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Abstract - Many industries are complex when it comes to operation mode. In order to reduce the problems 
related to strong coupling in these processes, the search for the incorporation of artificial intelligence devices 
has shown an increasing trend in recent years. Due to this complexity and control in multivariable processes, 
diagnosis and fault monitoring in the processes have become increasingly difficult. Therefore, the application 
of these devices has achieved satisfactory results regarding the procedures performed with human operators. 
Independent Component Analysis (ICA) is a signal separation technique that is based on the use of higher 
order statistics to estimate each of the unknown sources, through observation of various mixtures generated 
from these sources. Although there are recent works on using the ICA in industrial processes, few studies 
have been made in cases involving distillation columns. This paper proposes a control strategy based on the 
ICA technique, which makes the control loops decoupled and hence the performance easier. Compared to the 
conventional method, the technique provided a great improvement in control performance. Control structures 
were implemented in Simulink/Matlab® in communication with a 1,2-dichloroethane (1,2-EDC) plant 
simulated in Aspen Plus DynamicsTM. 
Keywords: Independent Component Analysis (ICA); Control; Distillation column. 

 
 
 

INTRODUCTION 
 

The continuous search for improvements in indus-
trial plants is associated with the highly competitive 
market and the need to raise increasing profit mar-
gins and operational safety. Engell (2007) showed 
that the purpose of a control system is not only to 
keep the variables in their setpoints, but, moreover, is 
to operate the plant while maximizing economic re-

turns in the presence of disturbances in the process. 
In order to reduce the problems of the strong interac-
tions in industrial processes, the incorporation of ar-
tificial intelligence devices in production processes 
has shown an increasing trend in recent years. The 
application of these systems for monitoring, diagnos-
tics and maintenance of the good performance of the 
equipment has achieved satisfactory results regarding 
the procedures performed only with human operators. 
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In chemical industries, among the equipments that 
require greater attention are the distillation columns, 
since in most manufacturing industries, 80% of the 
energy operating costs are due to this unit operation 
(Delgado et al., 2012; Gil et al., 2012; Modla, 2013; 
Chen and Law, 2013).  

Besides the disadvantage of high energy con-
sumption, if the mixture presents behavior that is not 
ideal in relation to the equilibrium phases, there may 
be azeotrope formation. This prevents separation of 
the components by conventional distillation and they 
are usually separated by extractive distillation or 
azeotropic distillation. 

The occurrence of azeotropes in the chemical in-
dustry is relatively common. As its main feature, 
azeotropy is highly sensitive to disturbances, which 
can result in deterioration of products, multiple 
steady states and great difficulty to return to normal 
operation. The most addressed solution to minimize 
transient operation is the implementation of ad-
vanced control techniques. However, even with the 
use of complex algorithms, a long time for the pro-
cess to reject a disturbance is observed. This difficul-
ty to stabilize the processes is due to the strong inter-
actions between the variables and is inherent to mul-
tivariable processes. 

One of the most widespread and applied methods 
to reduce the strong interaction in these processes is 
the ICA. ICA is a technique applied in the separation 
of unknown sources, which is based on the use of 
higher-order statistics to estimate each of the sources 
by observing various mixtures generated from these 
sources (Silva, 2009). Few studies found in the lit-
erature use this technique in industrial processes in-
volving distillation columns. Among the main ones 
the following can be cited: 

Bo et al. (2010) applied an integrated approach 
based on an independent component analysis - sup-
port vector machine (SVM-ICA), which was used to 
detect and diagnose disorders in a cracking process 
for separating butadiene. Due to the complexity ex-
isting in the industrial distillation process, which pre-
sented non-Gaussian features, the ICA statistics de-
tected more information about the type of applied 
disturbances in the separation than information about 
the statistics of the PCA. Chen et al. (2013) demon-
strated that ICA-based monitoring techniques used in 
a cryogenic air separation process presented a very 
satisfactory fault diagnosis using ICA. 

The use of this technique in this work had as its 
main characteristic the reduction of the strong cou-
pling among the variables that complicate this type 
of column, thereby improving the performance of the 

proposed control loop. The algorithm chosen for the 
ICA performance was Fast ICA. Besides being the 
simplest among the others in requesting the step of 
adaptation, this algorithm has fewer interactions in 
the precision of separation (Zargoso, 2006). By com-
paring the ICA technique with a conventional control 
method, a significant improvement was observed in 
the results, both in instability reduction and in the 
shorter operating time required for the controlled 
variables to reach their desired setpoints. 
 
 

STATE-OF-THE-ART REVIEW 
 

Azeotropic distillation is highly sensitive to dis-
turbances, which can result in deterioration of the 
products or a very difficult return to normal opera-
tion. The most used solution to minimize transient 
operation is the implementation of advanced control 
techniques. Monitoring and processes diagnostic be-
came very important in the chemical industry be-
cause of the increasing complexity of operation and 
multi loop control. 

In many practical situations the use of sensors is 
required to collect information and there is generally 
the problem of the signals supplied by the sensors 
being mixed signals (sources). Also, in general, there 
is no way to observe the sources directly, nor is it 
known how the sources were mixed. According to 
Moretto (2008), this problem is known as the prob-
lem of blind source separation (BSS), and one of the 
most widespread methods for BSS is ICA. The ICA 
technique has been applied in various types of indus-
trial processes in order to reduce or to eliminate this 
strong interaction between the variables. 
 
Independent Components Analysis 
 

The goal of the technique is the analysis or sepa-
ration of statistically independent sources from a 
given template mixture of original sources. What dif-
ferentiates ICA from other existing techniques is 
precisely the fact that it works with components that 
are both non-Gaussian and statistically independent, 
as occurs in most industrial processes. This tech-
nique contributed to the reduction of the existing 
coupling between a set of variables present in a spe-
cific system. ICA estimates the mixing matrix A, 
which considers the signs or sources observed, and 
independent sources that make up the matrix S. 
Figure 1 shows a schematic representation of the 
ICA for source separation. In this paper the Fast ICA 
algorithm is applied to ICA operation performance. 
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Figure 1: Mixture Separation Process through ICA. 
 

The problem is finding the separation matrix W. 
This matrix W is the inverse of matrix A, and the 
estimated independent signal sources must be equal 
to the signs of the original independent sources. The 
Fast ICA algorithm (Hyyvarinen and Oja, 1997) is 
based on a fixed point interactive strategy with the 
goal of sequentially determining the maximum non-
Gaussian components. The algorithm consists of a 
sequence as follows: 

1. Remove the average value of observations x 
(Centralization). 

2. Make the whitening of observations getting z. 
(Orthogonalization) 

3. Choose a weight vector w. 
4. After taking: 

'{ . ( . )} { ( )}T Tw E x G w x wE G w x   , where G’ is de-

rived from a non-quadratic function G that is used in 
the contrast function for solving the ICA problem.  

5. Doing /w w w  . 

6. If there is no convergence, go back to stage 4. 
Before applying the Fast ICA algorithm, it is nec-

essary to perform pre-processing on the input data, 
thereby facilitating the algorithm convergence and 
serving as standards for the calculation of negentro-
py, which measures the entropy of the data analyzed. 
That is, the more unpredictable the observed varia-
ble, the greater is its entropy. The pre-processing 
consists of two major operations: the Centralization 
and the Whitening. The centralization subtracts the 
average for each component belonging to a set of 
variables, making it zero average, and the whitening 
makes the set of uncorrelated data. The appropriate 
choice of the non-quadratic function G(.) makes the 
algorithm perform a conceptually simple approach 
that is computationally fast and has interesting statis-
tical properties such as robustness. Some of the most 
used standard functions are cubic, hyperbolic tangent 
and Gaussian. 

The present Fast ICA algorithm calculates only an 
independent component at a time. It is possible to 
calculate all components running Fast ICA a number 
of times equal to the number of independent com-

ponents, in addition to varying the initial 'w' vector. 
However, there is a risk that the same maximum spot 
is calculated more than once. To eliminate this prob-
lem, the property with orthogonal ‘wi’ vectors is 
used, step 2 described above. This is due to the or-
thogonality of the new mixing matrix A obtained af-
ter whitening. 

Since A-1= AT, ‘wi’ vectors are the A-1 rows and 
the AT columns, so to avoid that the same local maxi-
mum is calculated more than once, it is necessary 
to make vectors 'W' orthogonal on each iteration of 
the algorithm. For this, two methods may be used: 
deflationary and symmetrical orthogonalization. In 
deflationary orthogonalization, independent compo-
nents are calculated one by one, so it has the disad-
vantage that estimation errors propagate to subse-
quent components.  

For this reason, another orthogonalization tech-
nique of symmetrical nature may be interesting. In 
this technique the components are not calculated se-
quentially, but in parallel. Thus, as the independent 
components are calculated all at once, there is no es-
timation error propagation. In the symmetric orthog-
onalization, a Fast ICA algorithm iteration is per-
formed in each 'wi' vector in parallel. After the main 
iteration, all vectors 'wi' are orthogonalized by using 
the symmetrical method presented in this section. 

Although it is possible to find recent work on the 
use of ICA in industrial processes, very little for 
found in processes involving distillation columns. Bo 
et al. (2010) applied an integrated method based on 
ICA-SVM to detect and diagnose disorders in a 
cracking process for separating butadiene. Because 
of the complexity existing in the distillation process 
industry, due to its non-Gaussian features, the ICA 
statistics detected greater information on the type of 
applied disturbances in the separation of the statistics 
of the principal component analysis (PCA). Chen et 
al. (2013) showed that ICA-based monitoring tech-
niques used in a cryogenic air separation process 
with fault detection and diagnostic capability showed 
better results when compared to applying the PCA 
technique to the same process. 
 
 

METHODOLOGY 
 

The distillation column under study belongs to a 
commercial plant producting 1,2-EDC, one of the 
steps prior to obtaining the final product PVC (poly-
vinyl chloride). Figure 2 shows the flowchart of the 
column process in the Aspen Plus DynamicsTM simu-
lator used in this study. 
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Figure 2: Flowchart of the 1,2-EDC column with flow controllers and level. 
 

The feed stream of the industrial column under 
study comprises 98 to 99% of 1,2-EDC, and other 
organic substances, of which carbon tetrachloride 
(CCl4) and chloroform (CHCl3) are the components 
of interest. The purpose of this column is to dry 1,2-
EDC and to remove most of the lighter components 
from the basic product. 

The column has 70 plates, a total condenser, and a 
decanting vessel as reflux drum. Water forms a min-
imum boiling point azeotrope with 1,2-EDC and 
other chlorinated hydrocarbons. The top vapors are 
cooled and condensed in the condenser and flow into 
the column reflux vessel. The reflux vessel is de-
signed to separate the most dense organic phase from 
the aqueous phase. The organic phase is pumped 
back to the tower under level control, maintaining a 
constant reflux ratio. The decanted aqueous phase 
in the reflux vessel is drained to the wastewater 
treatment. 

The column is regarded as a non-conventional 
heterogeneous azeotropic distillation column, since 
the addition of an entrainer to perform separation of 
the components is not necessary because this agent is 
already present in the feed. 

Characterized as a high purity distillation column, 
the base product is essentially 1,2-EDC (99%). Be-
cause of its catalytic effect on a chemical reaction 
that occurs in a later stage of the process (pyrolysis 
of 1,2-EDC), the presence of a given concentration 
of CCl4, when properly controlled, is desirable in the 
column base product. However, the presence of 
CHCl3 is not desirable, since it is a cracking inhibitor 
for 1,2-EDC. The 1,2-EDC produced is purified and 
goes to the cracking area, where monovinylchloride 
(MVC) and hydrochloric acid (HCl) are produced. 

Communication Aspen Plus DynamicsTM x Simu-
link/Matlab® 
 

A Simulink/ Matlab® was built in a block diagram 
for communication with Aspen Plus DynamicsTM, 
through an AMSimulation block, Figure 3, where all 
the information directly stemming from the 1,2-EDC 
plant was received. In the process input five signals 
were simultaneously applied with different ampli-
tudes and frequencies, in order to obtain, in the block 
diagram of the output, the transient behavior of the 
process variables to be controlled, under the influ-
ence of this signal mixture. The signals applied were 
respectively: Sinusoid, Sinusoid, Ramp, Sinusoid and 
Step. Both the input signals and the output signals to 
model the Aspen were specified in the AMSimula-
tion. The signals applied at the process input had vary-
ing amplitudes and frequencies, as shown in Table 1. 

Through this communication it was possible to 
obtain the data for the mixed output components, 
Figure 3, and submit them to ICA through the appli-
cation available for Hyyvarinen (2005), thus obtain-
ing the independent variables and consequently re-
ducing the existing strong coupling between them. 
This application has in its structure the Fast ICA al-
gorithm, which is the method that is responsible for 
making the components as mixed in the independent 
variables as possible, resulting in easier and more ro-
bust control of the variables in the process. Initially, 
the five acquired signals x1, x2,..., x5, corresponding 
to mixtures of the 5 signals applied to the sources 
(input variables) in the process, were inserted into 
the ICA application, which aims to provide the esti-
mates y1, y2,..., y5, referring to the output variables 
of the respective individual signals.  
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Figure 3: Communication Aspen Plus DynamicsTM x Simulink/Matlab®. 

 
Table 1: Applied input signal amplitudes and frequencies. 

 
Signals  Amplitudes Frequencies 
Signal 1 - Sinusoid 5 1.5  
Signal 2 - Sinusoid 4  1  
Signal 3 - Ramp Slope = 5 
Signal 4 - Sinusoid 0.3  2  
Signal 5 - Step Slope = 2.5 

 
 
Application of Independent Components Analysis 
 

The data were then treated to reduce the complexi-
ty of the algorithm during the simulation. For this, 
the pre-processing was accomplished through the 
centering and whitening and, immediately after this, 
the Fast ICA algorithm was applied. Thus, independ-
ent output components extraction was obtained. The 
purpose of whitening was to make uncorrelated ran-
dom variables and the variance equal to one. The use 
of the technique afforded the separation matrix W, 
which was used in the control structure proposed in 
the online work. According to Silva (2011), the most 
relevant characteristics of Fast ICA algorithms are 
listed below: 
 No adjustment is necessary in the adaptation 

step when compared to gradient-based algorithms. It 
is simpler; 
 The low amount of interactions, between 5 and 

10, which are necessary in most cases, makes the 
method have a maximum accuracy with a small 
number of iterations;  
 The algorithm finds the source directly of vir-

tually any non-Gaussian function; 

 The performance of the algorithm can be im-
proved according to the choice of nonlinear function 
that is used; 
 It can be used to identify independent compo-

nents one by one. 
 
Control Proposals  
 

The importance of maintaining industrial plants 
running close to their optimum operating points al-
lows the process to operate safely, as well as to guara-
ntee the best yields. The objective is to use a signal 
separation technique capable of creating independent 
variables, thus allowing the control to act individu-
ally on each variable and thus obtain a better control 
performance. In order to verify the performance pro-
vided by the ICA technique, the work proposed two 
control strategies: 
 Offline Control based on models that ruled the 

procedure, but did not act directly in the 1,2-EDC 
plant simulated in Aspen Plus DynamicsTM. Its use 
was helpful in obtaining the PID controller tuning 
parameters, which were used in the online control 
structure; 
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 Online control performed in real time directly 
on the setpoints of the controlled variables (CV’s) in 
1,2-EDC plant; 
 Each one of the strategies mentioned above was 

assessed in two different situations: 
 First situation: Conventional control over cou-

pled control loops through the PID component; 
 Second situation: Control based on the appli-

cation of the ICA technique as a means of decoupling 
the control loops using the PID for this component. 

For a better comprehension, the proposals were 
named as follows: 
 Control loop 1 – Conventional Offline Control 

on the coupled control loops, based on the identified 
process models. 
 Control loop 2 – Offline Control based on the 

application of the ICA technique as a way of decou-
pling among the control loops, using the models 
identified after the application of the technique. 
 Control loop 1A – Conventional Online Control 

on the coupled loop control, acting directly on CV’s 
setpoints in the 1,2-EDC plant; 
 Control loop 2A – Online Control on decoupled 

loops after applying the ICA technique, acting directly 
on the setpoints of CV's in the 1,2-EDC plant; 

The pairing between the manipulated variables 
(MV) and controlled variables (CV) was determined 
by analysis after the administration of tests in the 
1,2-EDC plant. Excitations to simulate plant input 
variables had the intent to verify the sensitivity 
shown by each output variable controlled in the pro-
cess. The excitation signal was applied to the PRBS, 
and from this component disturbances were con-
ducted into the Feed flow, adopted as a process dis-
turbance, and in the other variables (reflux flow rate, 
cascading reflux flow with LC3.SP, Flow 1,2-EDC 
(Base) in cascade with SumpLC.SP and Thermal 
Load), which at first were individually observed, and 
then chosen as MV. 

In most systems, the base composition or base 
level is controlled by the thermal load or the flow of 
the base. Likewise, the composition of the distillate 
or reflux vase level is controlled by the flow rate of 
distillate or reflux flow. The choice for the use of 
setpoints of the level of the organic phase and the 
sump as manipulated level was due to the fact that 
the disturbances that often occur in industrial plants 
trigger abrupt changes like emptying or over-flowing 
at these two levels, making it difficult to do any 
analysis on their transient behavior. 

Therefore, the handling of these set points allows 
a better understanding of what happens in a wider 
range of operation, thus enabling a safer understand-
ing of the strategy and benchmarks for control. Table 

2 shows the VM and CV annealing used in the pro-
posed control structures. 
 
Table 2: Pairing between Manipulated and Con-
trolled Variables. 
 

Manipulated Variable Controlled Variable 
Light Withdrawal Flow 
(U2) 

1.2EDC composition on top  
(y1) 

* SumpLC (Setpoint)  
(U3) 

Sump level (y4) 

** LC3 (Setpoint)  
(U4) 

Organic phase level in the  
reflux vessel (y3) 

Thermal Load (U5) CCl4 composition in the base 
(y2) 

*Cascading with output Flow 1,2-EDC 
** Cascade with Reflux Flow 

 
OFFLINE Control 
 

The first step was to obtain the mathematical 
models ruling the 1,2-EDC plant process. Once ob-
tained, it was possible to analyze system perfor-
mance. For this, the tool Matlab® ident software was 
used, which enables the creation of a dynamic sys-
tem model from the data generated, characterizing 
the transient behavior of each variable in the analysis 
process. In possession of the data of the output com-
ponents obtained directly through communication, as 
well as of the data of independent components ex-
tracted after passing through the ICA, we could 
begin the process of modeling. Offline control was 
useful to understand the behavior of each output vari-
able to be controlled in the process, and was also 
handy for obtaining the initial controller parameters. 
The setpoints to be achieved by each CV are shown 
in Table 3. 
 
Table 3: Reference values for controlled variables. 

 
Controlled variables Setpoint Unit 
1.2EDC composition on top  
(y1) 

0.028 kg/kg 

CCl4 composition in the base  
(y2) 

0.00265 kg/kg 

Sump level (y4) 1.275 m 
Organic phase level in the reflux 
vessel (y3) 

0.29 m  

 
In Figures 4(a) and 4(b) a schematic flow dia-

gram used in each of the control motions offline is 
shown. 

Both control loops 1 and 2 had the same format in 
this first moment, Figure 5. The only difference 
between them was the models used. Models were 
implemented within the blocks called 'subsystem', 
where for each MV/ CV pair relationship there was a 
distinctive style. 
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(a) 

 

 
(b) 

Figure 4: (a) Control loop 1 scheme fluxogram; (b) Control loop 2 scheme fluxogram. 
 

 
 

Figure 5: 1,2-EDC plant offline control proposal. 
 
 
ONLINE Control 
 

Then, after checking the performance achieved by 
the offline control, two new structures were proposed. 
The present work proposes two control structures in 
order to make a comparison between the conventional 
method of using Control Loop 1A, Figure 6, and the 

control method for decoupling variables using the ICA 
- Control Loop 2A, Figure 7. The control loop 2A 
used the separation matrix W obtained after applying 
ICA to promote decoupling of the variables in order to 
reduce the strong interaction between them. Both pro-
posals used the base structure communication of Simu-
link/Matlab® x Aspen Plus DynamicsTM, Figure 3. 
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Figure 6: Control Proposal 1A. 
 

 

Figure 7: Control Proposal 2A. 
 

The Control Loop 1A used the same precept of 
Control Loop 1, but, in this case, the control was di-
rectly applied to the 1,2-EDC plant, and not based on 
the models ruling the process, as can be seen in 
Figure 6. Figure 7 shows the addition of the separa-
tion matrix in order to reduce the existing strong 
coupling between the variables contained in the pro-

cess, and this control was also applied in real time on 
the setpoints of CV's in the 1,2-EDC plant simulated 
in AspenPlus DynamicsTM. 

The tuning of the parameters of the controllers 
was based on the Ziegler Nichols method. However 
the initial starting line took place through the auto-
matic tuner, and initial values were obtained during 
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the tuning of the offline control loops. A system can be 
considered to have optimal control when the adjusted 
autotuning parameters provide a minimum error; 
thus, we used the Integral criterion of absolute error 
(IAE) to evaluate the performance of each proposed 
control system. The IAE criterion considers the error 
module and is much used in simulations because it is 
easy to implement and understand. 

For Balestrino et al. (2006), the criterion of the 
IAE is a good economic measure of performance be-
cause the size and length of error in both directions is 
proportional to loss of income. In addition, an opti-
mal system designed with this criterion is a system 
that has a reasonable damping, i.e., a response with 
overshoot, but is not too oscillatory and had a satis-
factory transient response. 
 
 

RESULTS AND DISCUSSION 
 

The PRBS component allows us to observe the 
behavior triggered at each output variable after exci-
tations are applied to the input variables. Thus, it was 
possible to identify and select the VM and CV pairs to 
be used in the control structure proposed in the work. 

After provoked excitement of the Feedflow, the 
CCl4 composition exceeded 3000 ppm, an amount re-
quired for maximum conversion of 1,2-EDC in 
cracking, the subsequent step of purification of 1.2–
EDC; this factor may cause coke formation in the 
cracking furnaces. The composition of CHCl3, de-
spite suffering variations, still remains within the 
limits specified for safe operation of the plant, less 
than 400 ppm.  
 

Therefore, the importance of the control of CCl4 

composition as opposed to CHCl3 composition is 
proved by testing, since CCl4 is more sensitive to dis-
turbances in the system. By controlling CHCl3 auto-
matically, it is held below the maximum limits al-
lowed for satisfactory safe operation of the process. 

The level of the organic phase in the reflux vessel 
presented significant oscillations and its setpoint 
must be kept around0.3m. Otherwise the organochlo-
rine components pass through the water output cur-
rent. Finally, the sump level and the composition of 
1,2-EDC in the distillate stream were evaluated.  

Since there are rapid changes in the sump level, 
either upwards or downwards, liquid may overflow 
and flood the distillation column, thereby preventing 
the separation of the components. Also, if the sump 
is emptied, the pump that provides the circulation 
flow within the column may burn, what may cause 
the premature shutdown of the plant. 

The variations in the 1,2-EDC composition in the 
distillate may reduce the purity of the product and 
this is not interesting for the purification process step 
under study. Therefore, this is one of the variables 
chosen for the control, along with the level of the or-
ganic phase of the reflux vessel, the level in the 
sump and the CCl4 composition in the basic chain. 

Especially in azeotropic distillation columns of 
high purity, the strong interaction and engagement 
between the variables is inherent in the process, a 
factor that is due to the high complexity present. 
Through the ICA it was possible to reduce this strong 
coupling, gain and extraction of independent signals 
obtained from the output variables (y1, y2, y3, y4 
and y5), as shown in Figure 8. 

 

(a) (b)
Figure 8: Components separated by ICA - (a) the original signals on the input variables; (b) signals 
recovered through the output variables. 
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For the best performance in separation, the or-
thogonalization methods were tested: deflation and 
symmetry, alternating together with non-quadratic 
functions. Thus, it was noted that the deflation method 
and the Gaussian function were the best pair for use 
in maximizing the decoupling data. 

Several models have been evaluated in order to 
get the best fit for the relationship MV/ CV, namely: 
Transfer Functions, State Space, non-linear, polyno-
mial models and correlation models. Those that pre-
sented the best results were ARX. For this choice 
some factors were taken into consideration, such as 
the correlation coefficient; the transient response that 
allows us to observe the system after the model ad-
justment, whether the system will reach stability for 
control purposes if certain disturbances occur in the 
process. Besides the two criteria outlined above, we 
analyzed the value of the final prediction error 
(FPE), where this criterion provides a measure of the 
quality of the model. After calculating several differ-
ent models, it is possible to compare them using this 
criterion. 
 

OFFLINE Control 
 

As seen before, two control structures were pro-
posed: Control Loop 1 and Control Loop 2. Both struc-
tures were implemented in the Simulink Matlab® envi-
ronment. After analyzing the transient behavior of CVs 
monitored in the study, it was established what the 
best pairing would be between VM's and CV's, as seen 
previously. In Figure 9, the behavior of y1 is shown 
after tuning the controllers in both control loops. 

As seen before, y1, besides presenting greater in-
stability, requires a longer time to reach the desired 
setpoint when subjected to the control loop 1. As a 
result, it reaches a composition that is over 0.04% in 
mass in the distillate stream when the disorder is ap-
plied, which means a loss of 1.2 in the EDC over-
head stream of the column, higher than is actually 
acceptable in the drying step. Therefore, the improved 
results are clear when control loop 2 is used because 
variable stabilization occurs in less than 5 hours of 
simulation, while control loop 1 takes about 25 hours. 
In Figure 10 the behavior of y2 can be observed. 

 

 

Figure 9: Behavior of y1 after controller tuning in Control loop 1 and loop 2. 

 

Figure 10: Behavior of y2 after controller tuning in Control loop 1 and loop 2. 
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The results were similar to those discussed above 
for y1. Again, the control loop 2 presents more satis-
factory results when compared to those obtained 
through control loop 1. The value of y2 after the dis-
order reaches an approximate value of 0.024 kg/ kg 
(24 ppm), which exceeds 3000 ppm and is desirable 
for the drying and purifying value of 1.2EDC. Ex-
cessive fluctuations in y2 in the base product cause 
changes in the content of this component in feeding 
the cracking furnaces for 1,2-EDC, causing varia-
tions in the exchange rate and affecting the entire 
downstream process. 

Adequate control of y2 in the feeding of the fur-
naces potentially reduces the formation of coke and 
leads to premature shutdown of the plant. In relation to 
the control loop 2, it is apparent that it reaches the set-
point in a short time. Besides, it has almost no instabil-
ity. Seeing this, the ICA provides great benefit to the 
distillation columns with such specifications. The tests 
also verified the importance of controlling the levels of 

the organic phase and of the sump level. In Figure 11, 
it is observed that the level in the sump under the influ-
ence of control loop 2, although having almost no de-
viations from the desired setpoint, reached the setpoint 
at a time close to 1 hour, which is faster than required 
in control loop 1. Finally, the levels of the organic 
phase in the reflux vessel were analyzed, Figure 12. 

As can be seen, the level of the organic phase un-
der control of control loop 1, reached 0.7 m, a figure 
well above the setpoint value, which is 0.3 m. This 
level higher than the limit specified for the setpoint 
can cause a loss of organochlorine through the wa-
ter output current at the top. Similarly, if the level 
drops to empty, it may lead to problems such as ca-
vitation in the pump that carries the liquid flow into 
the column. In control loop 2, instability remained 
quite close to the setpoint, thus avoiding any risk of 
passage of organochlorines to the current output of 
the aqueous phase, besides achieving variable con-
trol at a time inferior to control loop 1. 

 

 

Figure 11: Behavior of y4 after controller tuning in Control loop 1 and loop 2. 
 

 
 

Figure 12: Behavior of y3 after controller tuning in the Control loop 1 and loop 2. 
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ONLINE Control 
 

After implementation of the offline control loops 
in Simulink/Matlab®, the communication with Aspen 
Plus DynamicsTM was performed to promote real-
time control of the CV in the 1,2-EDC plant. Figure 
13 shows the reproducibility of results obtained in 
the offline control proposal when the ICA technique 
was used. It shows that, in this case, the identified 
models acquired real characteristics of the analyzed 
process.  

The composition y1 submitted to control through 
control loop 1A showed a higher IAE value. The per-
formance of this control is lower than that obtained 
through the control loop 2A. As can be seen, the vari-
able y2 exhibits outliers in loop 1A, which implies 
losses until reaching the reference value, i.e., loss of 
1,2-EDC in the distillate stream, which is not good 
for the process.  

Furthermore, the variable presents oscillation even 
after reaching the setpoint value, which can be ex-
plained by the interference from other variables due 
to the existence of coupling. 

After 30 hours of simulation, the variable y1 

subjected to the control loop 1A, suffers a new insta-
bility and moves away from the desired set point, 
taking it to an integrator behavior in a longer time 
simulation. This causes difficulties for controlling 
the variable within a multivariable process, where 
the variables have a strong influence on one another. 
Thus, the control loop 2A showed much more robust 
results. 

The variable y2 showed better control when sub-
jected to control loop 2A, Figure 14, once again 
proving the technical benefit in the decoupling tech-
nique of the control loops, which can be justified by 
the value of IAE. As for variable y1, variable y2 pre-
sented outliers before reaching the setpoint value 
(control loop 1A); this factor leads to reduced con-
version of 1,2-EDC in the cracking furnace, a poste-
rior stage to the drying stage of 1,2-EDC. Further-
more, the time required for the control loop 1A to 
achieve the desired variable setpoint is well above 
that required by the mesh control 2A. 

Although the levels of the sump and the organic 
phase did not present oscillations after reaching the 
desired setpoint, the occurrence of outliers was si-
milarly found in the offline control. Analyzing the

 

 
Figure 13: Behavior of y1 after controller tuning in Control Loop 1A and loop 2A. 

 

 
 

Figure 14: Behavior of y2 after controller tuning in Control Loop 1A and loop 2A. 
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Figure 15: Behavior of y3 after controller tuning in Control loop 1A and loop 2A. 

 

 
Figure 16: Behavior of y4 after controller tuning in Control loop 1A and loop 2A. 

 
 
control levels, it is observed that, for both y3 (Figure 
15) and y4 (Figure 16), the separation matrix applied 
to the control loop 2A showed improved results, 
which once again reflects the benefit of the technique 
robustness in the control, both as regards the reduc-
tion of instability and the convergence time to reach 
the setpoint. The two factors presented are justified 
through the IAE values found. 
 
 

CONCLUSIONS 
 

Through the excitement caused by the PRBS 
component to the system, it was possible to establish 
which control variables are required in the process. 
The top pressure of the column showed insignificant 
variations in the face of disturbance, so the control 
over this was discarded. Application of the ICA 
technique in the distillation column provided a sig-
nificant improvement in control performance robust-
ness, since by making the variables independent, the 
control could act individually on each CV, thus 
avoiding interference among the variables caused by 

the existing strong engagement in the process. Com-
paring the performance of the control strategy using 
the ICA with the strategy presented by the conven-
tional method, the improvement was clear, besides 
reducing the settling time required for the variables 
to achieve the desired setpoint. The deviations over 
the set points were reduced. The tuned PID control-
ler, analyzed by IAE criterion for the strategy using 
the ICA technique, has a satisfactory transient re-
sponse, taking a shorter accommodation time and an 
overshoot below the conventional method of control. 
Reproducibility of the results presented by the two 
ICA technique offline control loops was observed. 
The identified models acquired real process charac-
teristics, as well as providing a separation and effi-
cient retrieval of the variables. When the loops were 
analyzed by the conventional method, it was clear 
that the online loop had higher deviations and re-
quired a longer time to reach the setpoint, when 
compared to the offline proposal, demonstrating that 
the models were not able to represent the dynamics 
of the process well because of the strong coupling 
between variables. 
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NOMENCLATURE 
 
ICA independent components analysis 
SVM support vector machine 
BSS blind signal separation 
PCA principal components analysis 
PVC polyvinyl chloride 
1,2-EDC 1.2-dichloroethane 
CCl4 carbon tetrachloride 
CHCl3 chloroform 
HCl hydrochloric acid 
MVC vinyl chloride monomer 
CV controlled variable 
CV’s controlled variables 
MV manipulated variable 
MV’s manipulated variables 
PRBS pseudorandom binary sequence 
IAE Integral absolute error 
ARX autoregressive with exogenous  

input 
 
Variables 
 
Sump 
LC.SP 

Sump level setpoint 

LC3.SP Organic phase level in the reflux vessel 
setpoint 

U1 Feed flow 
U2 Light withdrawal flow 
U3 Sump.LC setpoint (Sump level setpoint) 
U4 LC3.setpoint (Organic phase level in the 

reflux vessel setpoint) 
U5 Thermal load 
y1 Composition of 1,2-EDC in the  

distillate 
y2 Composition of CCl4 in the base of the 

column 
y3 Organic phase level in the reflux  

vessel 
y4 Sump level 
y5 Top pressure of the column 
A Mixing matrix 
A-1 Inverse matrix of A 
AT Transposed matrix of A 
D Diagonal matrix 
W Separation matrix 
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