ ∈

∑
                        (36) 

 

r r

r r
i, j i, j r

(i, j) M (i, j) N

X X M 1

r=1...R

∈ ∈

− ≤ −∑ ∑
     (37) 

 
where  
 

{ }r
i, jrM (i, j) / X 1 for configuration in iteration r= =  

 

{ }r
i, jrN (i, j) / X 0 for configuration in iteration r= =  

 

{ }r r
1 i, jZ (i, j) / X 1= =  

 

{ }r r
0 i, jZ (i, j) / X 0= =  

 
Similarly to Iyer and Grossmann (1998), 

Equation 35 states that if in any solution all the i, jX  

variables in any set r
1Z  are 1, then all remaining 

variables must be zero in order to prevent a superset 
of r

1Z  from entering the solution of AP. Equation 36 
shows cuts for precluding subsets of r

1Z . Equation 
37 has the effect of establishing the basis for 
deriving integer cuts on supersets and subsets of the 
configurations predicted by the assignment problem. 
This property of supersets and subsets is the basis for 
deriving the integer cuts. Note that the design cuts 
(35) to (37) accumulate along the iterations.  
 
 
Bounding Properties of DP 

 
A very important property of the decomposition 

strategy is that AP represents a rigorous upper 
bounding problem to TP. This can be verified by 
comparing the feasible region of the two problems. 
Note that all constraints of AP are also present in TP, 
with exception of (5), (6), and (28) to (32). Firstly, it 
is important to establish the relationship between the 

logical (binary) variables of AP – Xij and Aj – and 
those of TP, given by xij,t and aj,t. The variables that 
define the connection of platform i to well j are 
related in (20). The variables that define the 
availability of wells are related in (38).  
 
 

i, j i, j,t
t

X x      = ∑  i,j∀                                       (20) 

 

( )j j,t j,t 1
t

A a a      −= −∑  j∀        (38) 

 
By definition, Aj is one when the well is made 

available during any time period within the time 
horizon. This is verified by examining variables aj,t at 
every two consecutive time periods. If the well is 
made available at time t, then aj,t - aj,t-1 = 1; 
otherwise, the difference is zero (the well is not 
available or it was made available at a previous 
period, in which case aj,t = aj,t-1 = 1). 

Regarding the constraints of AP that do not 
belong to TP, Equations (5) and (6) are obtained by 
substituting (20) into (25) and (26), respectively. 
Constraint (28) can be obtained as follows. Consider 
equation (15): 
 

j,t j,t 1 i, j,t
i

a a x        −= + ∑  j,t∀       (15) 

 
Rearranging (15) and summing over t:  
 

( )j,t j,t 1 i, j,t
t t i

a a x        −− =∑ ∑∑  j∀     (39) 

 
Using (38) and (20) yields Equation (28): 
 

j i, j
i

A X         = ∑  j∀          (28) 

 
Constraints (29) and (30) represent relaxations of 

constraints (16) and (17), respectively; this can be 
shown by the relationship between Aj and aj,t given 
in (34). Moreover, constraints (31) and (32) are 
obtained by replacing (20) into (23) and (24), 
respectively. 
 
Results 
 

From Table 2 it is clear that models MO and MR 
are unable to solve problems with more than 35 
wells, despite a relatively small integrality gap 
verified for the smaller instances. Nevertheless, 
when MR is subject to the decomposition strategy 
proposed in the previous section (denoted as MD), 
the computational gain is remarkable. The CPU 
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times obtained for a problem with 16 platforms as a 
function of NW are compared to those from MR in 
Figure 8. 

Figure 8 also illustrates the computational time 
for MD for different numbers of wells and platforms, 
ranging from 16 and 25. 

Table 4 presents the corresponding sizes of 
problem MD, for several values of the number of 
wells. SV and DV are maintained at each iteration, 
whereas there is an average increase of 20% in the 
number of equations from iteration 1 to 2, due to the 
cut generation step. 

It can be seen from Table 4 that the reduction in 
the number of discrete variables (DV) in MD is not 
significant with respect to MR. However the 
introduction of Constraints (33) and (34) greatly 
reduces the search space and therefore the 
computational effort. 

The optimal values obtained with MO, MR and 
MD are the same for all cases and only 3 
subproblems are required for MD for all instances. 

The well-platform assignments obtained for MD 

are given in Table 5. Note that, besides the objective 
function value, the decision variables are expressed 
by platform (wells). For the sake of illustration, ten 
iterations of the algorithm are shown in Table 5. It is 
important to note however that the algorithm 
converges in a single iteration. 

Note that Constraints 35 to 37 do not allow the 
repetition of assignments neither the generation of 
sub and supersets. In this sense, there is no 
significant change in the allocation obtained in AP in 
consecutive iterations. For instance from the first to 
the second iteration, the only modification is the 
allocation of well 9 to platform 11 in place of the 
assignment of well 9 to platform 10. 

Note also from Table 5 that all platforms are 
installed and connected to the wells in the first time 
period, since no investment constraints are imposed 
in the model. Therefore assumption A15 does not 
represent any simplification to the model. Results in 
Table 5 show that there is a more significant 
decrease in NPV in the first four iterations. Finally, 
29 allocations are made for all iterations. 
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Figure 8: Computational performance for MR and MD 

 
 

Table 4: Size of problem MD 
 

1st iteration NW Sub problem SE SV DV CPU (s) NPV 
AP 445 245 101 1.5 5.0969×107 

5 TP 1265 245 866   
AP 845 445 186 2.0 8.6692×107 

10 TP 2485 445 1716   
AP 1245 645 271 2.8 1.0378×108 

15 TP 3705 645 2566   
AP 1645 845 356 7.5 1.0989×108 

20 TP 4925 845 3416   
AP 2045 1045 441 9.1 1.1438×108 

25 TP 6093 1045 4266   
AP 2445 1245 526 15.5 1.1840×108 

30 TP 7313 1245 5116   
AP 2845 1445 611 15.3 1.2312×108 

35 TP 8585 1445 5966   
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Table 5: Assignments for 10 iterations of MD 
 

Iterations 
(r)  

NPV  
(108) 

allocation Xi,j  
j (i| Xi,j=1) 

01 1.1840 2(3,6,7,11,14,23); 3(12,13,15,19); 4(4,10); 9(1,8,22,24,29,30); 10(2,5,9,20); 11(25,28); 13(18,27); 
15(17,21); 16(16) 

02 1.1835 2(3,6,7,11,14,23); 3(12,13,15,19); 4(4,10); 9(1,8,22,24,29,30); 10(2,5,20); 11(9,25,28); 13(18,27); 
15(17,21); 16(16) 

03 1.1828 1,26; 2(3,6,7,11,14,23); 3(12,13,15,19); 4(4,10); 9(1,8,22,24,29,30); 10(2,5,9,20); 11(25,28); 
13(18,27); 15(17,21) 

04 1.1823 1,26; 2(3,6,7,11,14,23); 3(12,13,15,19); 4(4,10); 9(1,8,22,24,29,30); 10(2,5,20); 11(9,25,28); 
13(18,27); 15(17,21) 

05 1.1813 2(3,6,7,11,14,23); 3(12,13,15,19); 4(4,10); 9(1,22,24,29,30); 10(2,5,9,20); 11(25,28); 13(8,18,27); 
15(17,21); 16(16) 

06 1.1810 2(3,6,7,11,14,23); 3(12,13,15,19); 8(4,10); 9(1,8,22,24,29,30); 10(2,5,9,20); 11(25,28); 13(18,27); 
15(17,21); 16(16) 

07 1.1808 2(3,6,7,11,14,23); 3(12,13,15,19); 4(4,10); 9(1,22,24,29,30); 10(2,5,20); 11(9,25,28); 13(8,18,27); 
15(17,21); 16(16) 

08 1.1806 2(3,6,7,11,14,23); 3(12,13,15,19); 8(4,10); 9(1,8,22,24,29,30); 10(2,5,20); 11(9,25,28); 13(18,27); 
15(17,21); 16(16) 

09 1.1806 1,26; 2(3,6,7,11,14,23); 3(12,13,15,19); 4(4,10); 9(1,8,22,24,29,30); 10(2,5,20); 11(25,28); 
13(18,27); 15(17,21); 16(16) 

10 1.1805 2(3,6,7,11,14,23); 3(12,13,15,19); 4(4,10); 9(1,8,22,24,29,30); 10(2,5,9,20); 11(25,28); 13(18,27); 
15(17,21); 16(16) 

 
 

DECOMPOSITION APPROACH USING 
HEURISTIC 

 
From Figure 9 it becomes clear that most of the 

computational effort lies on the solution of AP due to 
the large combinatorial aspect that results from 
allocating wells to platforms. As solving AP is 
intrinsically related with the well-platform 
connection, it becomes interesting to limit some of 
the possible connections. 

According to Grimmett and Starzman (1988), it is 
common the use of the constraint that enforces a 
maximum horizontal distance (radius) that a well can 
be drilled from a fixed surface location. This 
constraint is important because it limits the number 
of wells that can be directionally drilled from a 
platform. Such type of constraint can be included in the 
mathematical programming formulation of the 
location-allocation problem, as illustrated in Figure 10.  
 
Model MH 
 

Models MO, MR and MD consider all 
associations between wells and platforms. However, 
Equation 7 shows connection costs that are directly 
related to the horizontal distance between well and 

platform.  
Figure 10 illustrates how the wells and platforms 

are distributed, as suggested by assumptions A9 and 
A10. The area of the field is divided in N2 smaller 
rectangles of equal size and in each of them the 
number of potential platforms allocated to each well 
at every time period. 

A constraint that assigns zero values to the Xi,j 
variable when the distance is larger than the smallest 
distance of the smaller rectangles of the field is 
added to model MD. So, MD, now denoted MH, has 
a smaller number of possible associations between 
wells and platforms, and therefore may be able to 
solve the problem that includes heuristics with lower 
computational effort. 

In order to evaluate the impact of the heuristics in 
the model, two limiting values of association 
between wells and platforms were tested. The radius 
is determined by the horizontal distance that a well 
can be drilled from a fixed surface and two 
connection limits are defined as follows: for MH1 
the maximum horizontal distance is given by the 
maximum between LY/N and LX/N, whereas for 
MH2, the radius is defined as the one that connects 
the center to the vertices of the small rectangle 
(Figure 10). 
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Figure 9: Percentage of computational time to solve AP 

 

 
Figure 10: Configuration of field with heuristic 

 
Results 
 

Values of LX and LY represent the dimensions of 
the field, and originally admit values of 15,000 ft and 
10,000 ft, respectively. The value of N as well as the 
size of the field were increased with the objective of 
analyzing the effect of problem dimension in the 
computational effort. Values are shown in Table 6. 

Figures 11a and 11b illustrate results for MD and 
MH1 for different numbers of wells and platforms. 

Attributions well-platform along time for MH1, 
considering 30 wells and 16 platforms are the same as 
the ones for model MD as well as the value of the 
objective function found. However, CPU time was 2.4 
seconds that is 35% smaller than that requested by MD 
and 60% smaller than required from MO. Note also 
that in Figure 11b only the case with 100 wells could 
be solved when 25 potential platforms are defined. 

Figures 12a and 12b illustrate the impact of the 
heuristic on the models MILP. The same value for the 
objective function was found in all models. However, 
model MH1 requires a larger computational time than 
model MH2. This result should be expected because 
essentially the radius determines the search area. In 
this sense, the heuristics that uses a smaller radius 
tends to obtain results with smaller computational 
effort. As the radius used in MH1 and MH2 are 
similar, their computational time is also similar. The 
radius utilized in MH1 was chosen in order to cover 
the smallest rectangle. In other words, to allow 
connection of the platform location in the center of the 
rectangle to all potential wells in this rectangle. The 
radius utilized in MH2 was chosen in order to 
evaluate the search in relation the MH1 and to verify 
how the radius could influence the computational 
time. 

 
Table 6: Size of the field 

 
N WP LX (ft) LY (ft) 
4 16 15,000 10,000 
5 25 23,438 15,625 
6 36 33,750 22,500 
7 49 45,938 30,625 
8 64 60,000 40,000 
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Figure 11: Computational performance for MD and MH1  
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Figure 12: Computational performance for MH1 and MH2 
 

According to Figures 11b and 12b, the model 
cannot be solved to global optimality for 200 wells 
and 25 platforms. Several values of the relative 
optimality criterion (OPTCR) were used in the range 
of 1 to 10% in model MH2. OPTCR is defined as 
(best estimate-best integer)/ best estimate, in which 
"best integer" is the best solution that satisfies all 
integer requirements found so far and "best estimate" 
provides a bound for the optimal integer solution.  
Table 7 and Figure 13 show the results and compare 
the objective function and computational time for 
each criterion. Despite different values of OPTCR, 
the resulting objective function value is the same. 

In order to evaluate the impact of the optimality 

criterion for another instance of the problem, results 
were optimized initially for the case in which an 
optimal solution was obtained (100 wells and 25 
platforms). Results are represented by Figure 14 
(also shown in Table 7). Note that the computational 
time presents a significant increase when the 
optimally criterion is smaller than 1%, and the 
corresponding objective function presented a small 
increase. The computational time to non null 
optimality criteria is smaller for all cases, except for 
500 wells. For 300 wells and optimality criterion 1%, 
the decrease in CPU is 95% and represents a 
reduction in the objective function of only 0.5% in 
relation to the optimal solution. 

 
Table 7: Computational time for 25 platforms 

 
NW OPTCR Objective Function CPU (s) 

100 

10 
5 

2.5 
1 

0.5 
0 

1.4313×108 
1.4313×108 
1.4556×108 
1.4490×108 
1.4536×108 
1.4610×108 

 98. 7 
 111.8 
 121.8 
 159.6 

                                       1896.9 
3462.1 

200 

10 
5 

2.5 
1 

1.7422×108 
1.7422×108 
1.7422×108 
1.7372×108 

 217.3 
 185.2 
 269.9 
 286.9 

300 1 
0 

1.9498×108 
1.9589×108 

 650.3 
                                     23577.5 

400 1 
0 

2.1428 ×108 
2.1582×108 

1045.8 
3849.0 

500 1 
0 

2.3303×108 
2.3430×108 

1055.9 
2298.2 
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Figure 13: Computational time and objective function for 25 platforms and 200 wells 
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Figure 14: Computational time and objective function for 25 platforms and 100 wells 

 
CONCLUSIONS 

 
This paper addressed the long term planning of 

the oilfield infrastructure. Firstly, we proposed a 
reformulated MILP that presents a significant 
reduction in the number of discrete variables for the 
same relaxation gap with respect to the model 
developed by Tsarbopoulou (2000). Moreover, a 
bilevel decomposition approach that relies on the 
disaggregation of the assignment and timing 
decisions in analogy to the one proposed by Iyer and 
Grossmann (1998) has been presented. Results show 
that computational performance is greatly improved, 
whereas global optimality is guaranteed. Problems of 
25 platforms and 400 wells are efficiently solved for 
a 10-year horizon. Finally, heuristics that limit the 
assignment of platforms to wells were proposed. 
Results show that gains of up to 86% in CPU time 
were obtained with the addition of the heuristic rule 
without compromising the solution quality. 
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NOMECLATURE 
Indices 
 
g gas 
i  platform 
j  well 
o  oil 
s  substance (gas or oil) 
t  time period  
 
Parameters 
 
APOt  annual oil price at time period t 
APGt annual gas price at time period t 
COSTi,j cost between wells and platforms 
Dt  depreciation at time period t 
Hi,j  horizontal distance between well j 

to be connected to platform i 
FGMAX upper bound of gas flow  
FGMIN lower bound of gas flow  
FOMAX upper bound of oil flow  
FOMIN lower bound of oil flow 
INFLATION inflation rate 
INTEREST interest rate 
INVALs,j initial value for substance s in 
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well j 
LX x-dimension of the oilfield 
LY y-dimension of the oilfield 
N number of grids in which each 

distance is divided (N2 rectangles 
are formed) 

NW overall number of wells 
PCG  annual production costs for gas 
PCO  annual production costs for oil 
PIj productivity index for well j  
PXi x co-ordinate of platform i 
PYi y co-ordinate of platform i 
Qs,t upper production limit for 

substance s at time period t 
WDj depth of well j 
WXj x co-ordinate of well j 
WYj y co-ordinate of well j 
 
Continuous Variables 
 
Aj availability of well j  
CON connection cost 
CUMs,t cumulative production of substance s 

up to time period t 
DR overall drilling cost 
Fs,j,t flow rate of substance s from well j 

during time period t 
FMAXs,j,t maximum flow of substance s from 

well j at time period t 
GAS revenues of gas 
NPV objective function variable 
OIL revenues of oil 
Pt pressure of all wells at time period t 
 
Binary Variables 
 
aj,t  availability of well j at time period t 
Mi existence of platform i 
xi,j,t  connection of platform i to well j at 

time period t 
Xi,j connection of platform i to well j 
Yi,t time period t at which platform i is 

installed 
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