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Abstract - This work studies the optimization and control of a styrene polymerization reactor. The proposed 
strategy deals with the case where, because of market conditions and equipment deterioration, the optimal 
operating point of the continuous reactor is modified significantly along the operation time and the control 
system has to search for this optimum point, besides keeping the reactor system stable at any possible point. 
The approach considered here consists of three layers: the Real Time Optimization (RTO), the Model 
Predictive Control (MPC) and a Target Calculation (TC) that coordinates the communication between the two 
other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the 
phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for 
process control. The complete optimization structure for the styrene process including disturbances rejection 
is developed. The simulation results show the robustness of the proposed strategy and the capability to deal 
with disturbances while the economic objective is optimized. 
Keywords: Polymerization reactor optimization; Model predictive control; Robust operation; Styrene reactor. 

 
 
 

INTRODUCTION 
 

The increasing necessity to optimize the operation 
of chemical reactors is related to the more competitive 
global market of chemical commodities and 
specialities. The more competitive a specific market, 
the more sophisticated the optimization and control 
strategies of the related industrial plant should be. In 
the industrial environment, the processes usually 
operate in a hierarchical structure, where the real time 
optimization (RTO) and the model predictive control 
(MPC) are executed in separated stages. The RTO 
routine determines the operating values of the outputs 
and inputs that produce the maximum economic profit 
or the lowest operating costs. In the context of the 
hierarchical structure, the objective of the MPC 
controller is to follow the economic targets in the 
presence of disturbances through the direct 
manipulation of the process inputs. 

One of the main issues in the application of MPC 
to industrial processes, where real time optimization 
is present, is the stability of the closed loop system. 
Nominal stability is defined when there is not a 
mismatch between the model used in the controller 
and the real process model. Nominally stable MPCs 
can be found in the control literature since the 
seminal work of Muske and Rawlings (1993). 
However, when one deals with a structure where 
RTO is implemented, a nominally stable MPC is of 
little use. This is so because RTO is capable of 
changing the operating point of the process system 
quite significantly and the nominal model is no 
longer reliable. When one deals with process 
uncertainty, the guarantee of stability has to be 
extended in order to obtain a robust controller. In this 
work, an algorithm to integrate the RTO and the 
MPC is considered that assures stability for the 
whole hierarchical system when there is polytopic 
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uncertainty in the styrene reactor dynamic model. 
The MPC stage is based on an infinite horizon 
controller that includes a terminal state constraint 
(Odloak, 2004), which is extended to uncertain 
systems. Here, the zone control strategy is also 
considered (Gonzalez and Odloak, 2009), which 
consists of mantaining the process outputs inside 
allowed bounds instead of controlling the process at 
set-points. The optimization and control structure of 
the styrene polymerization reactor is tested for the 
case where the product viscosity and reactor 
temperature have to be regulated. 

The optimization of polymerization processes has 
been the focus of several works (Kadam et al., 2007; 
Silva and Oliveira, 2002; Abel and Marquardt, 2003; 
Asteasuain and Brandolin, 2008). Some of them are 
dedicated to calculate optimal profiles to achieve the 
final desired properties in a minimum time. In other 
works, for example Kadam et al. (2007), the time for 
polymer grade transition is minimized in order to 
avoid a considerable amount of off-specification 
product. In this work, the continuous operation of a 
styrene polymerization reactor is optimized in a 
multilayer structure that includes: the RTO layer 
where an economic objective is considered subject to 
a rigorous nonlinear model of the polymerization 
reactor, a control layer where an MPC controller that 
is robust to a class of model uncertainty, and a target 
calculation stage that coordinates the communication 
between the two other layers such that the stability of 
the control structure is preserved.  

In the next section, the styrene polymerization 
reactor is described; the phenomenological model is 
presented as well as the linear dynamic models that 
were obtained. Then, the robust algorithm that 
integrates the RTO and the MPC controller is 
presented. Then, the complete real time optimization 
of the styrene reactor is developed, showing the 
capability of the proposed strategy to optimize the 
polymerization process. Finally, in the last section 
the paper is concluded. 
 
 
THE STYRENE POLYMERIZATION REACTOR 
 

In this section, we present the main aspects of the 
reactor system that is studied here and that motivated 
the development of the control structure that allows 
the robust operation of the reactor.  
 
Process Description 
 

The polymerization reactor is usually the heart of 
the polymer production process and its operation may 

be difficult as it involves exothermic reactions, 
unknown reaction kinetics and high viscosity. Most 
styrene polymers are produced through batch or 
continuous polymerization processes. The present 
work considers the free-radical bulk and solution 
styrene polymerization in a jacketed CSTR. As shown 
in Fig. 1, the CSTR has three feed streams: the pure 
styrene monomer, the 2,2’-azoisobutyronitrile (AIBN) 
initiator dissolved in benzene, and the pure benzene 
solvent. The exit stream contains polymer, un-reacted 
monomer, initiator, and solvent. The kinetic 
mechanism used for this homopolymerization process 
is very general and can be described by the following 
steps (Jaisinghani and Ray, 1977): 
 

i df ,kI 2R⎯⎯⎯→   (initiator decomposition) 
 

ik
1M R P+ ⎯⎯→  (chain initiation) 

 
pk

n n 1P M P ++ ⎯⎯→  (propagation) 
 

tdk
n m n mP P T T+ ⎯⎯⎯→ +   (termination by 

disproportionation) 
 

tck
n m n mP P T ++ ⎯⎯→  (termination by combination) 

 

 
Figure 1: Process diagram for the styrene polymeriza-
tion reactor 
 

The two initiation reactions involve the 
decomposition of initiator I to produce radicals R, 
which react with the monomer molecules M to 
initiate new live (radical) polymer chains P1. During 
the propagation step, monomer molecules M are 
added, one at a time, to the live-polymer chains       
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Pn ( n 1≥ ). The growth of the chains terminates when 
the propagating radicals lose their activity through 
any termination reaction, resulting in dead-polymer 
chains, Tn ( n 1≥ ). 

Hidalgo and Brosilow (1990) and Maner et al. 
(1996) developed a phenomenological model for the 
styrene reactor. The following considerations lead to 
the phenomenological model given by Equations (1) 
to (10): 
 The lifetime of the polymer radical species is 

extremely short compared to other system time 
constants. Then the quasi-steady-state approximation 
(QSSA) is considered for R and Pn; 
 The monomer consumption is mainly due to 

propagation (Biensenberg and Sebastian, 1983), this 
leads to the Long Chain Assumption (LCA); 
 Following Hidalgo and Brosilow (1990), the 

chain transfer reactions to monomer and to solvent 
are not considered; 
 Monomer thermal initiation does not occur 

because this reaction is only significant at 
temperatures greater than 373K (Biensenberg and 
Sebastian, 1983). The reactor temperature considered 
in this work is below this limit; 
 The overall chain termination rate constant, tk , is 

composed of both combination, tck , and disproportiona-
tion, tdk , contributions (Schmidt and Ray, 1981) or 

t tc tdk k k= + . For styrene in solution, experimental 
results showed that the chain termination occurs solely 
by combination (Timm and Rachow, 1974). Then, 
termination by disproportionation is not considered, i.e. 

t tck k= ; 
 According to the model presented in Maner et al. 

(1996), the rate of propagation is much faster than 
the rate of termination; 
 The heats of initiation and termination are 

negligible compared to the heat of polymerization 
(Hidalgo and Brosilow, 1990). 

The styrene reactor model is defined as follows: 
 

i f t
d

d[I] (Q [I ] Q [I]) k [I]
dt V

−
= −          (1) 

 
m f t

p
d[M] (Q [M ] Q [M]) k [M][P]

dt V
−

= −       (2) 

 
t f r

p
p

c
p

dT Q (T T) ( H ) k [M][P]
dt V C

hA (T T )
C V

− −Δ
= +

ρ

− −
ρ

       (3) 

c c cf c
c

c c pc c

dT Q (T T ) hA (T T )
dt V C V

−
= + −

ρ
       (4) 

 
where,  
 

0,5
i d

t

2f k [I][P]
k

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

             (5) 

 

j
j j

E
k A exp ,

T
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 j= d, p, t         (6) 

 

t i s mQ Q Q Q= + +              (7) 
 

The definition of the parameters and variables 
involved in the equations above can be found in 
Tables 1 and 2, respectively. The moment equations 
for the dead polymer are written as follows: 
 

20 t 0
t

dD Q D0,5k [P]
dt V

= −           (8) 

 
1 t 1

m p
dD Q DM k [M][P]
dt V

= −          (9) 

 
2

p 22
M p M 2

t

kdD Q5M k [M][P] 3M [M] D
dt k V

= + −   (10) 

 
D0, D1 and D2 represent the zero, the first and the 
second order moment of the dead polymer, 
respectively. 

The weight-average molecular weight is obtained 
as: 
 

2w m
1

DM M
D

=             (11) 

 
There are some vendors of instruments to 

measure efficiently molecular weights by gel 
permeation chromatography or size-exclusion 
chromatography, as reported by Richards and 
Congalidis (2006). However, for online control, it is 
more common to measure the viscosity as a 
substitute for the average molecular weights. In this 
work, it is assumed that an online viscosimeter 
provides reliable measurements of the intrinsic 
viscosity η . The following correlation is used to 
simulate the measurement of the viscosity (Gazi      
et al., 1996):  
 

0.71
w0.0012(M )η =           (12) 



 
 
 
 

810                L. A. Alvarez and D. Odloak 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

Table 1: Process parameters for the polymerization reactor 
 

Variable Symbol Value Units 
Frequency factor for initiator decomposition Ad 2.142x1017 h-1 
Activation energy for initiator decomposition Ed 14897 K 
Frequency factor for propagation reaction Ap 3.816x1010 L.mol-1.h-1 
Activation energy for propagation reaction Ep 3557 K 
Frequency factor for termination reaction At 4.50x1012 L.mol-1.h-1 
Activation energy for termination reaction Et 843 K 
Initiator efficiency fi 0,6  
Heat of polymerization -ΔHr 6.99 x104 J.mol-1 
Overall heat transfer coefficient hA 1.05x106 J.K-1.h-1 
Mean heat capacity of reactor fluid ρCp 1506 J.K-1.L-1 
Heat capacity of cooling jacket fluid ρcCpc 4043 J.K-1.L-1 
Molecular weight of the monomer Mm 104.14 g.mol-1 

 
Table 2: Steady-state operational condition for the polymerization reactor 

 
Variable Symbol Value Units 
Flow rate of initiator Qi 108 L.h-1 
Flow rate of solvent Qs 459 L.h-1 
Flow rate of monomer Qm 378 L.h-1 
Flow rate of cooling jacket fluid Qc 471.6 L.h-1 
Reactor volume V 3000 L 
Volume of cooling jacket fluid Vc 3312.4 L 
Concentration of initiator in feed [If] 0.5888 mol.L-1 
Concentration of monomer in feed [Mf] 8.6981 mol.L-1 
Temperature of reactor feed Tf 330 K 
Inlet temperature of cooling jacket fluid Tcf 295 K 
Concentration of initiator in the reactor [I] 6.6832x10-2 mol.L.-1 
Concentration of monomer in the reactor [M] 3.3245 mol.L.-1 
Temperature of the reactor T 323.56 K 
Temperature of cooling jacket fluid Tc 305.17 K 
Molar concentration of dead polymer chains D0 2.7547x10-4 mol.L-1 
Mass concentration of dead polymer chains D1 16.110 g.L-1 

 
 

The polydispersity index (PD) is a property of the 
molecular weight distribution of the dead polymer, 
defined as: 
 

2 0
m 2

1

D DPD M
D

=               (13) 

 
The phenomenological model of this styrene 

reactor was first published in 1990 and, since then, it 
has been widely used as a benchmark for process 
control studies (Maner et al., 1996; Gazi et al., 1996; 
Kendi and Doyle, 1998; Prasad et al., 2002; 
Asteasuain et al., 2006; Sotomayor et al., 2007). 
Prasad et al. (2002) implemented a nonlinear MPC 
strategy for the control of the properties of the 
polymer. For optimal grade transition, Asteasuain    
et al (2006) developed a multi-objective optimization 
that focuses simultaneously on the process design 
and control parameters. In this work, the aim is to 
optimize on-line the production rate using a 
hierarchical structure. The real time optimization is 

developed in the upper stage and an intermediary 
routine recalculates the optimizing targets which are 
sent to the MPC controller. These stages are tied 
together and one needs to guarantee the stability of 
the complete control structure.  
 
Control System and Prediction Models 
 

The purpose of the control system of the styrene 
reactor is mainly to follow targets for outputs and 
inputs while mantaining the controlled outputs inside 
allowed zones. Here, the weight average molecular 
weight wM  and the reactor temperature T are 
defined as the controlled outputs. As on-line 
measurements of wM  are rarely available, the 
polymer intrinsic viscosity η is used instead. For 
controlling y1=η and y2=T, the controller 
manipulates the initiator flowrate (u1= Qi) and the 
liquid flow rate of the cooling jacket (u2= Qc) 
because of the adequate sensitivity of the process 
outputs to these variables. The remaining inlet 
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flowrates Qs and Qm are related to Qi by ratio control. 
So as to improve the performance of the controller, 
the ratio between the initiator flow rate Qi and 
monomer flow rate Qm is maintained fixed, then: 
 

m
m i

i

QQ Q
Q

= ,              (14) 

 
where mQ  and iQ  are the nominal values of Qm and 
Qi, respectively. On the other hand, the solvent 
volume fraction should be maintained at 0.6 to avoid

the gel effect (Hidalgo and Brosilow, 1990), then a 
control law for the solvent flow rate is implemented 
as: 
 

s m iQ 1.5Q Q= −             (15) 
 

The control structure considered for the styrene 
reactor requires linear models. These models were 
obtained empirically by step response tests. The 
nominal model, denoted as MN, used for prediction 
is the following transfer function model in the 
Laplace domain is: 

 
 

66.69 5.9425
(1 5.3474s)(1 2.5274s) (1 7.6525s)(1 3.091s)(1 2.7063s)

G(s)
144.7925 47.5589

(1 6.7599s)(1 1.5797s) (1 7.6173s)(1 2.3968s)

−⎡ ⎤
⎢ ⎥+ + + + +
⎢ ⎥=

−⎢ ⎥
⎢ ⎥+ + + +⎣ ⎦

 

 
 

This model relates process inputs and outputs; it was obtained at the nominal 
operating point presented in the Table 2. 

As the aim of this work is to develop an MPC controller that is capable of 
controlling styrene polymerization reactor at different operating points defined by 
the RTO stage, two additional models, each one corresponding to a different 
operating point around the nominal steady-state, were obtained. By modif ying the 
values of the inputs u1 and u2, from the nominal values 1u  and 2u , new steady-
states were obtained and the new linear dynamic models that represent the system 
around these steady states (Fig. 2) were included in the control problem formulation. 
The first additional model, denoted by M1, obtained at the steady-state defined by 
u1=1.1 1u  and u2=0.95 2u , is the following: 
 
M1: 

 
61.505 6.9783

(1 5.9946s)(1 2.3723s) (1 8.4587s)(1 2.9801s)(1 2.9801s)
G(s)

166.6494 59.0134
(1 7.542s)(1 1.501s) (1 8.4433s)(1 2.5133s)

−⎡ ⎤
⎢ ⎥+ + + + +
⎢ ⎥=

−⎢ ⎥
⎢ ⎥+ + + +⎣ ⎦

 

 
 

Analogously, for the steady-state defined through u1=0.75 1u  and u2=1.15 2u , it 
was obtained model M2 that is represented as follows: 
 
M2: 
 

90.853 4.2497
(1 6.6137s)(1 3.4171s)(1 3.3297s) (1 6.1175s)(1 3.2567s)(1 2.2792s)

G(s)
116.4704 29.3225

(1 5.6145s)(1 1.5327s) (1 6.1047s)(1 2.152s)

−⎡ ⎤
⎢ ⎥+ + + + + +
⎢ ⎥=

−⎢ ⎥
⎢ ⎥+ + + +⎣ ⎦

 



 
 
 
 

812                L. A. Alvarez and D. Odloak 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

 
Figure 2: Steady-states values of T and η where the linear 
models MN, M1 and M2 were obtained. 

 
 

It is clear that the models defined above do not 
have the same gain or the same time constants as the 
nominal model. Then the effect on the output 
prediction is significant. So, there is motivation to 
consider a control structure where stability and 
performance is preserved despite the operation at 
quite different steady-states. 
 
 

ROBUST CONTROL STRATEGY 
 

The rigorous steady-state version of the model 
defined through Equations (1) to (13) is used to 
represent the true reactor at steady-state in the 
optimization problem that defines the RTO stage of 
the structure represented in Fig. 3. The MPC stage 
is based on a robust linear MPC that is presented 
next. 
 
System Representation 
 

Although the available dynamic models of the 
styrene reactor are in the transfer function form, the 
MPC considered here is based on a state space model 
as is usual in modern MPC packages. To describe 
this model, let us consider a system with nu inputs 
and ny outputs, and assume that the poles that relate 
the input ui to the output yj are non-repeated. A state 
space model that is suitable to the implementation of 
an offset free MPC can be represented in the 
following form (Odloak, 2004): 
 

s s 0
ny

d d d

I 0x (k 1) x (k) D
u(k)

0 Fx (k 1) x (k) D

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ ⎡ ⎤
= + Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

+⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
  (16) 

 
s

ny d

x (k)
y(k) I

x (k)

⎡ ⎤
⎡ ⎤= Ψ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
 

where 
 

Ts
1 nyx x x⎡ ⎤= ⎣ ⎦ , s nyx ∈ , 

  
Td

ny 1 ny 2 ny ndx x x x+ + +⎡ ⎤= ⎣ ⎦ , d ndx ∈ ,  

 
.nd ndF∈ , u(k) u(k) u(k 1)Δ = − − , ny nd×Ψ ∈  

 
The input in the model defined in Eq. (16) is 

u(k)Δ , which means that the output integrates the 
input. In this model, the state vector is split in two 
parts: xs that corresponds to the integrating poles 
produced by the incremental form of the model, and 
xd that corresponds to the system modes. The state 
component xs corresponds to y( |k)∞  that is the 
predicted output at steady-state. For stable systems, 
it is easy to show that when the system approaches 
the steady-state, component xd tends to zero. F is a 
diagonal matrix with components corresponding to 
the poles of the system. The system has nd stable 
poles.  

In the model defined in Eq. (16), model 
uncertainty is related to the uncertainty in matrices 
F, D0 and Dd, as discussed in Alvarez and Odloak 
(2010). Then, suppose one defines the set of 
possible plants as { }1 2 L, ,...Ω = θ θ θ , where each iθ  

corresponds to a particular plant ( )0 d
i i i iF ,D ,Dθ = , 

i 1,2,...L= . The true model of the process system    
is unknown, but one can assume that it can              
be represented as ( )0 d

r r r rF , D ,D ,θ = where 

( ) ( )
L

0 d 0 d
r r i i i

i 1

D ,D D ,D ,
=

= λ∑  
L

i i
i 1

1, 0
=

λ = λ ≥∑ and 

r j 1,2...LF F == . This means that the pair of matrices 
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0
rD and d

rD  lies in a convex polytope defined by L 
vertices (Kothare et al., 1996), while rF  belongs to a 
finite set of possible dynamics (Badgwell, 1997). In this 
way, uncertainty in the gain matrices 0 d

r rD ,D  is defined 
as polytopic (Kothare et al., 1996) while the uncertainty 
in F is assumed to be of the multi-plant type 
(Badgwell, 1997). Assume also that there is a most 
likely plant that also lies in Ω and is denoted by nθ . 

Badgwell (1997) developed a robust linear 
quadratic regulator for stable systems with the multi- 
plant uncertainty. Later, Odloak (2004) extended the 
method of Badgwell to the output tracking of stable 
systems considering the same kind of model 
uncertainty. These strategies include a constraint to 
each of the models lying in Ω that prevents the 
increase of the true plant cost function at sucessive 
time steps. Gonzalez and Odloak (2009) proposed a 
stable MPC controller where the outputs are 
controlled by zones instead of at fixed set-points. In 
the method followed here, the approach of Odloak 
(2004) and the zone control strategy are applied to 
the multiple stage structure represented in Fig. 3, as 
described in the following section. 
 
Control Structure 
 

The control structure considered in this work is 
represented in Fig. 3. In this structure, the RTO layer 
is dedicated to the calculation of the desired targets 

RTOu  and RTOy , for the input and output variables

of the styrene reactor. This layer is commonly based 
on the rigorous stationary model and takes into 
account the process measurements and the economic 
parameters. The second layer is the target calculation 
(TC) algorithm that, at each time step, re-computes 
feasible steady-state operating points assuming that 
the RTO routine produces piecewise constant 
optimizing references for inputs and outputs. As 
discussed in Ying and Joseph (1999), the main purpose 
of the target calculation routine is to compute 
achievable set-points for the MPC controller. The 
targets i

refy (k), i 1,...Lθ =  and refu (k)  are obtained 
through the solution of an optimization problem based 
on the nominal linear static model of the process 
system. Then, the solution of the TC stage is sent to 
the MPC controller, which is devoted to guide some of 
the reactor inputs and/or outputs to the desired values 
given by the TC stage, while keeping the other reactor 
controlled outputs within specified zones.  

In terms of the frequency at which each stage is 
computed, the RTO stage is solved at a much slower 
pace than the lower level control stages. This allows 
a dynamic decoupling between the RTO stage and 
the TC/MPC stages. Thus, one observes that the 
stability of the styrene reactor in closed loop with the 
structure represented in Fig. 3 depends only on the 
interaction between the TC and MPC stages. 
Consequently, the target calculation stage, that 
coordinates the interaction between the RTO and 
MPC stages, has to be designed in such a way that 
stability of the control structure is preserved.  

 

 
Figure 3: Styrene polymerization reactor control structure with RTO and MPC 
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On the other hand, note that from the control 
structure depicted in Fig. 3, there is one state 
observer per each model, and the observer 
corresponding to the true model rθ  is based on the 
true model matrices and will indicate the true state 
for the undisturbed system. In this case, at each 
sampling step, the corrected state is sent to the TC 
and MPC stages to calculate the next control action 
according to the algorithm that is described in the 
following section. 
 
RTO Problem 
 

The RTO layer deals with the economic 
optimization. In this case, the maximization of the 
production rate is considered as the economic 
objective. The production rate is defined as the 
product of the total flowrate Qt and the first order 
moment D1, this product represents the total weight 
of dead polymer produced per time unit. The RTO 
routine solves the following economic optimization 
problem: 
 

RTO RTO
t 1

y ,u ,x
max Q D             (17) 

 
subject to:  
 

RTO RTOh(y ,u ,x) 0=            (18) 
 
1.49 PD 1.51≤ ≤             (19) 
 

min RTO maxu u u≤ ≤            (20) 
 

min RTO maxy y y≤ ≤            (21) 
 
where,  
 

RTO RTOh(y ,u ,x)  represents the nonlinear steady-state 
model and x is the vector of states of the phenome-
nological model, [ ]Tc 0 1 2x [I],[M],T,T ,D ,D ,D .=  
Observe that D1 is one of the states of the 
phenomenological model in Eq. (8). The problem 
includes a bound constraint on the polydispersity PD, 
which depends on three states of the process model. 
This property is a strong indicator of the polymer 
quality. In this case, it is desired to maintain the 
polydispersity around the nominal value of 1.5. Note 
that this RTO problem is a nonlinear programming 
(NLP) since the constraints in Eqs. (18) and (19) are 
nonlinear. Here, it is assumed that the disturbances 
are measured and the optimization problem is 
updated at each sample time; both the process model 
state D1 in Eq. (17) and the model constraints in Eqs. 

(18) and (19) are then modified as the disturbances 
are introduced. From the solution of this problem, 
only yRTO and uRTO are passed to the TC stage. 
 
Robust Algorithm for the TC and MPC Stages 
 

In this section, the robust structure, which is 
defined by the TC and the MPC optimization 
algorithms, is described. Let us denote the cost 
function for the TC stage at time k by TCJk . For each 
model i, i 1,...L=  the objective function associated 
with model i is defined as follows: 
 

i

y

i

u i

2TC
k i RTOref W

22
ref RTO W S

J ( ) y (k) y

u (k) u (k)

θ

θ

θ = −

+ − + ε

    (22) 

 
where the weighting matrices y uW ,W  and 

iS (i 1...L)=  are positive definite.  
Then, at the TC stage, the following optimization 

problem is solved (Alvarez and Odloak, 2010): 
 

i
i i irefref

L 2TC
n Sy (k),u (k), (k) i 1

i 1,...L i n

min J ( ) (k)
θ θ

θ

ε =
= ≠

θ + ε∑k  

 
subject to: 
 

refu (k) U,∈  

{ }max maxref
ref maxmin ref

m u u (k) u(k 1) m uU u (k) u u (k) u
− Δ ≤ − − ≤ Δ= ≤ ≤  (23) 

 

[ ]i s 0
i refrefy (k) x (k) D ( ) u (k) u(k 1) ,θ − = θ − −   

            (24) 
i 1,...L=    
 

ii i
min maxrefy (k) y (k) y (k),θθ θ+ ε ≤ ≤ + ε       

(25) 
i 1,...L=  
 

TC TC
i iJ ( ) J ( ), i 1,...Lθ ≤ θ =k k         (26) 

 

In this problem, TC
iJ ( )θk  is the cost associated 

with the solution of the same problem at the 
previous sampling step that is defined as 

{ }i i* *
refrefy (k),u (k 1), (k 1) ,θ θ− ε −  where i

refy (k)θ  is 

such that: 



 
 
 
 

Optimization and Control of a Continuous Polymerization Reactor                                                                815 
 

 
Brazilian Journal of Chemical Engineering Vol. 29,  No. 04,  pp. 807 - 820,  October - December,  2012 

 
 
 
 

( )

i s 0
iref

0 *
i ref

y (k) x (k) D ( ) u(k 1)

D ( ) u (k 1) u(k 2)

θ − + θ Δ − =

θ − − −
     (27) 

 
The TC optimization problem minimizes the cost 

for the nominal model nθ  subject to constraints 
related to models 1 L,...θ θ . The equality constraints 
Eq. (24) correspond to the steady-state linear models 
relating the predicted output with the desired steady-
state, u(k 1)−  is the control action applied to the real 

system at the previous time step, i (k)θε  are slack 
variables that soften the bound constraints associated 
with each i

refy (k)θ  and allow these variables to take 
values outside the output control zone, and m is the 
control horizon of the MPC controller considered in 
the MPC stage in Fig. 3 The constraints represented 
in Eq. (24) force the decrease of the cost function 

TCJk  for all the L models. Note that, if at time step k 
a disturbance enters the system the solution 

{ }i i* * *
refrefy (k 1),u (k 1), (k 1)θ θ− − ε −  that is inherited 

from time k 1−  may be unfeasible. By replacing 
i*

refy (k 1)θ −  with i
refy (k)θ  computed through Equation 

(27), where the actual state sx (k)  is used, the 
optimization problem of the TC stage is always 
feasible. 

The optimal solution of the TC stage 

{ }i i* * *
refrefy (k),u (k), (k)θ θε  is then sent to the MPC 

stage, where a constrained infinite horizon MPC 
controller is implemented. The optimization 
problem, which has the same sampling period as the 
TC stage, is defined as follows: 
 

i
i i ik sp

L 2MPC
n Pu ,y (k), (k) i 1

i 1,...L i n

min J ( ) (k)
θ θ

θ

Δ δ =
= ≠

θ + δ∑k   

 
subject to: 
 

u(k j k) V,Δ + ∈  
 

max max
min
j

max
i 0

u u(k j) u
u u(k 1)

V u(k j) u(k i) u

u(k j) 0, j m

=

−Δ ≤ Δ + ≤ Δ⎧ ⎫
⎪ ⎪≤ −
⎪ ⎪⎪ ⎪= Δ + + Δ + ≤⎨ ⎬
⎪ ⎪
⎪ ⎪

Δ + = ≥⎪ ⎪⎩ ⎭

∑    (28) 

iis 0
i k spx (k) D ( ) u y (k) (k) 0,

i 1,...L

θθ+ θ Δ − − δ =

=
     (29) 

 
0 0 0

m

D D ... D⎡ ⎤= ⎣ ⎦  

 
i ii *

sp refy (k) y (k) (k), i 1,...Lθ θθ = − δ =      (30) 
 

i i*(k) (k), i 1,...Lθ θδ = ε =         (31) 
 

i
min sp maxy y (k) y , i 1,...Lθ≤ ≤ =        (32) 

 
*

k refu(k 1) I u u (k) 0− + Δ − =          (33) 
 

[ ]nu nu

m

I I ... I= , nuI  is the identity matrix with 

dimension nu 
MPC MPC

i iJ ( ) J ( ), i 1,...Lθ ≤ θ =k k        (34) 
 

In this problem, the infinite horizon cost 
MPC
k iJ ( )θ  is defined as: 

 

i ii

y

u

i

i

MPC
k i

2
sp Q

2*
ref Q

j 0 2
R

2

P

J ( )

ŷ (k j k) y (k) (k)

u(k j k) u (k)

u(k j k)

(k)

θ θθ

∞

=

θ

θ =

⎡ ⎤+ − − δ⎢ ⎥
⎢ ⎥
+ + −⎢ ⎥
⎢ ⎥
⎢ ⎥+ Δ +
⎢ ⎥⎣ ⎦

+ δ

∑     (35) 

 
i 1,...L=  
 
where the weight matrices y uQ ,Q , R  and 

iP (i 1...L)=  are positive definite. 
The MPC controller resulting from the solution to 

the problem defined above and adopted to the control 
of the styrene reactor is based on the controller 
developed by Gonzalez and Odloak (2009) that is 
capable of dealing with input targets provided by the 
RTO and controlling the outputs inside zones. This 
controller also guarantees robust stability of the 
closed-loop system. In the problem of the MPC 
stage, i (k)θδ  are the slack variables that guarantee 
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that the terminal constraints in Eq. (29) are always 
feasible and the cost functions MPC

k iJ ( ), i 1,...Lθ =  
are bounded. Constraints in Eqs. (30) and (31) are 
applied only to those outputs that have optimizing 
targets, while constraint in Eq. (32) is written for the 
outputs without optimizing targets. Also, the equality 
of the slacks of the TC and MPC stage defined in Eq. 
(31) guarantee that the solution of the MPC problem 
will not disrupt the convergence of the cost function 
of the TC stage. The set of constraints in Eqs. (25) to 
(27) assures that the solution of the MPC problem is 
consistent with the solution of the TC stage problem. 
Constraint in Eq. (33) is related to the input targets, 
so it is only written for those inputs that have 
optimizing targets. The constraint represented in Eq. 
(34) involves the cost MPC

iJ ( )θk , which is calculated 

with the solution { }ii
k spu ,y (k), (k)θθΔ δ , where: 

 
T* T * T

ku u (k k 1) ... u (k m 2 k 1) 0⎡ ⎤Δ = Δ − Δ + − −⎣ ⎦
 

 
i i*

sp spy (k) y (k 1), i 1,...Lθ θ= − =  
 
and y,i (k)δ  is such that 
 

i is 0
i k sp spx (k) D ( ) u y (k) (k) 0, i 1,...Lθ θ+ θ Δ − − δ = =

 

Observe that the set { }ii
k spu ,y (k), (k)θθΔ δ  is a 

feasible solution inherited from the time instant k 1−  
based on the present state sx (k) .  

 
This control structure guarantees robust stability 

(Alvarez and Odloak, 2010). If the RTO targets are 
reachable, the process variables converge to the 
desired targets while the cost functions correspond-
ing to the TC and MPC stages converge to zero for 
each model i (i=1,…L) and consequently for the true 
model. Otherwise, the cost function of the TC stage 
converges to a point where the distance between 

( )RTO RTOy ,u  and ( )n n
ref refy ,uθ θ  is minimized. 

In the next section, the behavior of this robust 
structure applied to the styrene polymerization 
reactor is tested. 
 
 

SIMULATION RESULTS 
 

For this simulation, targets for the output y2 and 
input u1 were defined. Two disturbances affect the 

process during 400 hours of simulation. This 
controller considers the three linear models for 
prediction. The simulation conditions are the 
following: The constraint values: umax = [0.070 ; 0.25] ; 
umin = [0.015 ; 0.08] ; Δumax = [0.1 ;  0.1]; ymax = [4.15 ; 
326] ; ymin = [3.5 ; 321]. The initial conditions:  u0 = 
[0.03; 0.131] ; y0 = [3.9;323.5]. The following tuning 
parameters are considered: Cy = [0 1] ; Cu = [5 0] ; 
Cε = 1e5×[1 1]; m = 3; Qy = [1 1] ; Qu = [200 0] ;     
R = [10 10] ; Sy = 1e5×[1 1]. 

First, at t=0 the process starts at a non-optimal 
steady-state and the controller tries to bring the 
process to the optimal target calculated by the RTO 
routine. Fig. 4 shows the process outputs (black 
line), RTO targets (green discontinuous line) and 
the targets calculated in the TC stage (blue 
discontinuous line). The output target for y2 and 
output y2 both reach the RTO target, which is at the 
upper bound of the zone, while output y1 reaches a 
different steady-state value inside its control zone. 
As can be seen in Fig. 5, the input u1 also reaches 
the RTO target. By observing Fig. 7, one can see 
that the production rate is increased and so the 
complete structure is efficient enough to maximize 
the production. Fig. 6 shows that, at the beginning, 
the cost function of the TC stage converges to zero 
and then in the MPC stage also converges, which 
means that the process variables followed the 
desired objectives.  

The first disturbance occurs at time t=110h, and 
corresponds to a sudden decrease of 4 °C in the 
temperature of the feed. This disturbance has a large 
effect on y1, which is the viscosity of the product and 
also, as expected, on y2, the reactor temperature. 
Notice that both outputs are pushed to outside their 
zones and the control system brings them back to 
inside the zones. This disturbance moves the optimal 
steady-state and the RTO calculates new target 
values for both y2 and u1. Figure 4 shows that the 
new target for the output y2 corresponds to a lower 
temperature and the control system is able to bring 
this output to its target. As can be seen in Fig. 5, the 
RTO sends a new target for u1 which is easily 
reached, while the input u2 decreases. This means 
that the flow rate of cooling fluid decreases to reduce 
the reactor temperature, according to the RTO target. 
The cost functions depicted in Fig. 6 show that the 
cost functions of both TC and MPC stages were 
affected and that the convergence of the MPC stage 
is only reached after the TC stage has converged. It 
is also interesting to observe in Fig. 7 that the 
production rate decreased suddenly due to the 
disturbance, but then increases reaching a new 
maximum value. 
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After 250 hours of simulation, when the process 
had reached the steady-state, a second disturbance 
was introduced in the reactor. There was an abrupt 
decrease from 0.59 to 0.54 mol/l in the initiator feed 
concentration. In this case, the RTO computes a 
different value for the targets of u1 and y2, both 
variables are able to reach the targets. Fig. 4 shows 
that this disturbance pushed the viscosity (y1) to 
outside the zone and the TC target for y1 decreases to 
the lower bound of the zone, then this target 
increases while the viscosity is recovered reaching 

the target. Note that at first, the controller was 
bringing the TC targets to a smaller value of y1 and a 
larger value of u2 to adjust the process to the new 
RTO targets. However, when the target for y1 
reached its lower bound, the controller had to 
readjust these TC targets to feasible values changing 
the direction of u2. In this case, the process is moved 
to a new optimal steady-state, as shown in Fig. 5. 
This disturbance drives the process to an optimal 
production rate, which is larger than the last one, as 
can be seen in Fig. 7. 
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Figure 4: Process outputs. Red dashed line: Output bounds. 
Blue dashed line: calculated targets. Green dashed line: RTO 
targets. Solid line: Process outputs. 
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Figure 5: Process inputs. Blue dashed line: calculated input 
targets. Green dashed line: RTO input targets. Solid line: 
Process inputs. 
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Figure 6: Cost functions of the robust control structure. 
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Figure 7: Production rate of the process. 

 
 

The polydispersity is a property that indicates the 
distribution of the polymer chain size in the product. 
Additionally, the intrinsic viscosity η measures 
indirectly the average molecular weight of the 
polymer produced (Gazi et al., 1996). Both 
molecular weight and polydispersity are strong 
indicators of polymer quality. Fig. 8 shows the 
simulation results for the polydispersity, it can be 
seen that this property remains near its nominal value 
of 1.5, respecting the limits imposed by the RTO 
problem even when disturbances affect the process.  

Finally, Fig. 9 shows the optimal steady-states 
reached during the RTO simulation as a function of  

the outputs. The first steady-state (ON) corresponds 
to the optimal nominal conditions and, although it is 
close to the M1 steady-state, it is far from the 
remaining MN and M2 steady-states. The first 
disturbance brought the process to the optimal 
steady-state OD1, which is near the MN and M2. 
Then, the second disturbance moved the optimal 
steady-state to a point denoted by OD2, for this point, 
the MN is the closest steady-state. This demonstrates 
that the proposed robust RTO/TC/MPC strategy can 
deal with disturbances that drive the process to 
different operating points and result in different 
optimum points. 
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Figure 8: Polydispersity of the produced polymer 
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Figure 9: Steady-states values of T and η corresponding to the 
optimum at the nominal operating condition (ON), after the 
first disturbance (OD1), after the second disturbance (OD2) and 
where linear models MN, M1 and M2 were obtained 

 
 

CONCLUSIONS 
 

In this work the robust control and optimization 
of a styrene polymerization reactor was studied. The 
control structure includes a TC stage between the 
RTO and MPC routines which recalculates feasible 
targets for the MPC. Model uncertainty is considered 
in the TC and MPC stages of the control structure. 
For linear systems, the strategy assures stability in a 
polytopic region where the model uncertainty was 
defined. The resultant scheme is robust as the 
algorithm guarantees convergence to the desired 
targets for the uncertain model. The approach was 
simulated in the styrene polymerization reactor, 
which is a nonlinear system. Multiple linear dynamic 
models were obtained around different operating 
points, and considered as the vertices of a polytopic 
region where the real system operates. The 
simulation results of the complete RTO structure 
showed that the approach is capable of maximizing 
the production rate in the presence of disturbances, 
preserving the polymer quality and satisfying the 
allowed limits for the controlled outputs. 
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