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Abstract - In this work a strategy is presented for the temperature control of the polymerization reaction of 
styrene in suspension in batch. A three-layer feed forward Artificial Neural Network was trained in an off-line 
way starting from a removed group of patterns of the experimental system and applied in the recurrent form 
(RNN) to a Predictive Controller based on a Nonlinear Model (NMPC). This controller presented very 
superior results to the classic controller PID in the maintenance of the temperature. Still to improve the 
performance of the model used by NMPC (RNN) that can present differences in relation to the system due to 
the dead time involved in the control actions, nonlinear characteristic of the system and variable dynamics; an 
on-line adjustment methodology of the parameters of the exit layer of the Network is implemented, presenting 
superior results and treating the difficulties satisfactorily in the temperature control. All the presented results 
are obtained for a real system.  
Keywords: Predictive Control; Neural Networks; Genetic Algorithms; Polystyrene; Artificial Intelligence. 

 
 
 

INTRODUCTION 
 

Styrene polymerization process in suspension for 
obtaining polystyrene using monofunctional 
initiators, such as Benzoyl Peroxide (BPO) presents 
difficulties in temperature control of the chemical 
reaction, given the nonlinear characteristics of the 
reaction kinetics, which is exothermic. From 30% 
conversion of monomer into polymer, there is an 
increase in the viscosity, leading to the occurrence of 
the gel effect, reducing the mobility of the larger 
molecules and increasing the reaction rate 

significantly, making control of temperature more 
difficult. 

Maintenance of operation temperature is directly 
linked to the final product characteristics. Variations 
of temperature in batch reactions can affect the 
degree of monomer conversion and polymer 
molecular weight, which in turn can lead, 
undesirably, to a product outside of specifications.   

Many literature works have approached the 
problem of temperature control. In the work of Ray 
(1986), a discussion presents problems in the control 
of polymerization processes. Multivariable nonlinear 
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control is a field to be developed by researchers. We 
can also mention lack of appropriate conditions for 
on-line measurement, for instance, of monomer 
conversion rates and the lack of understanding of the 
highly nonlinear dynamics of the polymerization 
processes which present nonlinear kinetics. These 
are challenges to overcome in the control of 
polymerization processes. Later, the work of Khalid 
and Omatu (1992) presented a comparison between 
the classic PI controller and a controller based on an 
Artificial Neural Network (ANN) trained in an off-
line form for temperature control of a chemical 
process in batch, with better results for the model-
based controller.   

In the work of Crowley and Choi (1996), the 
difficulty in the temperature control of a batch 
suspension polymerization reaction of methyl 
methacrylate due to the gel effect was emphasized. 
Application of the classical PID controller, 
associated with a dead time compensation algorithm, 
can present a satisfactory performance 
(Ingimundarson and Hägglund, 2001; Shinskey, 
2001). However, the variation of the dynamics and 
the nonlinearities can degrade the controller 
performance. The use of an approach that can 
appropriately treat the problem of the nonlinearities, 
together with the disturbances not modeled and the 
intrinsic variations in the process dynamics will 
certainly guarantee a safer operation.   

More recently, the work of Chen and Huang 
(2004) presents results using Neural Networks to 
extract parameters that allow updating controllers 
PID in nonlinear processes. Unfortunately, only 
simulations are presented in that work. Later, Heejin 
et al. (2004) used an Artificial Neural Network to 
estimate the deactivation catalyst factor used in the 
process of obtaining styrene monomer, with good 
results according to the authors. Xiong and Zhang 
(2005) present an application of Neural Networks to 
preview properties of the polymer resulting from 
peroxide-initiated batch polymerization of methyl 
methacrylate, with satisfactory results.   

This work approaches the use of Artificial Neural 
Networks associated with Genetic Algorithms for 
temperature control of the batch polymerization 
reaction of styrene in suspension. This process is 
characterized by three rather different stages: heating 
of the reactor up to the desired temperature for the 
reaction; maintenance of the operational conditions 
until desired conversion is reached; cooling and 
discharge of the reactor. Each stage has different 
dynamics and dead times that, together with the 
nonlinearities of the control valves and highly 
exothermic reaction demand adequate techniques (or 
strategies) of control.  

A Predictive Controller Based on a Nonlinear 

Model (NMPC) is used to fulfill the temperature 
control of the polymerization reactor. A three layer 
Artificial Neural Network of the Feedforward type 
(FANN) was applied in a recurrent form as the 
model of the process (RNN), as described by 
Cancelier (2004) and Marcolla (2005). Because the 
dynamics of the system presented significant 
variations, an on-line adjustment of the weights and 
bias in the RNN output layer was implemented using 
Genetic Algorithms (GA) to correct these deviations. 
Results obtained were compared to the PID 
performance for control of the same process and with 
NMPC controller performance without adaptation, 
and results were superior for the adaptative strategy. 
 
 

EXPERIMENT 
 
Chemical Reaction 
 

The polymerization was carried out in a batch 
reactor containing 1.5 liters of styrene in 3.5 liters of 
water; about 4.6 g of BPO – benzoyl peroxyde 
(initiator) was added, the temperature was raised to 
90ºC and, one hour and thirty minutes from the 
moment that 90ºC was obtained, 
Poly(vinylpyrrolidone) (PVP) (suspension agent) 
was added. Agitation was maintained at 500 rpm 
during the experiment. After the time of reaction 
necessary to reach the desired conversion, the reactor 
was cooled and discharged. 
 
Experimental Unit 
 

The experimental unit is basically a jacketed 
reactor made of 316L stainless steel, with five liters 
capacity, equipped with a mixing system operated by 
software with a three phase motor, a frequency 
controller and a centered double turbine type 
agitator. Thermal swaps are performed by a cross-
current plate-type heat exchanger, a hydraulic pump, 
two pneumatic valves for the dosage of the hot and 
cold currents. A termopar measures the temperature 
inside the reactor. A boiler supplies steam to the 
heating system. Tap water is used in the cooling 
system. Thermal change system is initiated by the 
centrifugal pump that causes the pressure in the 
jacket of the reactor to be approximately 2 kgf/cm2. 
Valve U1 is responsible for steam circulation in the 
plate heat exchanger, through which the hot current 
is generated for heating. If valve U2 is closed, only 
the hot current circulates in the reactor.  

The opening of valve U2 reduces the pressure in 
the reactor jacket as well as in every circulation line 
so that the cold water stream circulates in it. Figure 1 
presents the schematic of the equipment.   
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Figure 1: Pilot plant scheme used. 

 
System Representation 
 

The system under study was identified from a series 
of disturbances applied to the control valves, resulting 
in a group of patterns for a three layer Feedforward 
Artificial Neural Network off-line training, being five 
neurons in the hidden layer, which will be used in order 
to represent the system on a Predictive Controller.  

The activation function applied to the neurons in 
the hidden layer is the hyperbolic tangent.  

Resulting groups of patterns were re-arranged 
according to the identified dead time for the heating 
and cooling processes in a polymerization reactor, in 
order to have a better representation through the 
FANN used.  

Figure 2 shows the patterns used and the 
disturbances applied to the system valves. Figure 10 
shows the topology of the FANN used in recurrent 
form. Table 1 presents the building of training 
patterns for FANN. 
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Figure 2: Patterns used for FANN training and Applied disturbances to system. 
 
 

Table 1: Formation of FANN training patterns. 
 

Instant (k) y(k) y (k-1) U1(k-5) U2 (k-4) Target 
y (k+1) 

1 y(1) y(1) U1(1) U2(1) y(1) 
2 y(2) y(2) U1(2) U2(2) y(2) 
3 y(3) y(3) U1(3) U2(3) y(3) 
4 y(4) y(4) U1(4) U2(4) y(4) 
5 y(5) y(5) U1(5) U2(5) y(5) 
6 y(6) y(6) U1(6) U2(6) y(6) 
7 y(7) y(7) U1(7) U2(7) y(7) 



 
 
 
 

116                                   R. F. Marcolla, R. A. F. Machado, A. Cancelier, C. A. Claumann and A. Bolzan 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

Dead time involved in the heating and cooling 
processes was determined from a comparison 
between graphical methodology, where a disturbance 
to the system was applied and where response time 
to the disturbance, as well as minimum squares 
methodology from the group of patterns initially 
created. 

Dead time used for the heating action consisted of 
five sampling intervals and, for cooling action, four 
sampling intervals, using a sampling interval of 10 
seconds.  

The FANN training was done using a hybrid 
algorithm proposed by Claumann (1999), using 
Genetic Algorithms to train the FANN intermediate 
layer and Minimum Square for the FANN output 
layer. 

A topology to be adopted for the FANN must be 
that one that presents the simplest structure and, at 
the same time, capable of adjusting to the training 
data with good capacity of generalization. 
 
Data and Control Acquisition Software 
 

System temperature and agitation frequency in 
the experimental unit were remote controlled by a 
PC-Intel Pentium-S 200MHz microcomputer, data 
acquisition board AD/DA from Data Translation 
model DT2812 and software for real time processing 
developed in the laboratory. Figure 3 shows the 
software main screen developed for the control 
strategies and data acquisition application. The 
software was developed in Object-Pascal language, 

using the integrated environment for Borland Delphi 
5.0 development. 

 
PID Controller 
 

The PID controller applied to fixed parameters 
was tested for the temperature control system being 
studied, for changes in the temperature, first for the 
polymerization reactor containing only water inside, 
where later it lead to a chemical reaction of the 
polymerization of styrene in suspension. The result 
for no chemical reaction was satisfactory; however, 
for the second case, with a leading polymerization 
chemical reaction, results were not satisfactory given 
dynamic changes in the system as well as dead times 
involved. 

The controller was adjusted according to Cohen-
Coon classical methodology, considering first order 
system as dead time; as shown in Equation 1, 
controller’s parameters were better adjusted 
manually by trial and error. The values used were the 
following: Kc = 1.8; Ti = 144.1 and Td = 7, 
representing controller gain, integrative and 
derivative constants, respectively, the identification 
procedure used can be found in Marcolla (2005). 
 

( )
sKeY(s)

s 1

−θ
=

τ +
                                                        (1) 

 
where: θ = 0.835 min; K = 3.04 (oC) / (% opening 
valve); τ = 25.93 min.  

  

 
Figure 3: Control system main screen (“A” represents the adjust of parameters N, α, λ1, λ2, λc. 
 “B” represents the adjust of delays d1 and d2. “C” represents value of minimization function.  

“D” represents the adjust of sample time and set-point). 
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NMPC Controller 
 

NMPC Controller application using the Artificial 
Neural Network trained in off-line form was verified, 
with the network applied to the system in recurrent 
form (RNN), for the reactor containing only water 
and for the leading chemical polymerization 
reaction. NMPC minimizes the objective function 
presented in Equation 2 using:  λC = 0.1, N = 7, λ1 
and λ2 =0.02 and α = 0.75. These values result after a 
manual adjustment until the controller shows the 
desired performance. Further details of the controller 
parameters adjustment can be seen in section 2.7. 
The aim when minimizing Equation 2 is that the 
future exit follows the reference and, at the same 
time, control efforts are minimized. Equation 2 has 
several degrees of freedom (N1, N2, Nu, λ1, λ2, and 
λc) that can be modified to obtain the desired 
behavior of the controlled system.  In Equation 2, 
“k” and “j” represent the current instant and other 
time instants and U1 and U2 are the control actions 
for the system. 
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N1 (min(d1,d2)+1) and N2 (max(d1,d2)+1+N) vary 

according to delay values (d1,d2) identified in the 
system as well as with the prediction horizon N. The 
value of Nu (control horizon) is kept constant and 
equals one, since the control problem is solved step 
by step. The parameter λC determines the importance 
of the work strip in the heating system valve U1 for 
the minimization of the objective function. The term 
[(U1-1).(k+j-1)] represents the weight of the control 
action for the valve U1 in the objective function, and 
when valve U1 (heating valve) is closed, there is no 
influence on the rise of the objective function 
regarding such control action, given the restrictions 

of the signal sent to the actuator. Parameter α 
represents the coefficient of the reference path 
w(t+k) and it varies from 0 to 1 with application as 
follows:  ( ) ( ) ( ) ( )w t k w t k 1 1 r t k ;+ = α + − + −α +  
where    k 1 N= …   

The value of the prediction horizon N must be 
defined as an acceptable value for its RNN 
prediction capacity. Parameters λ1 and λ2 represent a 
greater influence than can be given to the control 
actions in the objective function. The algorithm used 
to define the control actions at each instant 
determines the values of U1 and U2 in view of the 
best prediction of the system, that is, the smaller 
value of the objective function. 
 
Adjustment of the Controller Parameters: 
Influence on Control System Performance 
 

Figures 4, 5 and 6 show system behavior of λc 
varying from 0.001; 0.01 and 0.1; with α = 0.75; 
horizon prediction (N) = 7 and λ1 =  λ 2 = 0.02. A 
very small value for the parameter λc harms the 
controller performance because the valves operate in 
a very high opening range. With the parameter λc 
value already reduced, there is smaller degree of 
freedom applied to the system; the restriction on the 
steam consumption allows for better controller 
performance. Parameter α represents the coefficient 
of the reference path; this parameter varies from 0 to 
1. Lower values of α provide a faster transition for 
the reference, r(t+k), while higher values makes the 
transition slower. Figures 7, 6 and 8 show the 
reference transition (α) for the case of α values of 
0.50 and 0.75 and 0.96, respectively, horizon 
prediction (N) = 7 and λ1 = λ2 = 0.02 and λc = 0.1. In 
this case, the overshoot could be reduced by simply 
modifying this parameter (α) with a higher value, 
turning the path slower for the reference, allowing 
for a softer transition. If the aim was for the system 
not to present overshoot, this simple adjustment 
could solve the problem. In case the value of α is 
reduced, the transition is expected to be faster but the 
overshoot larger. The performance controller for the 
case of a differentiated horizon prediction can also 
be seen, like the case of a horizon prediction with 
seven sampling intervals, λc = 0.1 and α = 0.75 
(Figure 6) and the case of a horizon prediction (N) of 
12 sampling intervals, λc = 0.1 and α = 0.75 (Figure 
9). Very high values for this parameter (N) can lead 
to a low performance of the controller. 
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Figure 4: Temperature behavior and actuators action (λc=0.001; α=0.75). 
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Figure 5: Temperature behavior and actuators action (λc=0.01 ; α=0.75). 
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Figure 6: Temperature behavior and actuators action (λc=0.1 ; α=0.75). 
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Figure 7: Temperature behavior and actuators action (α=0.50 ; λc =0.1). 
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Figure 8: Temperature behavior and actuators action (α=0.96; λc =0.1). 

30

50

70

90

0 10 20 30 40 50 60
Time (min)

T
em

pe
ra

tu
re

 (°
C

)

 

1

2

3

4

5

0 20 40 60

Time (min)

C
on

tr
ol

 A
ct

io
n 

(V
ol

ts
)

Heating

Cooling

 
Figure 9: Temperature behavior and actuators action (α=0.75;λc=0.1;N=12). 
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On-line Adjustment of Recurrent Neural 
Network (RNN) 
 

Data used as patterns for FANN off-line training 
were obtained for the system without chemical 
reaction, with the reactor containing only water. 
FANN is applied to the controller in recurrent form 
(RNN), as a model of the process. The model will 
present flaws if used to represent the system 
dynamics while the polymerization reaction of 
styrene in suspension takes place, the differences 
being due to the absence of modeled disturbances 
and the exothermic characteristics of the chemical 
reaction, as well as the non-linearities of the system. 

A change of dynamics will take place due to two 
main reasons: firstly, the ΔH of reaction (the styrene 
polymerization reaction is an exothermic process) and 
also the heat capacity modification, because instead of 
only water, there are polymer/monomer particles in 
suspension, with significant variation of this ratio 
during the reaction progress. Secondly, other 
disturbances should be considered, such as the boiler 
steam pressure variation and water pressure variation 
used as the process cutting fluid.  Classic PID 
controllers like the NMPC fail in temperature control 
during the chemical reaction due to deviations and 
inherent nonlinearities in the process, that comes into 
evidence as NMPC approaches closer the desired 
temperature when the adaptation from the linear layer 
of the FANN (output neurons) is used to solve the 
problem. In this study we did not develop other types 
of adaptation strategies, which are an interesting topic 
for other studies of this system. 

To correct variations between the model and the 
system, an on-line methodology of the adjustment of 
the weights and bias of the output layer of the RNN 
was applied through GA, with a group of J = 10 used 
patterns of the report of the process where (J + max 
(d1, d2)) points are stored for the training, where d1 
and d2 are the involved delays. The range of 
variation of weights used was of 0.001 and the code 
of the GA used is the same as that of the off-line 
training. A population of 30 individuals was applied 
to the algorithm with 110 generations without 
harming the computational processing in the 
sampling interval, the criterion being the 
minimization of the quadratic mean error for the case  
of the reactor carrying out the styrene polymerization  

reaction in suspension.  
The use of the genetic algorithms is justified in 

this application because the problem is not linear (an 
intrinsic characteristic of the model used. FANN), 
GA being applicable to this type of problem. 

The choice of the GA parameter values must be 
such that it maintains the diversity of the population 
in each generation and does not make the 
computational effort (for a very large population, for 
example) much greater; given the limitation in the 
sampling time used (10 seconds), the parameters 
must be adjusted in a way to allow an adaptation of 
the model to each interval of sampling, without the 
system becoming unstable.  

Another factor that can harm the stability of the 
system with adaptation is the use of values that are 
too large for the weight variation range to be 
implemented. We suggest a preliminary test to 
determine these values, for example using the reactor 
with water, in order to determine an adequate 
interval for the system without becoming unstable. 
The use of low values for the weight variation range 
is a recommended procedure to reduce the risk of 
instability of the system, which can be increased 
until a satisfactory result is obtained. 

It is important for the stability of the system that 
the patterns of training used in the off-line training 
are representative and that the obtained model, which 
will be adapted, represent the identified system well. 
For the adaptation algorithm (GA), the objective is 
the correction of deviations between the model and 
nonlinearities of the polymerization reaction. 

Taking into consideration that the network is used 
as a forecast model for the predictive controller, it is 
expected that it should have better performance if 
trained in a recurring way, since this is the way used 
in the algorithm control. Therefore, in spite of the 
off-line training being done in a static way, on-line 
weight adjustment takes place in a recurring way.  

Figure 10 shows the FANN representation in 
recurrent form (RNN) used for on-line weights 
adaptation. It can be noted that the output is 
determined by the net and used as pattern input. The 
actual process output is used as the input for the 
network, which characterizes a recurring 
representation for it. J, in the figure, represents the 
size of the point window (number of patterns) used 
for training, from the history of the process. 
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Figure 10: FANN with the representation used in recurrent form (RNN). 

 
Taking into consideration that weight adaptation 

is necessary due to the deviations (afore mentioned) 
that take place in relation to the obtained model for 
the off-line training, it is expected that they do not 
happen in an enhanced way during short time 
intervals. Thus, it is logical to conclude that there is 
no need to adapt all FANN weights, since they do 
not cause significant alterations in relation to two 
consecutive sampling intervals. Therefore, values 
from the off-line training can be used as the starting 
point for the beginning of adaptation.  

From these considerations, the only adaptation 
done was of the weights and bias of the output layer 
of the FANN. In this way, the GA chromosome is 
built as shown in Figure 11 and the number of 
parameters to be optimized (number of chromosome 
genes) is given in Equation 3. For the purpose of this 
study, we employed five neurons on the hidden layer 
(NNI) and one in the output layer (NNS), totaling six 
parameters for optimization – a low number if all 
weights and bias were to be optimized - a total of 31 
- with little computational effort. 

 
( )ParN NNS NNI 1= +              (3) 

 
For on-line optimization, time is a factor that must 

be a permanent concern, as the optimum value, or one 
nearest to it, for the parameters must be found in a 
shorter interval than the time interval used for the 
sampling and implementation of the control actions.  

The searching space of the weights (the range of 

variation of these) is determined at each new interval 
from parameters used in the last interval. The 
definition, then, of the limits that will determine the 
weights variation range and FANN bias is given by 
Equation 4. 

 
Sup,i i
Inf ,i i

L
L

= γ + δ⎧
⎨ = γ − δ⎩

                  (4) 

 
where LSup,i and LInf,i are the upper and lower limits 
of each parameter (weights and bias), respectively, 
for searching space definition of the GA 
optimization. The variable γ i defines the values of 
each parameter “i” used in the previous interval. The 
value of γ i will define the searching space size, 
which is equal to 0.001 for this work. This procedure 
allows the process to be swift because, although it 
does use random values for optimization these are, in 
a certain way, close to the optimum. 

The GA code used was the same as for the off-
line network training. For on-line application the 
algorithm coded in Object Pascal language was used, 
with programming in Borland Delphi language. The 
genetic algorithm uses the population of the 30 
individuals for the case of the chemical reaction. 
According to the PC capacity installed at the plant 
for the acquisition and implementation of data for the 
control strategy, 110 generations can be used by the 
method without damage of the processing of other 
available time controller activities.  

 

 
Figure 11: Chromosome of Genetic Algorithm. 
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It is not always possible to ensure that the 
network that results from the parameter adaptation in 
each new interval after the 110 generations is always 
better than the one that was implemented in the 
previous minute, or the one that was trained off-line. 
An algorithm was therefore developed in a way to 
avoid, in a given moment, the use of parameters that 
can lead the model towards a worse performance. 
This could cause divergence in the solution, since the 
parameters are adapted from the values obtained 
from the previous minute, running the risk of 
destabilizing the control system. The algorithm was 
developed from the principle that under no 
circumstance could a model with lower adjustment 
than the one performed by off-line training be used. 
In this way, if a better model is achieved, the 
parameter values will be used in a future interval as 
the prime condition for the new adaptation. 
Therefore, there is a need to work with three parallel 
model sets, as follows:  
1. Network 1(Net1): This is the model from the off-
line training. It does not undergo any alteration/ 
adaptation throughout the entire system operation. 

2. Network 2(Net2): This model undergoes, at each 
interval, adaptation of its parameters (weights and 
bias of the output layer). The adaptation always 
derives from the best parameters among the 
competitive networks.  
3. Network 3(Net3): This network receives, in each 
minute, the parameters of the best Network in the 
previous interval. Network 1 does not undergo 
adaptation; Network 2 is constantly adapted and the 
best network used in the previous interval, Network 3. 

All analyses and considerations are based on the 
patterned window used for training/adaptation. The 
criterion for choosing the best of the three models is 
based on the sum of the quadratic average error 
(SEMQ), as shown in Equation 5, for the set of 
patterns considered in the window. Thus, it is 
considered that the model presenting the lowest sum 
of errors will be used in the control law as the 
forecast model. Figure 12 show the algorithm used 
for the on-line adaptation of the empirical model 
process, where SEMQ1, SEMQ2 and SEMQ3 are 
the quadratic average error sums for Network 1, 
Network 2 and Network 3, respectively.  

 

 
Figure 12: Scheme of the Algorithm used for on-line adaptation. 
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Figure 13: Simplified Scheme of the FANN training. 

 

( )
J 2

real,i pred,i
i 1

SEMQ y y
=

= −∑            (5) 

 
In Equation 5, yreal is the real output of the 

process, ypred is the value forecasted by the model 
and J is the pattern window size. The optimization 
algorithm, as set in this way, has as the main 
objective the adaptation of the network parameters in 
a way to ensure the magnitude of the model together 
with the predictive controller. 
 
FANN Training 

 
FANN off-line training supplied the weights and 

bias for the model. A value of 40000 generations and 
a GA cross-over rate equal to one was used, as well 
as a mutation rate of 0.5% (0.005); a population of 
50 individuals and a weights variation range of [-5, 
+5] were employed, the valid group of data covering 
the range of 28.98ºC to 111.95ºC, as shown in Figure 
2. A simplified scheme of the FANN training 
strategy applied is shown in Figure 13.  

 
RESULTS AND DISCUSSION 

 
PID Controller  

 
A classical PID controller was chosen initially 

because it is a common application in diverse 
industrial processes. PID performance for variations 
of the reference with the reactor containing only 
water in a split-range strategy for the control valves 
is shown in Figure 14.  

The PID performance during the polymerization 
reaction of the styrene in suspension was verified; 
the results obtained were unsatisfactory, showing an 
oscillatory behavior in some areas as can be seen in 
Figure 15. The PID controller acts satisfactory for 
maintaining temperature range for water, but for the 
chemical reaction the performance is decreased by 
nonlinearities and the exothermic reaction, and the 
classical PID controller is not capable of 
maintaining the desired temperature range. 

 

0 200 400 600
20

40

60

80

T
em

pe
ra

tu
re

 (o C
)

Time (min)

 Set Point

 

0 200 400 600
1

2

3

4

5

C
on

tr
ol

 A
ct

io
n 

(V
ol

ts
)

Time (min)

 Heating
 Cooling

 
Figure 14: PID answer for reactor containing water and actuators action. 
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Figure 15: PID answer with chemical reaction and actuators action. 

 
NMPC Controller 
 
a) NMPC with RNN   
 

The described NMPC was applied in a MISO 
control strategy (two inlets; cooling and heating and 
one exit; temperature). Results obtained in the 
instance without chemical reaction are shown in 
Figure 16; the results with chemical reaction are 
shown in Figure 17.  

The RNN is a good model for the process without 
chemical reaction, where the system is the same in 
which FANN training patterns were generated, as 
well as for the case with chemical reaction, where 
the system is no longer identical to the patterns. It 
undergoes variations in its dynamics due to changes 
occurring during the reaction. However, the system 
presents occurrences of overshoot and offset during 
the reaction, the RNN being unable to represent such 
differences exactly, faling to presenting the desired 
operational conditions as classic controller PID. 
 
b) NMPC: RNN Adjust On-Line  

 
As a way to correct these deviations, a 

methodology for on-line adjustment of weights and 
bias was applied in the FANN output layer, in a 

recurring way to the original FANN, using Genetic 
Algorithms (GA), with a point window of 10 
sampling intervals, 110 interactions, a population of 
30 individuals and a weight variation range of 0.001. 
The results obtained with the adaptation for the 
chemical reaction of styrene in suspension are better 
than NMPC without adaptation, as shown in Figure 
18, eliminating overshoot and, for maintenance of 
the reference, eliminated offset. The adaptation 
algorithm aims at minimization of the sum quadratic 
error between the value predicted by the model 
(FANN) and the real experimental value.  

The adapted strategy using GA presented superior 
results in the transition of the set-point (eliminating 
overshoot) and for maintenance of the reference, 
eliminating offset. The adapted NMPC controller 
was efficient in dealing with the problem of 
nonlinearities in the studied control system, its use 
being practicable since the training FANN represents 
the simple control system (without reaction) inside 
the desired ranges of operation. 

Finally, the adapted NMPC controller was tested 
during chemical reaction with high noise in the 
temperature signal reading, with satisfactory results 
even during this high disturbance in the input signal 
(noise in the signal of the temperature). The results 
are shown in Figure19. 
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Figure 16: NMPC controller answer with reactor containing water and actuators action. 
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Figure 17: NMPC controller answer with chemical reaction and actuators action. 
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Figure 18: NMPC answer with adaptation (GA) and chemical reaction and actuators action. 
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Figure 19: NMPC answer with adaptation and noise in temperature signal and actuators action. 

 
 

 
CONCLUSIONS 

 
Temperature control of the polymerization 

reaction of styrene in suspension is important 
because deviations in the maintenance of the 
temperature can affect the final product quality. 

An approach using a first order system with dead 
time and a classical PID controller application did not 
present good results for the case of the chemical 

reaction, where the implicit difficulties of the process 
have a large influence on the controller's performance.  

The complexity of the temperature control 
process, together with difficulties such as system 
modeling, dead time, variable dynamics, and noise 
disturbances as well as others that cannot be 
identified, was dealt with by exploring resources that 
can minimize these modeling problems.  

Application of NMPC using a model based on a
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FANN trained in off-line form and applied in a 
recurrent form (RNN) showed satisfactory results 
(performance superior to PID) for NMPC using the 
system identical to the generator training patterns of 
FANN. For the case of the polymerization reaction 
of styrene in suspension, the NMPC exhibited 
superior performance to PID. However, due to 
nonlinearities, dead time and non-modeled 
disturbances, there was overshoot in the transition of 
temperature, as well as offset in the maintenance of 
the temperature. The exothermic reaction occurring 
in the reactor and non-modeled disturbances produce 
an alteration in the dynamics of the system and the 
offset throughout the reaction, which can also be 
explained by alterations in the system dynamics that 
were not incorporated to FANN.  

The adapted strategy using GA presented superior 
results in the transition of the set-point (eliminating 
overshoot) and for maintenance of the reference, 
eliminating offset.  

The occurrence of temperature signal noise that 
could cause the controller to become unstable was 
tested. These deviations were compensated by the 
on-line adaptation, presenting satisfactory performance 
for the studied case. 
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NOMENCLATURE 
 
U1 Heating control action. 
U2 Cooling control action. 
NNI Number of neurons in the 

intermediate layer. 
SEMQ  Selection criterion for 

weights in the adaptation 
method. 

y Controlled variable value. 
y(k-1)   Value of controlled variable 

in the previous instant. 
d1,d2 Value of dead times for the 

heating and cooling control 
action, respectively. 
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