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Abstract - To describe flow-induced fiber orientation, the Fokker-Planck equation is widely applied in the 
processing of composites and fiber suspensions. The analytical solution only exists when the Péclet number is 
infinite. So developing a numerical method covering a full range of Péclet number is of great significance. To 
accurately solve the Fokker-Planck equation, a numerical scheme based on the finite volume method is 
developed. Using spherical symmetry, the boundary is discretized and formulated into a cyclic tridiagonal 
matrix which is further solved by the CTDMA algorithm. To examine its validity, benchmark tests over a wide 
range of Péclet number are performed in a simple shear flow. For Pe=∞, the results agree well with the 
analytical solutions. For the other Pe numbers, the results are compared to results available in the literature. 
The tests show that this algorithm is accurate, stable, and globally conservative. Furthermore, this algorithm 
can be extended and used to predict the three-dimensional orientation distribution of complex suspension 
flows.  
Keywords: Fiber suspension; Orientation distribution; Fokker-Planck equation; Finite volume; Planar flow. 

 
 
 

INTRODUCTION 
 

Fiber suspension flows are widely found in a va-
riety of industrial applications, such as processing of 
thermoplastics, paper and pulp industries, etc. The 
final product is dependent on the microstructure of 
suspensions. Generally, a single fiber is affected by 
ambient fluid and nearby fibers. As a consequence, it 
changes the bulk flow rheological properties and 
leads to different macroscopic material behaviors. 
For instance, fiber orientation exerts potential effects 
on the physical properties of thermoplastic parts 
during molding, and distinctly determines the subse-
quent stiffness, thermal conductivity, and mechanical 
behavior (Givler et al., 1983; Folgar and Tucker, 
1984; Advani and Tucker, 1987).  

For molding parts and paper sheets, the geo-
metrical configuration is always very slim. By using 

this feature, it is convenient to approximate the fiber 
suspension as a two-dimensional or planar flow. This 
approximation is widely recognized as the Hele-
Shaw model, which was first adopted by Altan et al. 
(1990) to predict the three-dimensional orientation 
within channel and contraction flows. To improve 
computational efficiency, the quadratic closure 
approximation was used to close the orientation ten-
sor or the moment of orientations originally pro-
posed by Advani and Tucker (1987,1990). The clo-
sure model approximates the higher order orientation 
tensor by lower order tensors, such as assuming 

pppp pp pp . Similarly, a variety of candidates 

have been developed and tested by Cintra and Tucker 
(1995), Larson and Doi (1991), Chung and Kwon 
(2001), Bay (1991), and VerWeyst (1998). The 
quadratic closure, the orthogonal closure, the natural 
closure, and the hybrid closure are most commonly 
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used by Larson (1999). Nevertheless, a closure 
model universally accurate for all types of flows is 
still not available. 

In fact, fiber suspensions belong to a class of 
liquid type materials, which approach the equilibri-
um state slowly compared to the changes within their 
microstructural configuration. Thus, the macroscopic 
properties are commonly induced by the flow. To 
describe this type of field configuration, the evolu-
tion of the probability distribution function is com-
monly used and denoted by the Fokker-Planck equa-
tion (Öttinger, 1996). However, the transient analyti-
cal solution to this function only exists when the 
Péclet number is infinite (Pe=∞). Clearly, developing 
numerical techniques to solve this distribution func-
tion is of great importance.  

The distribution function provides a complete 
description of the orientation state. Therefore, the 
memory requirement is huge and the computation is 
time-consuming, especially in the early 1990s (Bay, 
1991; Akbar and Altan, 1992). Consequently, the 
reduced two-dimensional model has been applied for 
a large variety of flows (Olson et al., 2004; Krochak 
et al., 2009; Chinesta et al., 2003). For a three-
dimensional solution, there are only a few researches 
that have concerned the numerical methods, where 
the finite difference (Advani and Tucker, 1987; 
Kamal and Mutel, 1989) and the finite element 
(Strand et al., 1987; Han and Im, 1999) have mainly 
been employed. However, the solving procedure and 
the Péclet number range was not mentioned in Advani 
and Tucker 1987). The maximum Péclet number re-
ported in Kamal and Mutel (1989) is 2×104 and the 
maximum numbers are 60 and 100 in Strand et al. 
(1987) and Han and Im (1999), respectively.  

With modern computers, the numerical technique 
for directly solving the Fokker-Planck equation is 
feasible and necessary. In addition, in the past two 
decades, the finite volume method has been widely 
applied in molding process simulation and property 
analysis (Férec et al., 2008; Pei et al., 2012). In this 
paper, a numerical scheme based on the finite volume 
method is presented to solve the three-dimensional 
orientation distribution function. The numerical algo-
rithm is tested by comparison with the analytical 
solution and data available in the literature, which 
covers the full range of Péclet number. 
 
 

THEORETICAL FOUNDATION 
 
Fiber Orientation Distribution Model 
 

Using spherical coordinates, the fiber orien-
tation is represented by a unit vector, i.e., 

   1 2 3= , , sin cos ,sin sin ,cosp p p     p , as shown 

in Figure 1. 
 

 

Figure 1: Schematic of a unit vector p. 
 

With millions of short fibers immersed in the sus-
pensions, it is impractical to trace each fiber and to 
store its orientation state. An alternative is to adopt 
the stochastic process, where the fiber interactions 
are described by random collisions. On this basis, a 
statistical model was proposed by Folgar and Tucker 
(1984). Making use of this model, a probability dis-
tribution function  ,t p  is defined to denote the 

probability to find a fiber located within the region 
[p,p+dp] at time t, and it can be written as 
 

 

 
0 0 0 0

0 0 0

,

, sin

P d d

d d

       

     

     


       (1) 

 
The value of P  is in [0,1]. Integrating the proba-

bility distribution function over the orientation space, 
a normalization condition is formed as: 
 

   
2

0 0
, , sin 1t d d d

 
         p p      (2) 

 
Using the conservation principle in the orienta-

tion space, the probability distribution function must 
satisfy the continuity equation as 
 

  0
t

 
 


p              (3) 

 

where   is the gradient operator which refers to 

p

, 

p  is the change rate of p  and it can be written as: 
 

 :E E      p p p ppp          (4) 
 

where  1

2
Tu u     is the vorticity tensor,
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 1

2
TE u u    is the strain rate tensor, 

2 2( 1) / ( 1)p pr r    is the fiber shape factor, and 

/pr L d  is the fiber aspect ratio, i.e., the ratio of 

fiber’s length L to its diameter d. Eq. (4) is the well-
known Jeffery equation (Jeffery, 1922). 

To model the fiber-fiber interactions or Brownian 

motion in fiber suspensions, a random term rD 


  

is inserted into the right hand side of Eq. (4), and it 
becomes (Folgar and Tucker, 1984; Doi and Ed-
wards, 1988; Dinh and Armstrong, 1984): 
 

 : r
D

D
E E  


       p p p ppp       (5) 

 
where rD is the rotary diffusion tensor and here is 
considered to be isotropic and replaced by a scalar 

r iD C    which is called the rotary diffusivity 

(Folgar and Tucker, 1984), iC  is a constant 
describing the random interaction between fibers, 

2T Eu u      is the shear rate tensor, and 

1
:

2
      is the effective shear rate.  

 
Putting Eq. (5) into Eq. (3), the continuity equa-

tion can be written as: 
 

  2
rD

t

  
   


p           (6) 

 

where 
2

2
2


 

p
 is the Laplace operator. Eq. (6) is 

the Fokker-Planck equation in fiber suspensions. 
 
Constitutive Model of Fiber Suspensions 
 

Based on the probability distribution function, it 
is convenient to apply statistical mechanics to the 
rheology of fiber suspensions. The macroscopic 
quantities of suspensions are expressed as the en-
semble average of the corresponding quantities. For 
instance, for a tensor  A p , one has: 
 

     ,t d A p A p p p           (7) 

 

where  A p  is the macroscopic value of  A p . 

The moment tensor of orientation is a valuable prop-

erty for the fiber suspensions. When   
n

A p p p , 

the orientation tensor is: 
 

   ,
n n

t d p p p p p p           (8) 

 
Based on the spherical symmetry, it is easy to write 
   , ,t t  p p , that is, the function  ,t p  is an 

even function. For odd numbers of n, one has 
 

 0, 1,3,5
n

n p p            (9) 

 
In the viewpoint of continuum mechanics, the fi-

ber suspensions can be treated as the transversely 
isotropic fluid. On this basis, the constitutive equa-
tion has been established by Ericksen (1960) and 
Hand (1962). Furthermore, the relationship between 
the stress and the rate of strain for dilute fiber sus-
pensions has been described by Batchelor (1970) as: 
 

1 1

2 3f I         
pppp pppp      (10) 

 
where   is the viscosity of the Newtonian fluid and 

f  is a function of fiber concentration, I is the second 

order unit tensor, and pppp  and pp are, respec-

tively, the fourth and second order orientation tensors. 
 
Calculation of Orientation Tensors 
 

Though the most complete description is pre-
sented in the probability distribution function, only 
the orientation tensors are required to be known for 
the constitutive relationship Eq. (10). Moreover, the 
orientation tensors are symmetric, i.e., there are five 
independent components for pp  (using the nor-

malization condition: 2 2 2
1 2 3 1p p p   ). Similarly, 

there are forty four independent components for 
pppp .  

Generally, the orientation tensors are calculated 
by the ensemble average with Eq. (8), where the 
probability distribution function is determined by 
solving the Fokker-Planck equation. An alternative 
method is to solve the evolution equation for the 
orientation tensors. Multiplying Eq. (6) by the tensor 
 A p  and integrating it: 
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          2: rd E E d D d
t

    
         

  A p p A p p p ppp p A p p               (11) 

 

Taking the time partial derivative 
t




 over the integral term   d A p p , and noting the moment equation 

Eq. (7), Eq. (10) becomes: 
 

          2: rE E d D d
t

   
         

  A p A p p p ppp p A p p               (12) 

 
When   A p pp , and integrating the right hand side of Eq. (12) by parts, the evolution equation for the 

second order tensor is: 
 

     1
2 : 2 3

2 2 rD I
t

    
           


pp pp pp pp pp pppp pp             (13) 

 
where the new term pppp  appears, and an approximation is needed to close this equation. Using subscripts 

and denoting pp  and pppp  as ija  and ijkla , respectively. The quadratic closure approximation is written as: 

 


ijkl ij kla a a                                   (14) 

 
This model is rather simple and only accurate for a fully aligned orientation distribution. In addition, the 

linear approximation is  
 

    1 1

35 7ijkl ij kl ik jl il jk ij kl ik jl il jk kl ij jl ik jk ila a a a a a a                                (15) 

 
 

The linear closure approximation is exact for an 
isotropic orientation distribution. To circumvent 
these limitations, many sophisticated models, such as 
orthogonal closure (Cintra and Tucker, 1995; Chung 
and Kwon, 2001), natural closure (Verleye and 
Dupret, 1993), etc., have been developed. The clo-
sure model description is compact, general and easy 
to calculate, which is more widely used for fiber 
orientation characterization (Advani and Tucker, 
1987). As we have seen, the closures are formulated 
by polynomials and their coefficients are determined 
by fitting data obtained from a variety of flow fields. 
In practice, users should be aware of the model 
characteristics and its applicable parameter range.  
 
 

NUMERICAL METHOD 
 
Dimensionless Form of the Fokker-Planck Equation 
 

Substituting the nondimensional terms * /     , 

* /     and rtD   into Eq. (6), the dimension-

less continuity equation can be written as: 
 

 * 2Pe
  



   


p         (16) 

 

where the Péclet number Pe
rD





 is defined as the 

ratio of the effective shear rate to the rotary diffusivity.  
 
Finite Volume Discretization 
 

Integrating Eq. (16) over the orientation space, 
the integral equation is: 
 

 * 2Pe
V V V

dV dV dV
  



    

  p    (17) 

 
The integral equation is further discretized by the 

finite volume method. In spherical coordinates, the 
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basic control volume is depicted in Figure 2. 
 

 
 
Figure 2: Spherical coordinates and the control 
volume. 
 

Using Gauss theorem, the convective-diffusive 
type integral equation is simplified to the face inte-
gral equation, and can be written as: 
 

 *sin Pe
S

S

ndS

dS
n

       




 
   












p


   (18) 

 
where n  is the unit vector normal to the sphere 
surface, and its total differential is: 
 

1 2 3sindn dre rd e r d e            (19) 
 
where  1e r ,  2e  ,and  3e  are the unit differen-

tial components in the spherical coordinates. For a 
unit spherical surface, Eq. (19) is reduced to 
 

2 3sindn d e d e              (20) 
 

In addition, the gradient of the scalar   is given by: 
 

2 3
1

sin
e e

n

  
  

  
 

  
        (21) 

 
The discretization is carried out on a unit sphere 

surface, and mapped onto the plane as shown in 
Figure 3. A cell-centered discretization scheme is 
adopted and the unknown variables are stored at the 
solid points as shown in Figure 3(a).  

(a) The sample control 
volume.

(b) The dimensions of 
the control volume.

 

Figure 3: Schematic of the discretized control 
volume, and e, w, s and n represent the faces in 
east, west, south and north directions, respectively. 

 
Making use of Eq. (19)-Eq. (21), the convective 

part in Eq. (18) is discretized as: 
 

     

 
 

* sin sin

sin

sin

    

 

 

 p  





 e w
S

p n

p s

ndS      

  

  

(22) 

 
Using the notations of convective flux, the inter-

nal flux through each face is: 
 

   

   

Pe sin , Pe sin ,

Pe sin , Pe sin

   

   

 

 

e e w w

n p n s p s

F F

F F

     

     
  (23) 

 
Deriving from Eq. (4), the velocities of   and   

are respectively written as: 
 

2 2cos sin
sin 2

12
sin 2

2

   
        

      


yx

yx

vv

x y
vv

y x

 
 


    (24) 

 

sin 2 cos2
2

1

2

     
             

  
     

 y yx x

y x

v vv v

y x y x

v v

x y

  

 (25) 

 
The derivatives of the velocity in Eq. (24) and Eq. 

(25) are assumed to be known at this stage. And 
similar to the convective term, the diffusive part in 
Eq. (18) is discretized as: 



 
 
 
 

312                  Qihua Zhang, Xiongfa Gao and Weidong Shi 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

sin sin

1 1

sin sin

  
   

  

 
   

 

 e w
S

n s
p p

dS
n

     
 

  
   

  (26) 

 
where the internal diffusive flux through each face 
is: 
 

sin , sin ,

1 1
,

sin sin

 
 

 

 
 

 

e e w w

n n s s
p p

D D

D D

  
 

 
   

     (27) 

 
Then, putting Eq. (22)-Eq. (26) into Eq. (18), and 

the discrete algebraic equation can be written as: 
 

   

 

     

 

1

1 1 1

1

 



   

   

     

 

P P P P P P

E E W W N N S S

E E W W N N

S S

a a a

a a a a

a a a

a

     


 

  



     

    

     

 

  (28) 

 
After rearrangement, Eq. (28) becomes: 

 

 

     

   

1 1 1

1 1

 

  

 

  

     

      

P P E E

W W N N S S

E E W W N N

S S P P

a a a

a a a

a a a

a a a

   


     

  

 


   

     

     

   

  (29) 

 
where Ea , Wa , Sa , Na  and Pa  are coefficients listed 

in the Appendix. When 1/ 2  , the Crank-Nicolson 
scheme is formed. To accelerate the convergence, the 
dimensionless time step is multiplied by a coefficient 

 , i.e., rD    , such that the time step can 

adapt to the varied Pe number. 
 
Boundary Condition Implementation 
 

On the sphere boundary, there are two pole points 
where singularity is always encountered because of 

the term 
1

sin p
, while in the finite volume discreti-

zation, this term is not directly evaluated on the 

boundary. Alternatively, the flux is evaluated on the 
boundary instead of its value. In addition, it is easy 
to see that the flow area sin     equals zero when 

0   and   , thus there is no flux through the 
boundaries of the two pole points. In the finite dif-
ference discretization, the condition  0,     

 , 0      has been imposed on the boundary 

(Advani and Tucker, 1987; Kamal and Mutel, 1989), 
which means that there is no possibility that one 
fiber is located at these two pole points. Obviously, 
this condition is not always correct. Furthermore, the 
finite difference scheme does not guarantee the local 
flux conservation (Férec et al., 2008; Bay and Tucker, 
1992). A finite volume scheme was provided by Bay 
(1991), Férec et al. (2008), Lin et al. (2010), Bay 
and Tucker (1992), but the implementation of the 
boundary condition was not detailed.  

In practice, when 0   and 2  , the bounda-

ries are joined together; thus, the spherical sym-
metrical boundary condition is written as: 
 

   ,0 ,2               (30) 
 

Assuming that the initial fiber orientation is iso-
tropic, and using Eq. (2), one has: 
 

 
2

0 0
, sin 1d d

 
                (31) 

 
That is,  , 1/ 4    . 

 
The CTDMA Algorithm 
 

Furthermore, Eq. (29) is discretized into a tridi-
agonal matrix form, and at the control volume center 
(i, j), it can be written as: 
 

, , , , 1 , , 1 ,i j i j i j i j i j i j i jA B C D           (32) 

 
where ,i j PA a a   , ,i j NB a , ,i j SC a , and 

the other terms in Eq. (29) enter into ,i jD . Similarly, 

at the cell center (i, j-1), assuming , -1i j   

, 1 , , 1 ,1 , 1i j i j i j i i jE F G      and inserting it into Eq. 

(32), and after rearrangement, the equation becomes: 
 

 , , , 1 , , , 1 , , 1 ,1

, , 1 ,

  



  

 

i j i j i j i j i j i j i j i j i

i j i j i j

A C E B C F

C G D

  
 (33) 

 
And rewriting Eq. (33) as: 
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, , , 1 , ,1 ,i j i j i j i j i i jE F G            (34) 

 
Taking , , , 1 ,i j i j i j i jA C E U  , an iterative rela-

tionship is obtained as: 
 

, , , 1
, ,

, ,

, , 1 ,
,

,

, ,i j i j i j
i j i j

i j i j

i j i j i j
i j

i j

B C F
E E

U U

C G D
E

U





 




      (35) 

 
At the boundary cell center (i, N), Eq. (32) 

becomes:  
 

, , , , 1 , , 1 ,i N i N i N i N i N i N i NA B C D         (36) 

 
And at the internal cell center (i, N-1), Eq. (34) 

becomes: 
 

, 1 , 1 , , 1 ,1 , 1i N i N i N i N i i NE F G            (37) 

 
Then inserting Eq. (37) into Eq. (36), leads to: 

 
 , , , 1 , , , 1

, , 1 ,1

, , 1 ,

i N i N i N i N i N i N

i N i N i

i N i N i N

A C E B

C F

C G D

 



 





 



 

   (38) 

 
And similar to Eq. (37), Eq. (38) can be written as 

 

, , , 1 , ,1 ,i N i N i N i N i i NE F G           (39) 

 
Substituting Eq. (39) into Eq. (38), the expression 

for , 1i N   becomes: 
 

 

 

 

,

,

,

, , , 1 , , , 1

, , 1 , , , 1 , ,1

, , 1 , , , , 1 ,

i N

i N

i N

i N i N i N i N i N i N

p

i N i N i N i N i N i N i

q

i N i N i N i N i N i N i N

m

A C E E B

C F A C E F

C G D A C E G





 

 

 

   

    

   







  (40) 

 

Then taking 2  N i k , and substituting the 
subscript i with k, Eq. (40) becomes: 
 

, , ,

, , ,

, 1 ,1

, 1 ,1

i N i N i N

k N k N k N

i N i

k N k

p q m

p q m

 

 




 
  

       (41) 

On the boundary surface, Eq. (30) is: 
 

, 1 ,1

, 1 ,1

i N k

k N i

 

 





 

            (42) 

 
Multiplying the first equation in Eq. (41) by 

,k N
p  

and noting 
, ,,1 , 1k N k Ni k Np p   , it leads to: 

 
, , , , , ,

, ,

, 1 ,1i N k N i N k N i N k N

k N i N

i N kp p q q m p

m p

   


   (43) 

 
Thus, the boundary value is written as 

 
, , , ,

, , , ,

, 1
i N k N k N i N

i N k N i N k N

i N

m p m q

p p q q
 





       (44) 

 
With Eq. (32), Eq. (34), Eq. (35), and using Eq. 

(44), the algebraic equation system can be iteratively 
solved by the LU decomposition, which has also 
been denoted as the cyclic tridiagonal-matrix algo-
rithm (C-TDMA) (Férec et al., 2008; Bay and Tucker, 
1992). 
 
 

NUMERICAL CALCULATION AND 
VALIDATION 

 
Test of Grid Relevance 
 

To solve the time evolution of the probability dis-
tribution function, there were 57 grids equally spaced 
in   for the planar orientation (Advani and Tucker, 

1987). The 39×77 grids were used in Advani and 
Tucker (1990), and the 40×40 grids were used in 
Férec et al. (2008) for the three-dimensional orienta-
tion. But the accuracy validation, especially the grid 
relevance, has not been tested. In addition, for the 
transient Fokker-Planck, the calculation is computa-
tionally-intensive using the high grid resolution. 
Alternatively, the steady Fokker-Planck equation is 
solved. Using Eq. (29) and noting 1  , the steady 
discretization equation system is formed as: 
 

0P P E E W W N N S Sa a a a a            (45) 

 
The calculation is tested for different grid resolu-

tions when Pe=100, and the results are listed in Table 1. 
These tests were carried out on a laptop with Intel 

T7300 CPU (2.0GHz) and 2GB RAM. The calcula-
tions take less than 1 minute for 36×72 grids, and 



 
 
 
 

314                  Qihua Zhang, Xiongfa Gao and Weidong Shi 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

several minutes to tens of minutes for 72×144, 
144×288, 288×576 grids, but exceed ten hours for 
1000×2000 grids. From Table 1, the error for 36×72 
grids is rather big, so if the computational resources 
are enough, it is recommended to adopt high resolu-
tion grids. 
 

Table 1: Grid relevance test when Pe=100. 
 

Grids/ a2 a11 a12 a22 

36×72 0.730462 0.080243 0.094655 
72×144 0.728071 0.076282 0.092953 

144×288 0.727373 0.075166 0.092479 
288×576 0.727188 0.074868 0.092354 

1000×2000 0.727162 0.074659 0.091948 

 
Analytical Solution When Pe=∞ 
 

When the Pe number is infinite, and the diffusion 
term is negligible in the Fokker-Planck equation, we 
obtain 
 

 
t

 
  


p            (46) 

 

where the convection is dominant, and the analytical 
solution for the Fokker-Planck equation is (Dinh and 
Armstrong, 1984): 
 

    3/21
, :

4
tt




  p pp          (47) 

 

where 1E  , and E  is the deformation gradient, 
calculated as 
 

 E
E E

t
 

     


p p          (48) 

 

When the fiber shape factor   is unity, Eq. (48) 
becomes: 
 

E
u E

t


  


             (49) 

 

In a simple shear flow,  , 0, 0u y v w   , and 

the shear rate is t   , E  can be written as:  
 

1 0

0 1 0

0 0 1

E

 
   
  

,  and  1

1 0

0 1 0

0 0 1

E




 
     
  

.  

 

Using Eq. (47)-Eq. (49), and noting Eq. (8), the 
time evolution for the orientation tensor is calcu-
lated as 

  3/21
:

4
t

ija d



   pp pp pp p     (50) 

 
To test the numerical code with high Pe number, 

the main components 11a , 12a  and 22a  are calcu-

lated with 1000×2000 grids and compared to the 
analytical solutions (Pe=108), as shown in Figure 4. 
 
Comparison with Literature Results 
 

For transient evolution of the orientation distribu-
tion function, the calculation time becomes very long 
for high grid resolution. In the existing literature, the 
grid resolutions are 39×77 in Advani and Tucker 
(1990), 40×40 in Férec et al. (2008), or were not 
mentioned in Lin et al. (2010). So the calculation is 
carried on 36×72 grids and the results are listed and 
compared in Figure 5.  

 
Figure 4: Comparison of the analytical solutions 
with Pe=108 (──a11, ……a12, and…………a22) and 
the numerical results (▲ a11, ■ a12, and ● a22) for a 
simple shear flow. 

 
(a) a11 component vs. deformation 
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(b) a12 component vs. deformation 

 
(c) a22 component vs. deformation 

Figure 5: Comparison of numerical results adapted 
from the literature (Férec et al., 2008) (▲ Pe=1000, ■ 
Pe=100, ● Pe=10, and ◆ Pe=1) and the results in this 
study (──Pe=1000, ……Pe=100,…………Pe=10, 
and─…─…─Pe=1) for a simple shear flow. 
 

By comparison, the main orientation tensors are 
in good agreement with the literature. The small dif-
ference mainly comes from the grid resolution. For 
high Pe number, much more time is needed to reach 
the steady solution, so it manifests a big difference. 
 
 

CONCLUSION 
 

The objective of this research is to directly solve 
the orientation distribution function, i.e., the Fokker-
Planck equation, which has been widely used in the 
prediction of fiber orientation distribution in fiber-
filled polymers, pulp fiber suspensions, etc. To 
achieve this objective, a finite volume scheme is 
proposed. The scheme is characterized as globally 
conservative, accurate, and stable. Based on the face 
flux in the FV discretization, the singularity at pole 

points encountered in the FD method is naturally 
solved. In addition, the global flux conservation is 
guaranteed. Then the spherical symmetry boundary 
condition is numerically formulated, which enhances 
the scheme’s accuracy. Subsequently, the numerical 
validation was conducted for a simple shear flow, 
where the results for Pe=∞ are compared with ana-
lytical solutions, and the others are compared with 
data in the literature. Furthermore, this scheme is 
computationally inexpensive and suitable for the 
evaluation of the rheological properties of complex 
fiber suspensions. 
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APPENDIX 
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