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Abstract - In this work, boundary layer development was investigated for a mass transfer process between a 
moving fluid and a slightly soluble cylinder or plane surface buried in a packed bed, in alignment with the 
direction of flow. The bed of inert particles is taken to have uniform voidage. For this purpose, numerical 
solutions of the partial differential equations describing mass concentration of the solute were undertaken to 
obtain the concentration boundary layer thickness as a function of the relevant parameters. Mathematical 
expressions that relate the dependence with the Peclet number and aspect ratio of the immersed active 
surfaces are proposed to describe the approximate size of the concentration boundary layer thickness. 
Keywords: Concentration boundary layer; Molecular diffusion; Packed bed; Soluble cylinder; Flat wall; High-
resolution schemes. 

 
 

INTRODUCTION 
 

There are several situations of practical interest, 
both in nature and in man-made processes, in which 
a solid cylinder or plane surface immersed in a 
packed bed of small inert particles interacts with the 
fluid flowing around it, through the interstices in the 
bed. 

Flows along buried cylindrical or flat surfaces (a 
particular case of a cylindrical surface with “infinite” 
radius) are important model situations and, in the 
present work, are investigated numerically for very 
wide ranges of values of Peclet number, Pe' , and 
aspect ratio of the immersed surfaces. 

Prandtl (1910) introduced the concept of a 
boundary layer for fluid flow past a solid in the early 
years of the last century. Over the years, several 
analytical steady and unsteady state mass transfer 
solutions for concentration boundary layer thickness, 
δ , have been presented in the literature (Schlichting, 
1979) for the case of a thin boundary layer (high

Peclet numbers). Curiously, the lack of correlations 
for concentration boundary layer thickness of 
cylinders and plane surfaces buried in porous media 
and in alignment with the flow, at low fluid 
velocities, motivated this work. 

The influence of the rheological properties on the 
boundary layer thickness was studied in detail by 
different scientists. For example, Nebbali and Bouhadef 
(2006) showed that, when the permeability and/or 
kinematic viscosity is increased, the velocity gradients 
at the duct walls decrease, which results in a boundary 
layer thickness increase. Cheng (2007) showed that 
increasing the power-law index or decreasing the Lewis 
number or decreasing the buoyancy ratio tends to 
increase the fluid velocity, which results in a 
concentration boundary layer thickness increase.  

In this paper, numerical relationships for the 
concentration boundary layer thickness applicable to 
dissolving cylindrical or flat surfaces under steady-
state conditions are obtained, for the whole range of 
relevant parameters. 
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Figure 1: (a) – Flow along soluble slab; (b) – Mass transfer boundary layer 

 
 

THEORY 
 
Case I - Soluble Flat Slab 

 
Figure 1 sketches a section through a packed bed 

along which liquid is flowing, close to a flat wall, 
part of which (0< z< L) is slightly soluble. Liquid 
flow will be taken to be steady, with uniform average 
superficial velocity u, and, if the concentration of 
solute in the liquid fed to the bed is c0 and the 
solubility of the solid wall is c*, a mass transfer 
boundary layer will develop, across which the solute 
concentration drops from c=c*, at y=0, to c→ c0, for 
large y. The main assumptions are: steady-state, 
constant velocity, and the medium is treated as a 
continuum and isotropic medium. 

It is well known (e.g., Vortmeyer and Schuster, 
1983) that the voidage of a packed bed (and 
therefore the fluid velocity) is higher near a 
containing flat wall, but in the case of our study it 
may be considered that such a non-uniformity will 
have negligible effect. For one thing, if we consider 
that the bed particles have diameters between 0.2 and 
0.5 mm, consequently the region of increased 
voidage will be very thin. Furthermore, because the 
inert particles making up the bed indent the soluble 
surface slightly as dissolution takes place, there is in 
fact virtually no near wall region of higher voidage.  

If we restrict our analysis to those situations for 
which the mass transfer boundary layer extends over 
several particle diameters and if a small control 
volume is considered, inside this boundary layer, 
with side lengths δz, δy and unity (perpendicular to 

the plane of the figure), a steady state material 
balance for the solute leads to: 

 
2 2

T L2 2
c c cu D D
z y z
∂ ∂ ∂

= +
∂ ∂ ∂

           (1) 

 
where TD  and LD  are the dispersion coefficients, 
respectively, in the cross-stream and in the stream-
wise directions. If the boundary layer is thin 
compared to the length of the soluble slab, the last 
term on the r.h.s. of (1) will be negligible (see 
Coelho and Guedes de Carvalho, 1988  for a 
quantitative treatment of this aspect) and Eq. (1) then 
reduces to the equation of diffusion in one dimension 
to be solved with: 

 
0c c                   z 0              y 0= = >        (2a) 

 
c c*                   z 0              y 0= > =        (2b) 
 

0c c                  z 0              y→ > → +∞      (2c) 
 
The solution is the well-known complementary 
function error:  
 

0

0 T

c c y uerfc
c* c 2 D z

⎛ ⎞−
= ⎜ ⎟⎜ ⎟− ⎝ ⎠

           (3) 

 
The concentration boundary layer thickness is 

defined as the vertical distance from the cylindrical 
or flat surfaces where the solute concentration is 1%
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of the saturation concentration. For the case of 
L T mD D D′≅ ≅  and for a laminar boundary layer with 

a conservative dissolving flat plane, the analytical 
solution (3) can be written (see Chrysikopoulos et 
al., 2003) as: 
 

0.5
mD ' z

2
u

⎛ ⎞δ ≅ π ⎜ ⎟
⎝ ⎠

             (4) 

 
valid when the superficial velocities are very high.  

Here we wish to consider the mass transfer 
process for the whole range of superficial velocities, 
so the term accounting for longitudinal dispersion 
will have to be considered and Eq. (1) will have to be 
integrated numerically. In order to integrate Eq. (1), 
it is convenient to define the following 
dimensionless variables: 
 

0

0

c c
C

c* c
−

=
−

             (5a) 

 
yY
L

=               (5b) 

 
zZ
L

=                (5c) 

 

m

uLPe'
D

=
′

              (5d) 

 
where Pe'  represents the Peclet number (based on the 
length, L, of the soluble slab), and mD′  is the effective 
molecular diffusion coefficient, defined as the ratio 
between the molecular diffusion coefficient and the 
tortuosity, τ , of the packed bed ( m mD D /′ = τ ). 

In terms of dimensionless variables, Eq. (1) for 
L T mD D D′≅ ≅  (isotropic porous bed), may then be 

rewritten as: 
 

2 2

2 2
C C CPe'
Z Z Y
∂ ∂ ∂

= +
∂ ∂ ∂

             (6) 

 
and the appropriate boundary conditions are: 
 
C 0          Z        Y→ → − ∞ ∀            (7a) 
 
C 1       0  Z 1         Y 0= ≤ ≤ =       (7b) 
 

C 0     Z 0   Z 1 Y 0
Y

∂
= < ∨ > =

∂
      (7c) 

 
C 0          Z                     Y  → ∀ → + ∞      (7d) 

C 0          Z             Y 0→ → + ∞ ≥       (7e) 
 

Equation (6) is to be solved numerically, subject 
to the boundary conditions (7a-e), over a large range 
of Pe'  values. 
 
Case II - Cylinder Aligned with the Flow 
 

Another important situation, sketched in Figure 2, 
is a slightly soluble cylinder of diameter 1d ( 2a)=  
and length L  buried in a packed bed of inert 
particles with uniform porosity, along which fluid 
flows with uniform superficial velocity, u . A mass 
transfer boundary layer develops, across which the 
concentration of solute drops from c c*= , at r a= , to 

0c c→ , for large enough r.  
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Figure 2: along soluble cylinder. 

 
Taking a radial co-ordinate, r, to measure distance 

to the axis of the buried cylinder and a co-ordinate z, 
to measure distance along the average flow direction, 
the differential mass balance for the solute reads: 

 
2

T
L 2

D C C Cr D u
r r r z z

∂ ∂ ∂ ∂⎛ ⎞ + =⎜ ⎟∂ ∂ ∂∂⎝ ⎠
                (8) 

 
In order to solve Eq. (8) numerically, with 

L T mD D D′≅ ≅ , it is convenient to use the 
dimensionless variables represented by Eqs. (7a), (7c), 
(7d) and R r / a= . Eq. (8) may then be rewritten as: 
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2
1

C C L 1 CPe 4 R
Z d R R RZ

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞′ = + ⎜ ⎟ ⎜ ⎟∂ ∂ ∂∂ ⎝ ⎠⎝ ⎠
            (9) 

 
and the appropriate boundary conditions are: 

 
C 0                  Z              R 1→ → − ∞ ≥        (10a) 
 
C 1               0  Z 1                R 1= ≤ ≤ =         (10b) 
 

C 0        Z 0   Z 1            R 1
R

∂
= < ∨ > =

∂
       (10c) 

 
C 0                  Z                      R  → ∀ → + ∞         (10d) 
 
C 0                  Z             R 1→ → + ∞ ≥             (10e) 

 

Equation (9) is to be solved numerically over the 
ranges of interest of Pe′  and 1L / d  and the solution 
has to satisfy the boundary conditions (10a-e). 

 
 

NUMERICAL METHOD 
 
Equations (6) and (9) were solved numerically, using 

a finite-difference method in a non-uniform grid 
(Ferziger and Peric, 1996), sketched in Figure 3, similar 
to that adopted by Guedes de Carvalho et al. (2004). A 
second-order central differencing scheme was adopted 
for the discretisation of the diffusive terms and the 
convective term was discretised using the CUBISTA 
high-resolution scheme (see Delgado, 2006), which 
preserves boundedness, even for highly advective flows. 
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Figure 3: Dependence of / Lδ  on Pe'  for a slab surface. The points represent  

the numerical solution and the solid lines correspond to Eqs. (20) an (21). 
 

The discretised equation resulting from the finite-difference approximation of Eqs. (6) and (9), respectively, 
reads: 
 

i 1/ 2, j i 1/ 2, j i 1, j i i, j i i 1 i 1, j i 1

i i 1 i i 1 i i 1

i, j 1 j i, j j j 1 i, j 1 j 1

j j 1 j j 1

C C C ( Z ) C ( Z Z ) C ( Z )
Pe'

( Z Z ) / 2 Z  Z  ( Z Z ) / 2

C ( Y ) C ( Y Y ) C ( Y )
Y  Y  ( Y Y ) / 2

+ − + + − +

+ + +

+ + − +

+ +

− Δ − Δ + Δ + Δ
= +

Δ + Δ Δ Δ Δ + Δ

Δ − Δ + Δ + Δ

Δ Δ Δ + Δ

               (11a) 

 
 

2
i 1/ 2, j i 1/ 2, j i 1, j i i, j i i 1 i 1, j i 1

i i 1 i i 1 i i 1 1 j

j j 1 j i, j 1 j j 1 j j j 1 j 1 i, j j j 1 j 1 i, j 1

j j

C C C ( Z ) C ( Z Z ) C ( Z ) L 1Pe 4 
( Z Z ) / 2 Z  Z  ( Z Z ) / 2 d R

(R R ) R  C (R R ) R (R R ) R  C (R R ) R  C

R  R

+ − + + − +

+ + +

+ + + − + − + −

− Δ − Δ + Δ + Δ ⎛ ⎞
′ = + ×⎜ ⎟Δ + Δ Δ Δ Δ + Δ ⎝ ⎠

⎡ ⎤+ Δ − + Δ + + Δ + + Δ⎣ ⎦
Δ Δ 1 j j 1 ( R R )+ +Δ + Δ

         (11b) 
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It is important that the i 1/ 2, jC +  and i 1/ 2, jC −  
values be adequately interpolated from the known 
grid node values using the CUBISTA high-
resolution scheme to ensure numerical stability 
and good precision. The normalised variable 
approach (NVA) of Leonard (1988) was adopted, 
in which a general differencing scheme of order 3 
or less can be expressed as: 

 
i 1/ 2, j i 1, j i, j i 1, jC f (C ,C ,C )+ − +=         (12) 

 
The NVA uses an appropriate upwind biased 
normalisation, and Eq. (12) can be rewritten in 
compact form as: 
 

i 1/ 2, j i, jC f (C )+ =             (13) 
 
where 
 

k, j i 1, j
k, j

i 1, j i 1, j

C C
C

C C
−

+ −

−
=

−
      

(14) 
 ( for k i 1 ,  i ,  i 1/ 2 ,  i 1 )= − + +      

 
By definition of Eq. (14), i 1, jC 0− =  and i 1, jC 1+ = , 
thus reducing Eq. (12) to a single variable or 
function (Eq. (13)). 

The CUBISTA scheme may be represented in the 
context of the NVA by the following piecewise 
linear function: 

 

i, j i, j

i, j i, j
i 1/ 2, j

i, j i, j

i, j

QUICK

UDS

7 3  C 0 C
4 8
3 3 3 3 C C

C 4 8 8 4
1 3 3 C C 1
4 4 4

 C elsewhere

+

⎧ ≤ <⎪
⎪
⎪ + ≤ ≤⎪= ⎨
⎪

+ < ≤⎪
⎪
⎪⎩

  (15) 

 
In the present work the resulting system of 

equations was solved iteratively by using the 
successive over-relaxation (SOR) method 
(Ferziger and Peric, 1996), and the implementation 
of the boundary conditions was carried out in the 
same way as described in our previous work 
(Guedes de Carvalho et al., 2004). For the 
situation under study, an orthogonal mesh is 
adequate and care was taken to ensure proper 
refinement in the regions where the highest 

concentration gradients were expected. The 
computational domain was varied according to the 
flow conditions (typically for small Pe' , wider 
meshes were needed) and, during mesh 
refinement, the number of nodes along each 
direction was doubled and the corresponding 
contraction/ expansion factors were root-squared. 

For all the conditions simulated in the present 
work, detailed mesh refinement studies were 
undertaken. The mesh refinement was performed in 
at least three meshes and continued until the 
difference between the calculated values of boundary 
layer thickness, / Lδ  (see Figure 1(b)), obtained in 
the finest mesh and the extrapolated value of / Lδ  
(obtained using Richardson’s extrapolation technique 
– see Eqs. (16) and (17), below) fell below 0.1%. 

The values of ext( / L)δ  were obtained by applying 
Richardson’s extrapolation to the limit, after 
determining the true order of convergence of the 
method, which is estimated from (Ferziger and Peric, 
1996) 

 
( ) ( )
( ) ( )

medium coarse

fine medium

/ L / L
log

/ L / L
p

log  2

δ − δ

δ − δ
=                (16) 

 
( ) ( )fine medium

p

/ L / L
L L 2 1ext fine

δ − δδ δ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠
       (17) 

 
Numerical solutions were performed within the 

ranges 3 310 Pe' 10− ≤ ≤  and 10 L / d 100≤ ≤  which 
corresponds to a considerable variation of the 
relevant hydrodynamic and geometrical parameters. 
The results are shown as point values in the plots of 
Figures 3 to 5 and represent what may be called “the 
exact solution” of the problem, within the accuracy 
of the numerical method. For practical purposes, it is 
useful to have some approximate analytical 
expression for ( )1/ L f Pe',  L/dδ = , which represents 
the exact solution with good accuracy; the 
development of such an expression is detailed in the 
following section. 
 
 

RESULTS AND DISCUSSION 
 
In this work, we defined the concentration 

boundary layer thickness, / Lδ , as the vertical 
distance from the cylindrical or flat surfaces where
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the solute concentration is 1% or 5% of the 
saturation concentration  ( C 0.01=  or C 0.05= , 
respectively). 
 
Case I - Soluble Flat Slab 

 
The numerical solution of Eq. (6) gives the 

concentration field and, from it, the concentration 
boundary layer thickness, / Lδ , for C 0.01=  and 
C 0.05= . 

For very low pPe′  (say, pPe 0.2′ < ), dispersion is 
the direct result of molecular diffusion, with 

T L mD D D′= = . The plot of Figure 3 reveals two 
well-known asymptotes, for high values of Pe' : 

 
0.5

C 0.01

4
L Pe'=

δ π⎛ ⎞ ⎡ ⎤=⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
           (18) 

 

( )
0.52

C 0.05

1

L Pe'=

⎡ ⎤+ πδ⎛ ⎞ ⎢ ⎥=⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎢ ⎥⎣ ⎦

         (19) 

 
as suggested by the analytical development of Eq. 
(3). Taking the asymptotes as starting guide lines, an 
effort was then made to obtain a general approximate 
expression, which would represent the “numerical 
points” with good accuracy over the whole range of 
Pé . The function obtained were  

 
0.59/5

C 0.01

3 4
L Pe' Pe'=

⎡ ⎤δ π π⎛ ⎞ ⎛ ⎞= +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

        (20) 

 

( )
0.52

9/5

C 0.05

14 1
L 3 Pe' Pe'=

⎡ ⎤+ πδ⎛ ⎞ ⎛ ⎞⎢ ⎥= π +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

     (21) 

 
and the numerical values do not deviate by more 
than 4% from the values given by Eqs. (18) and (19), 
over the entire range of values of Pe' . 
 
Case II - Cylinder Aligned with the Flow 
 

For each value of 1L / d 0.5> , the plot of / Lδ  vs. 
Pe'  reveals a horizontal asymptote, for Pe' 0→ . This 

limiting value of / Lδ  corresponds to the situation of 
pure molecular diffusion, with no flow. Figures 4 
show the observed dependence of ( )Pe' 0/ L →δ  on 1L / d  
and, again, two asymptotes are revealed by the plots: 

 
0.54 /3 1/3

4
1 1C 0.01

5 L L500
L d d14

− −

=

⎡ ⎤⎛ ⎞ ⎛ ⎞δ⎛ ⎞ ⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥π⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
   (22) 

 

 
0.54 /3 1/3

2
1 1C 0.05

3 L L20
L d d7

− −

=

⎡ ⎤⎛ ⎞ ⎛ ⎞δ⎛ ⎞ ⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥π⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
   (23) 

 
Employing the above asymptotes and the 

asymptote for high values of Pe' , an effort was made 
to obtain a general approximate expression for / Lδ  
that has the correct asymptotic behaviour. The 
functions obtained were: 
 

C 0.01
4/3 1/3

4
1 1

2/9
-6/5

1

1
L 1

5 L L500
d d14

1

L 424 Pe'
d Pe'

=
− −

−

δ⎛ ⎞ =⎜ ⎟
⎝ ⎠ +

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟

π⎝ ⎠ ⎝ ⎠

⎛ ⎞ π
+⎜ ⎟

⎝ ⎠

   (24) 

 

( )
C 0.05

4/3 1/3 2

2
1 1

1
L 1 Pe'

3 L L 120
d d7

=
− −

δ⎛ ⎞ =⎜ ⎟
⎝ ⎠ +

⎛ ⎞ ⎛ ⎞ + π+⎜ ⎟ ⎜ ⎟
π⎝ ⎠ ⎝ ⎠

 (25) 

 
and are represented in Figures 5 and 6 alongside the 
points obtained from the numerical solution. These 
do not deviate by more than 9% from the values 
given by Eqs. (24) and (25), over the entire range of 
values of Pe'  and 1L / d 0.5≥ . 

Figures 3, 5 and 6 show that, as Pe'  is reduced, 
the concentration boundary layer thickness increases 
and nonlinearity of the velocity profile becomes 
more important. Another important conclusion of 
these figures is that the asymptote for high Pe'  
values is 1/ 2/ L Pe'−δ → . This is not surprising since, 
for a thin concentration boundary layer, the curvature 
of the cylinder is not a relevant parameter. 
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Figure 4: Dependence of ( )Pe' 0/ L →δ  on 1L / d . 
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Figure 6: Dependence of / Lδ  on Pe'  for different 
values of 1L / d  and C 0.05= . The points represent 

the numerical solution and the solid lines 
correspond to Eq. (25). 

 
 

CONCLUSIONS 
 
The problem of boundary layer development 

from an active cylinder and slab surface buried in a 
packed bed of inert particles, through which fluid 
flows with uniform velocity, was treated in detail. 

The partial differential equations resulting from 
the differential mass balance were solved 
numerically over a wide range of values of the 
relevant parameters and general expressions, given 
as Eqs. (20), (21), (24) and (25), were obtained to 
relate the concentration boundary layer thickness 
with the Peclet number and the ratio between length 
and diameter of the soluble cylinder. 

The theory developed applies only in the range 
mud/D' 0.2< , over which dispersion is the result of 

only advection and molecular diffusion. 
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NOMENCALTURE 
 

a Radius of soluble cylinder  
c Solute concentration  

0c  Bulk concentration of solute  
c* Equilibrium concentration 

of solute 
 

C Dimensionless solute 
concentration 

 

d Diameter of inert particles  
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1d  Diameter of soluble cylinder  
LD  Longitudinal dispersion 

coefficient 
 

mD  Molecular diffusion 
coefficient 

 

mD '  Effective molecular 
diffusion coefficient 
( mD /= τ ) 

 

TD  Transverse dispersion 
coefficient 

 

L Length of solid slab or 
cylinder 

 

p  Order of convergence  
Pe'  Peclet number based on 

length of flat slab or 
cylinder ( muL / D'= ) 

 

pPe′  Peclet number based on 
diameter of inert particles 
( mud / D'= ) 

 

R Dimensionless spherical 
radial co-ordinate ( r / a= ) 

 

r Spherical radial coordinate  
u Absolute value of superficial 

velocity 
 

y Cartesian co-ordinate  
Y Dimensionless axial co-

ordinate ( y / L= ) 
 

z Cartesian co-ordinate  
Z Dimensionless axial co-

ordinate ( z / L= ) 
 

 
Greek Letters 
 
δ Concentration boundary 

layer thickness 
 

ε  Bed voidage  
τ  Tortuosity of the packed bed  
 
Subscripts and Superscripts 
 
i, j Grid node indices (see 

Figure 3) 
 

n Iteration number  
ext Extrapolated value  
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