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Abstract - This paper investigates the feasibility of using grey-box neural models (GNM) in Real Time 
Optimization (RTO). These models are based on a suitable combination of fundamental conservation laws 
and neural networks, being used in at least two different ways: to complement available phenomenological 
knowledge with empirical information, or to reduce dimensionality of complex rigorous physical models. We 
have observed that the benefits of using these simple adaptable models are counteracted by some difficulties 
associated with the solution of the optimization problem. Nonlinear Programming (NLP) algorithms failed in 
finding the global optimum due to the fact that neural networks can introduce multimodal objective functions. 
One alternative considered to solve this problem was the use of some kind of evolutionary algorithms, like 
Genetic Algorithms (GA). Although these algorithms produced better results in terms of finding the 
appropriate region, they took long periods of time to reach the global optimum. It was found that a 
combination of genetic and nonlinear programming algorithms can be use to fast obtain the optimum solution. 
The proposed approach was applied to the Williams-Otto reactor, considering three different GNM models of 
increasing complexity. Results demonstrated that the use of GNM models and mixed GA/NLP optimization 
algorithms is a promissory approach for solving dynamic RTO problems. 
Keywords: Grey-box neural models; Real Time Optimization ; Genetic Algorithms. 

 
 
 

 
INTRODUCTION 

 
In the middle seventies various papers that 

changed the classical perception about the industrial 
process control were published in the scientific 
literature, most of them originated from industry. 
These works analyzed some relevant industrial 
process characteristics, discussing real necessities in 
terms of automatic control (Barkelew, l976, 
Ellingsen, l976, Latour, 1976, Lee and Weekman, 
l976). 

One of the most important process characteristics 
that the authors pointed out was the effect of non 
stationary external perturbations on the optimal 
operating point of the process. It was realized that in 
most cases the optimum is close to the intersection of 
constraint boundaries, which change under the effect 
of non-stationary perturbations (varying market 
conditions, changing raw materials, different product 
specifications, and the like), resulting in a dynamic 
environment. Such instabilities require a continuous 
tracking of an itinerant operating point. 
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The immediate consequence of these publications 
was the interest from academy (and industry) in 
searching for strategies that could be efficiently used 
to follow the optimum. The problem is of such a 
huge complexity that during the last thirty years it 
has been receiving increasing attention, and 
represents an area of intensive and permanent 
research (Marlin and Hrymak, l997, Zanin et. al., 
2000). 

The process of tracking the best operating point 
has been known by different names as for example: 
optimizing control (Arkun and Stephanopoulos, 
1980), on-line optimization (White, 1997) and real 
time optimization (RTO). Today it seems to be an 
agreement on RTO (Yip and Marlin, 2004). 

Three consecutive tasks must be executed during 
RTO: 
 assessment of current plant operation status 
 search for the new optimum 
 implementation of results 

Each of these tasks involves many complex and 
not totally well established activities.  

Plant status assessment requires process variable 
measurements, which involves for instance, 
availability of reliable physical sensors (Bagajewicz, 
2000), development of virtual sensors (Tham et al., 
1989) if necessary, definition of sample times, pre-
treatment of data, fault detection (Venkatasubramanian 
et al., 2004) and data reconciliation (Romagnoli and 
Sánchez, 2000). Searching for the new operating 
point involves the solution of an optimization 
problem, which requires a clear definition of the 
objective function, constraints and the method of 
solution. Four different approaches have been used 
(Bhattacharya and Joseph, l982): perturbation 
methods, direct methods, indirect methods, and 
dynamic model methods. Finally the implementation 
task involves a careful analysis of the optimization 
results, which may not  represent a real option, due 
to errors from different sources (Marlin and Hrymak, 
l997). After deciding the implementation of the new 
optimum, it is necessary to choose an efficient way 
to take the process from the original to the new 
operating point, which involves advanced techniques 
like model predictive control (Qin and Badgwell, 
2003).  

The complexity, uncertainty and, mainly, the 
magnitude of chemical plant processes represent 
important factors for RTO research be in an 
enthusiastic and permanent stage of development. 
The driving force of this enthusiasm is the significant 

return of investment associated to well succeed RTO 
(White, l998; Nath and Alzein, 2000). 

The RTO systems reduce the plant/model 
mismatch by updating the model with actual and 
historical plant data sets (Yip and Marlin, 2002). The 
performance of an RTO system is measured by the 
expected profit achieved, which is strongly 
influenced by the quality of the model used 
(Loeblein and Perkins, 1998, 1999). Since the early 
beginning it becomes clear that the non stationary 
behavior of chemical process operations require an 
RTO based on dynamic models (Bamberger and 
Isermann, l978). Because the RTO execution is time 
consuming, simple phenomenological adaptable 
steady state models are currently used. In practical 
situations, however, it is difficult to reach the steady 
state among each RTO execution period, leaving the 
plant in a permanent state of slow dynamic changes. 
The problem is that the adaptation procedure 
requires the plant to be stationary, a very unreal 
situation in industrial plants (Bamberger and 
Isermann, l978). 

Under this condition model is not entirely 
consistent and an inefficient update process could 
reduce the economic performance of the plant. The 
key to solve this problem is the use of 
phenomenological dynamic plant models, which 
have the disadvantages of being difficult to obtain 
and update in real time. Various proposals have been 
suggested to reduce these problems (Sequeira et al., 
2004, Yip and Marlin, 2004), but there is still plenty 
of room for new alternatives. Biegler et al. (2002) 
present a complete study about the simultaneous 
solutions of the dynamic RTO based on DAE 
models. These authors improve the optimization 
solver adding a novel filter in the line search and 
preconditioning the conjugated gradient. Also, the 
problem of moving finite elements was addresses 
trough an algorithms that adjust elements to track the 
optimal movements.           

In this work we have investigated the feasibility 
of using grey-box neural models (GNM) in RTO. 
These models are based on a suitable combination of 
fundamental conservation laws and neural networks 
(NNs), and can be used in at least two different 
ways: to complement available phenomenological 
knowledge with empirical information, or to reduce 
dimensionality of complex rigorous physical models 
(Van can et. al., 1996). The benefits of using these 
simple adaptable models are counteracted by some 
difficulties associated with the solution of the 
optimization problem. Nonlinear Programming 
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(NLP) algorithms failed in finding the global 
optimum due to the fact that neural networks can 
introduce multimodal objective functions. One 
alternative considered to solve this problem was the 
use of some kind of evolutionary algorithms, like 
Genetic Algorithms (GA). Although these algorithms 
produced better results in terms of finding the 
appropriate region, they took long periods of time to 
reach the global optimum. It was found that a 
combination of genetic and nonlinear programming 
algorithms can be use to fast obtain the optimum 
solution. The proposed approach was applied to the 
Williams-Otto reactor, considering three different 
GNM models of increasing complexity. 

In this paper we considered that the introduction 
of multimodal objective functions due to the NN in 
the GNM is less disadvantageous than maintaining 
the complex first principles model in the RTO 
formulation because robust global optimization 
algorithms that allow fast solutions are easily 
available. Instead, solutions for complex models 
have more   convergence problems. 

The paper is organized as follows. In Section 2, 
the RTO problem, the GNM paradigm and the Otto-
Williams reactor are summarized. Section 3 
illustrates and discusses the implementation of 

RTO with different GNM models and optimization 
algorithms. Finally, the paper is concluded in 
Section 4. 
 
 

PROBLEM DESCRIPTION 
 
RTO Structure 
 

A typical RTO system, as shown in Figure 1, 
includes the following elements: model updater, model-
based optimizer, result analysis and process control. 

Real-time measurements are made for plant status 
assessment and used for model parameter estimation. 
The updated model is used by the optimizer to find 
the optimum operating point. This information is 
analyzed and, if approved, transmitted to the process 
controllers. Only significant changes in optimization 
variables are forwarded to the process controllers for 
implementation. Naturally, design decisions strongly 
affect the closed-loop RTO performance. Design 
procedures have been developed to select an 
appropriate model for RTO system (Forbes et al., 
1994). Parameters for updating are selected by 
minimizing the offset and variability (Forbes and 
Marlin, 1996).  
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Figure 1:  The RTO loop  
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RTO Formulation 
 

The optimum operating policy is determined based 
on the updated model and an economic objective 
function. In this work, only material and energy 
balances, which are equality constraints, are considered 
in the model. The economic optimization problem that 
must be solved for RTO can be stated as  
 

( )max   P x,β               (1) 

s. t. ( )f x, 0;
x 0

β =
≥

 

 
where P is the economic objective function, f is a 
vector representing the process model, β  is a vector 
of the parameters to be estimated for process model 
updating, and x is a vector of the optimization 
variables, including dependent and independent 
variables. 
 
GNM Model 
 

Grey-box Neural Models combine a 
phenomenological model of the system with neural 
networks and enable the synthesis of simpler 

mathematical models than purely phenomenological 
ones, with more robust generalization properties than 
purely black-box neural models. These two 
properties make the GNM especially attractive in 
tasks associated with Process Identification, Process 
Control and Optimization, (Cubillos and Lima, 1998; 
Xiong and Jutan , 2002) . 

The GNM approach consists of the formulation of 
a process model by equations derived from 
phenomenological principles - such as mass, energy 
and momentum balances - and neural networks, 
which estimate uncertain parameters or the ones 
difficult to model. Such approach represents an 
attempt to add prior knowledge to black-box neural 
models, in order to reduce their complexity and 
improve their adaptive and predictive properties 
(Psichogios and Ungar, 1992). Thompson and 
Kramer (1994) classified these grey-box models into 
two main types: models with the NN bringing 
intermediate values (parameters or variables) to be 
used in the phenomenological model (series grey-
box models) or models with the NN in parallel with 
the dynamic model compensating the plant/model 
mismatch (parallel grey-box models). Figure 2 
shows the series scheme for a grey-box model as 
used in this work. 

  
 

Phenomenological

Dynamic Model

Inputs Outputs

Model
Parameters

Phenomenological

Dynamic Model

Inputs Outputs

Model
Parameters

 
 

Figure 2:  The GNM approach 
 
Otto-Williams Reactor 
 

The proposed approach was applied to              
the simulated continuous system tank reactor 
(CSTR) from the Otto-Williams benchmark plant 
modified by Forbes and Marlin (1996), as illustrated 
in Figure 3.  

The following reactions are conducted in the 
reactor:  
 

CBA →+     rT
B

ekk
1

011

−

=  

EPBC +→+   rT
B

ekk
2

022

−

=            (2) 

GCP →+    rT
B

ekk
3

033

−

=  
 
Assuming an ideal CSTR with no reactor 
temperature dynamics, the model equations for each 
species are given by: 
 

r1 T/B
01barabaa

a
r ekxxVx)FF(F

dt
dx

V −−+−=  
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dx
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dt
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= − + −

+
 

 
1 r

3 r2 r

B / Tc
r a b c r a b 01

B / TB / T
b c 02 c p 03

dx
V (F F )x V (2x x k e

dt

2x x k e x x k e )

−

−−

= − + + −

−
 

 
r2 T/B

02cbreba
e

r ekxxV2x)FF(
dt

dx
V −++−=     (3) 

 

3 r2 r

p
r a b p

B / TB / T
r b c 02 p c 03

dx
V (F F )x

dt

V (x x k e 0.5x x k e )−−

= − + +

−
 

 

r3 T/B
03cprgba

g
r ekxxV5.1x)FF(

dt
dx

V −++−=  
 

In these equations iF are the species mass flow 
rates, ix are the species mass fractions, rV  is the 
reactor mass hold-up and rT  is the reactor 
temperature. The values of the kinetic parameters 

ii0i B and ,k,k  are given in Table 1.  

  
 

 
 

Figure 3:  The Otto-Williams reactor 
 
 

Table 1: Otto-William kinetic parameters 
 

Kinetic Parameters 

6
01

8
02

12
03

k 1.6599 10

k 7.2117 10

k 2.6745 10

= ⋅

= ⋅

= ⋅

 
1

2

3

B 6666.7 K

B 8333.3 K

B 11111 K

= °

= °

= °

 

 
 
GNM Synthesis 
 

To study the feasibility of the use of the GNM 
type models in RTO, three different modelling 
schemes were selected as described in Forbest et al. 
(1994): 

i)   Single reaction approximation (M1): A+2B→ P+E  

ii)   Two-reaction approximation (M2): A+2B→ P+E;   
A+B+P→G 
iii)   Complete three-reaction system (M3) as 
described in (3). 

Each GNM was synthesized considering the non 
stationary mass balance for each species. 
Feedforward neural networks were used to estimate 
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the hypothetical reaction rates with unknown kinetic, 
jR . Target values for these parameters were calculated 

directly from a discrete version of the mass balances. 
For example, for a single reaction model (M1), the 
reaction rate 1R  may be estimated using a discrete 
version of the P component balance, as follows 
 

( ) ( )

( ) ( ) ( )( )
1 a b p r

p p

R k F F x / V

k x k x k 1 / t

 = + ⋅ 

+ − − ∆
             (5) 

 
where (k) denotes actual discrete time and ∆t the 
time interval. 

The decision variables of the optimization 
problem were chosen as the reactor temperature, rT , 
and the flow rate of component B, bF . The flow rate 
of component A, aF , and reactor mass holdup, rV , 
were fixed at 2 kg/s and 2010 kg, respectively. 
Under these conditions, the true optimum was 
calculated as 1869.5Fb =  kg/s and 85.90Tr =  ºC; the 
corresponding instantaneous profit was ($)45.198P = . 

In order to obtain adequate data for the estimation of 
the reaction rates, pseudo random binary input 
sequences were used for bF  and rT , with a sample 
period of 1000 s. Operating conditions and output 
concentrations were recorded to be used during the NN 
training procedure. Model updating, consisting of the 
NN adaptation, was carried out using a second order 
recursive optimization algorithm (Chen et al. 1990). 
The best NN structures were found by a systematic 
training procedure, considering the output 
concentrations of components A and B, and the reactor 
temperature as input variables to the networks. Finally, 
networks with one hidden layer, four nodes and 
sigmoidal activation functions were selected. 

A similar approach was used to derive the other 
GNM models, where the NNs were used to estimate 
the respective reaction rates with equal topology as 
used in the first approach. Figure 4 shows the 
prediction of the output concentration for E product 
using M2 model, with pseudo random binary 
perturbations on the input variables. Similar results 
were found for M1 and M3 models, showing that the 
GNM scheme is able to adequately track the process 
dynamics.   
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Figure 4: Actual (___) and GNM (-----) X(e) output concentration 
 
 

IMPLEMENTATION AND RESULTS 
 

Based on the updated dynamic GNM it was 
possible to derive an equivalent steady state model, 
able to be used in the RTO formulation. To illustrate 
the approach, considering the second approximation 
(M2), it is necessary to estimate two reaction rates 
( 1R  and 2R ) by means of neural networks. Steady 
state GNM model equations are  
M2:  
 

0VRVRx)FF(F r1r1abaa =−−+−  
 

0VRVR2x)FF(F r2r1bbab =−−+−  
 

r2r1pba VRVRx)FF( −++− =0            (6) 
 

0VR2x)FF( r1eba =++−  
 

0VR3x)FF( r2gba =++−  
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The complete model is composed by these five 
equations and two NNs to calculate R1 and R2. 
Decision variables bF  and rT  are explicit in the 
equations and implicit in the NNs inputs  
 
( rba T,x,x ). 

 
NLP Strategy 
 

The GNM approach with the three alternative 
adaptive models were tested in the RTO scheme 
considering similar operating conditions as used by 
Forbes and Marlin (1996), with feed flow rate and 
reactor temperature as the optimization variables. 
The optimization objective is to maximize the profit, 
as indicated in Equation 4, constrained by the 
corresponding GNM models. At this stage, the NN 
parameters were kept constant. Additional bounds 
were incorporated in Fb and Tr in order to improve 
convergence properties.     The optimization problem 
is given by:  
 

b

r  

Min Tr, Fb  (-P = 1143.38*Xp* Fr + 25.92* 

Xe* Fr - 23*Fa -114.34*Fb )  
s.t. 

M1, M2, or M3  = 0

0 = F  = 10                                                     

0 =T = 150 

       (7) 

 

Concerning Figure 1, model update parameters 
were made off-line with the dynamical data base 
(Figure 4), instead the optimizer was linked on-line 
with the process. No validation procedures were 
considered. 
  A dynamic test was applied considering the reactor 
operating in a non optimum point. At a pre-established 
time, the RTO was connected to the plant, running each 
sample time in order to position the process at the 
optimum. Current reactor states were used as initial 
guess to the next optimization step. The optimization 
problem was solved using the SQP algorithm (Edgard 
and Himmelblau, 1988) included in the optimization 
toolbox of Matlab. Figure 5 shows the behavior of the 
RTO system for the three GNM models and the true 
(nominal) model over a time horizon of 4200s (21 RTO 
executions). Figure 6 shows the Tr movements, Fb is 
fixed in the optimum value (Fb= 4.7 kg/s) at the first 
sample by the optimizer in all models. 

Results indicate that all GNM models were able to 
find an optimal set of variables close to the true 
optimum and maintain these conditions over the time. It 
can be observed that deviations from the nominal 
optimum are as more severe as less exact is the process 
model used in the RTO. Other issue observed is the 
sensitiveness of the RTO/GNM system to the initial 
conditions in the optimizer. In order to compare the 
performances of the models considered in this work, a 
dynamic performance index, defined as the total profit 
obtained over the time window was calculated. It can be 
observed that results improve as the process/model 
mismatch is reduced as presented in Table 2 
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Figure 5:  Instantaneous profit evolution 

 
Table 2: Cumulative profit 

 
Model True GNM/M3 GNM/M1 GNM/M1 
Cumulative  Profit ($) 4362 4236 4205 3892 
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Figure 6:  Manipulated variable Tr. 

 
 
 
Genetic Algorithm 
 

As mentioned above, it was observed that the 
performance of the NLP approach was very sensitive 
to the initial condition. Several tests were carried out 
in order to find the cause of this behaviour, and 
finally it was found that the NN training quality was 
the main factor. Most of the analyzed GNM models 
presented multimodal behaviour with local optimum 
values, mainly for less intensive trained NNs. To 
illustrate this behaviour Figure 6 shows the profit 
response surface after a long training cycle of the 
NN (10000 epochs). The presence of a local 
minimum is evident.    

To cope with this problem, it was considered the 
use of a global optimization solver based on genetic 
algorithms. 

Genetic algorithms are stochastic optimization 
methods based on the biological principles of natural 
selection (Goldberg, 1989). These methods are 
especially suitable for multimodal objective 
functions, often observed in models based on neural 
networks, as they are less probable to get trapped in 
local optima. In GA, the decision variables are 
encoded into bit strings and submitted to crossover 
and mutation mechanisms based on the evolutionary 
theory. The reproduction is determined by a fitness 
function associated with the capability of survival of 
an individual. The main characteristics of GA are: 
search from a population and evaluation of fitness 
(performance) function as a black box. The 
efficiency of a GA is closely linked with the 

objective function and set-up parameters as: encoded 
strings, bit resolution, initial population, number of 
generations, and operator probabilities. Experience 
indicates that due to the large number of GA 
parameters, a suitable set-up should be determined 
for each particular problem. 

In order to evaluate the performance of the 
proposed approach, the previous dynamic test was 
applied. As the main objective of this work is to 
evaluate grey-box neural models in RTO, a simple 
GA with no special effort in parameter setting-up 
was used. Component B flow rate and reactor 
temperature were encoded in binary strings of 16 
bits. A population size of 50 pairs of individuals was 
kept constant over the generations. A total of 30 
generations was used to find the optimum. 

The obtained results shown good agreement with 
the same problem solved by the NLP technique, 
getting the process near of the true optimum. The 
cumulative profit and an index of affectivity of each 
algorithm ( i.e. % to reach the true optimum)  for the 
nominal and the M3 model RTO scheme, using both 
NLP and GA methods, are given in Table 3 .  

A comparative analysis indicates that the GNM-
GA approach is more computers demanding than the 
GNM-NLP one, but is more stable as it does not 
depend on the initial guess. On the other hand, 
GNM-GA was not able to position the system in the 
true optimum. This is inherent to the GA formulation 
and it could be improved if an interval mixed GA-
NLP optimization scheme is applied (Valdes-
Gonzalez et al, 2003). 
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Figure 7:  Response surface to profit with M3 Model. 
 
 

Table 3: Cumulative profit (M3 model) and computing demand 
 

Scheme  True GNM-NLP GNM-GA GA-NLP 
Cumulative Profit ($) 4362 4236 4218 4325 
% reach optimum -    77    95    99 
Float operations p secons (flops)  3500 8900 10250 

 
 
GA-NLP Approach 
 

Based on the previous results, a hybrid GA/NLP 
scheme was developed and tested to solve the RTO 
problem. In this scheme each execution starts with a 
short GA (50 data pair and 10 generations) to find 
the region that contains the global optimum. This 
G.A. setting was obtained in order to have an 
adequate compromise between speed and precision.    
Subsequently, a NLP algorithm, starting with a 
random point inside this region is used to find the 
optimum. The results with the GA/NLP scheme have 
shown an excellent performance. These results are 
better than the ones of the schemes previously 
analyzed in terms of algorithm stability and quality 
of the optimum obtained. The cumulative profit and 
the affectivity index values for the nominal and the 
M3 model RTO scheme, with NLP, GA and 
GA/NLP optimization algorithms, are given in Table 
3. Tests carried out in a dynamic environment 
achieved 99% of effectiveness to find the optimum 
starting from several non optimum operational 

conditions. Obviously, the computational effort of 
this approach is bigger than the one required by each 
method separately, with about 50% increment of 
float point operations in each cycle of solution. 
 
 

CONCLUSIONS 
 

The ability of RTO systems to track the optimum 
operating point of a plant depends on the accuracy of 
model structure and model adaptability (efficient 
parameter estimation). In this work, different 
dynamic grey-box neural models for RTO are 
studied in order to reduce dimensionality and favor 
adaptability. From these models it is possible to 
obtain good information of the steady state 
characteristic of the plant, even if the steady state 
condition was not reached because the dynamic 
process data are used to fit a dynamical GNM model 
of the process and this GNM model is first principles 
consistent. Consequently, the model parameters 
(kinetics rates) may be used in an equivalent steady 
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state model for the optimization step.  The proposed 
models were successfully used for RTO of the Otto-
Williams reactor.  

The solution of the optimization problem by 
classical NLP techniques was possible, but not 
guaranteed, as the neural network in the GNM model 
may result in multimodal objective functions. To 
cope with this problem, a strategy based on GA was 
implemented. Such strategy guarantees reasonable 
convergence to the global optimum; however, the 
results were not as good as the ones obtained when 
NLP converges. Also, it requires a greater 
computational effort. Finally a hybrid GA-NLP was 
successfully applied to solve the problem with an 
efficient global optimum determination.  The above 
mentioned approach may be used even in the 
presence of process disturbances if they are 
measured and considered as inputs in the GNM 
model. 

The suggested approach introduces improvements 
in the RTO technology, allowing extension to highly 
nonlinear plants and a feasible on-line adaptation 
using dynamic information. 
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NOMENCLATURE 
 

jB  activation parameter in 
reaction 

j

f  plant model (-)
k  discrete time (-)

iF  flow rate of component i

jk  kinetic constant in reaction j

j0k  frequency factor in reaction j

P  economic objective function (-)
jR  reaction rate in reaction j

t : continuous time (-)
t∆  sampling period (-)

rT  reactor temperature (-)

rV  mass reactor hold-up (-)
 

x  vector of process variables (-)
ix  mass fraction of component i

β  vector of model parameters (-)
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