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Abstract -  In this contribution, an assessment of the role of the hydrodynamics of flow on the asymptotic 
solutions used to describe convective-diffusive heat transfer in packed-bed and capillary tubes of cylindrical 
geometry is reported. Such asymptotic solutions are intrinsically dependent from the type of hydrodynamics 
present in the tubes. They describe the temperature profiles for heat transfer problems found in packed-bed and 
capillary systems with axial convective and radial diffusive transport and having a constant heat flux at the outer 
tube wall. The role of the hydrodynamics of the flow on the asymptotic temperature profiles and their feasibility 
region of validity for both the packed-bed and capillary tube cases were assessed and feasibility ranges identified. 
A brief comparison of the predictions for the two cases analyzed is also included. The analysis of the impact of the 
hydrodynamics on the ranges of validity for the asymptotic temperature profiles seems to be first one available.
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INTRODUCTION

Convective-diffusive heat transfer in capillary and 
packed-bed tubes is relevant in a variety of process 
applications found in engineering practice. These 
include, for example, chemical reactors, industrial 
heaters, evaporators used in food processing, and 
thermal and energy storage units (Levenspiel, 1998; 
Bird et al, 2002; Arce and Trigatti, 1994). In this 
contribution, an analysis of capillary systems (with 

laminar flow of Newtonian fluids) and packed-bed 
tubes (with plug flow models) is reported for the case 
with cylindrical geometry. The focus of the analysis 
is on studying the role of the hydrodynamics of the 
flow on the range of feasibility (or domain associated 
with the radial and axial variables) of the asymptotic 
temperature solutions (valid for distances away from 
the entrance of the tube) for the convective-diffusive 
heat transfer problem. Both heating and cooling cases 
for the packed-bed tubes and capillary tubes can be 
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studied; however, this contribution focuses solely 
on the cases of cooling. The asymptotic temperature 
profiles are based on the fact that convective-diffusive 
transfer within the domain is handled by a constant flux 
at the outer capillary boundary. The analysis of the role 
of the hydrodynamics on the asymptotic solutions is 
very important in predicting the temperature behavior, 
as well as in the design of chemical reactors, heat 
exchangers, etc. (Levenspiel, 1998; Whitaker, 1977). It 
appears that neither the effect of the hydrodynamics on 
the feasibility ranges nor the comparison between two 
different types of flows for the asymptotic solutions 
are reported in the literature to our best knowledge.

PLUG FLOW HYDRODYNAMICS MODEL 
IN PACKED-BED TUBES.

The convective-diffusive transfer model for the 
case of a plug flow in a packed-bed tube of cylindrical 
geometry and with constant flux at the external walls 
(see Figure 1) is based on the previous work by Arce 
and Trigatti (1994). The basic microscopic model with 
axially convective and radially diffusive heat transfer 
is given by:

							          (1)

where k is the thermal conductivity, ρf is the density 
of the fluid, cp is the heat capacity of the fluid, v is 
the cross-sectional, uniform velocity of the fluid 
moving along the packed-bed housed in the cylindrical 
domain. With the assumptions stated above, the wall 
of the packed-bed tube at Rc shows that the system 
(see Figure 1) either gains (+) or loses (-) heat at a 
constant flux, ± q0; this situation leads to the fact that, 
at the center of the tube, there will be a maximum or 
minimum temperature value (Arce and Trigatti, 1994).

Therefore, for the "cooling case," the boundary 
conditions for equation (1) can be identified as:

							           (2)

When the following dimensionless variables (Bird 
et al., 2002) are chosen to be:

							           (3)

Then, by using eq. (1) and eq. (3), the following 
non-dimensional microscopic model can be written as 
follows:

							           (4)

In addition, the boundary conditions as well as the 
condition at the entrance can be written, respectively, 
as:

							           (5)

The asymptotic temperature solution, i.e., the 
solution valid for distances away from the entrance 
(Z > 0) for this differential model will be discussed in 
the paragraphs below.

Asymptotic Temperature Solution:

Asymptotic solutions of this type can be easily 
justified by using integral equations where the Green 
function is the kernel (Arce at al., 1988; Arce and 
Locke, 1994). Arce and Trigatti (1994) derived the 
asymptotic solution for the temperature profile in a 
packed-bed tube with convective-diffusive transport 
whose model was summarized in the section above. 
For the entire range of the radial variable (0 ≤ ρ ≤1), 
such a solution is valid for distances away from the 
entrance (i.e., Z > 0) and it can be written as:

							           (6)

Figure 1. System Description of a Packed-Bed Tube.
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where C0 is a constant to be determined and the 
function ψ(ρ) must satisfy the following differential 
equation:

							           (7)

as well as the boundary conditions:

							           (8)

Since for the entire range of the radial variable (0 
≤ ρ ≤1), the asymptotic temperature profile θ∞ (ρ, Z) 
is valid for values of Z > 0, the "entrance" condition 
to the capillary domain, at the inlet of the packed-bed 
(see Equation (2)), must be replaced by a macroscopic-
scaled condition valid also for the function θ∞ (ρ, Z). 
This equation can be derived by using a "global" 
energy balance in the packed-capillary tube that, with 
non-dimensional variables, leads to (Arce and Trigatti, 
1994):

							           (9)

This condition leads to the following constrain for 
the function ψ(ρ):

							        (10)

This condition becomes useful to compute the 
"bulk" temperature of the system in order to validate 
the asymptotic solution. The solution for ψ(ρ) from 
equation (7) leads to the following function:

							         (11)

Constants c1 and c2 are readily determined by using 
the boundary conditions (8) in equation (11); function 
ψ(ρ) is given by:

							        (12)

After the constant C0 was determined from 
equation (10) to give:

							        (13)

Finally, the asymptotic temperature profile, θ∞ (ρ, Z) 
is given by:

							        (14)

This asymptotic temperature profile is for the case 
of the packed-bed tube in cylindrical coordinates 
with the plug flow-like hydrodynamics. Since this 
solution is an asymptotic type of function, it requires 
both validation and ranges of validity. This task is 
performed in the section below.

Validation and Feasibility Region of the Asymptot-
ic Temperature Profile:

The asymptotic temperature profile given by 
equation (14) requires both validation and a feasibility 
domain since it is valid for axial positions away from the 
entrance, i.e., Z > 0. Arce and Trigatti (1994) reported a 
few points of validation for a solution such as this. First, 
they noted that the "bulk temperature" of the system 
is well satisfied by the asymptotic temperature profile 
as well as the "local" Nusselt number for the system, 
which in this case is Nu = 8. Furthermore, they also 
suggested that certain physical characteristics become 
handy for the validation of the asymptotic solution. 
For example, the smallest value of the axial variable 
must be identified in order to apply the temperature 
profile in the tube domain. Since, for the packed-bed 
tube, the system is assumed to be cooling, then, from 
the physical point of view, we can use a property 
associated with the function θ∞ (ρ, Z). Arce and Trigatti 
(1994) noted that this function should remain within a 
given sign, i.e., negative since the system is cooling. 
However, it is possible that when Z approaches small 
values of the axial coordinate, the function θ∞ (ρ, Z) 
could take positive values. More precisely, the function 
would tend to cross the axis θ∞ (ρ, Z) since the validity 
of θ∞ (ρ, Z) is for Z > 0. Therefore, they suggested 
the following limiting condition for determining the 
feasibility of values for the independent variables 
(ρ,Z) :

							        (15)

By using this condition, equation (14) can be 
written as:

							        (16)

where Z* and ρ* are all values that satisfy condition 
(15) that can be viewed as the boundary of feasible 
values of the asymptotic temperature profile. Note: 
The idea of a feasibility region is motivated by a 
contribution by Caram and Amundson (1977). Please 
note that equation (16) gives values for both Z and ρ 
and not just for the axial variable, Z, as it was thought 
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before. Moreover, Equation (16) may be used to 
sketch the graph that is presented in Figure 2. From 
this sketch, it is possible to see two regions, i.e.: 1- 
the upper or physically meaningful domain (θ∞ < 0) 
and 2- the bottom region where the temperature is 
not physically meaningful (θ∞>0) according to the 
physical constraints identified above. Furthermore, 
for ρ ϵ 0 ≤ ρ ≤1 and Z < 0.125, the solution θ∞ < 0 
belongs to a physically meaningful domain. There is 
a region for values of Z < 0.125 and for values of ρ ϵ 
0 ≤ ρ ≤ 0.7071 where both Z and ρ show values that are 
within the domain of the system; however, the values 
of the temperature within this region belong to the case 
where θ∞ > 0 and, therefore, these are not physically 
meaningful. Alternatively, for the full domain of 
the radial variable ρ ϵ 0≤ρ≤1 to be considered, Z is 
restricted to Z < 0.125 in order for θ∞ to be within the 
feasibility domain. On the other hand, if the full range 
of Z ϵ 0≤Z≤∞ must be taken into account, then only 
part of the domain for the radial variable can be used, 
i.e., ρ ϵ 0.7071≤ρ≤1 must be used in order for θ∞ to be 
within the feasibility domain. These are limitations of 

the asymptotic temperature profile of the model and 
the values identified represent the complete domain 
of feasibility for both the radial as well as the axial 
variables based on the constraints originally suggested 
by Arce and Trigatti (1994).

LAMINAR HYDRODYNAMIC MODEL FOR 
FLOWS IN CAPILLARY TUBES.

The microscopic-scale model can be derived from 
the application of the energy equation with axially 
convective transport and with radially diffusive 
transport in a cylindrical capillary with laminar 
flow regime, i.e., the Poiseuille flow for Newtonian 
fluids (Whitaker, 1977; Bird, et al., 2002). The 
boundary conditions as well as the entrance condition 
associated with this microscopic model are similar to 
the previous case. For the cylindrical capillary tube 
(see Figure 3), the mathematical model for the steady 
state heat convective-diffusion equation under the 
general assumptions stated in the previous section, 
except for the flow regime that is now Poiseuille, is 
given by:

							        (17)

where the velocity profile, vz (r), is given by the usual 
parabolic shape in cylindrical coordinates (Bird et al., 
2002):

							        (18)

The boundary conditions are the same as in the 
previous case:

							        (19)

Please note that the boundary condition at the outer 
wall indicates a heating process that is taking place 

Figure 2. Feasibility Domain for Packed Bed Tube Flow System.

Figure 3. Description of a Capillary Tube Flow System.
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within the capillary. The entrance condition is given by 
specifying the temperature of the fluid at that location:

							        (20)

By defining the following dimensionless variables 
(Bird et al., 2002):

							        (21)

The heat transfer microscopic model for the 
capillary domain with non-dimensional variables 
becomes the following:

							        (22)

The boundary conditions in equations (3) - (5) in 
non-dimensional terms are:

							        (23)

An asymptotic temperature profile as the solution 
to this microscopic model will be discussed in the 
section below.

Asymptotic Temperature Profile

As before, for distances away from the entrance, 
i.e., Z > 0, the temperature profile of the capillary 
domain can be approximated by a linear relation in 
the z-direction (Bird et al., 2002; Arce et al., 1988) 
superimposed on a non-linear function ψ(ρ) to be 
determined. This assumption yields the mathematical 
results for the asymptotic temperature profile, θ∞ (ρ, Z) 
that in terms of the nomenclature used previously leads 
to:

							        (24)

The fact that this solution is valid for values of the 
axial distance such as Z > 0 implies that the "entrance" 
condition at Z = 0 needs to be replaced by a "global 
energy balance" (Bird et al., 2002). The nomenclature 
θ∞ (ρ, Z) has been used to indicate this characteristic of 
the general temperature profile, θ∞ (ρ, Z). The global 
energy balance condition for the capillary under the 
conditions mentioned above is simply given by:

							        (25)

Now, in dimensionless form, this equation leads to

							        (26)

This condition is very helpful to write the following 
constraint for the function ψ(ρ) in the following terms:

							        (27)

In addition (Bird et al., 2002), function ψ(ρ) must 
satisfy

							        (28)

The boundary conditions associated with equation 
(28) are the following:

							        (29)

By solving equation (28) we arrive at:

							        (30)

From the boundary conditions (29) it is concluded 
that

							        (31)

							        (32)

Inserting the values for the constants stated in (31) 
and (32) into equation (30), Equation (27) yields

							        (33)

which leads to the following solution for ψ(ρ):

							        (34)

With equation (34) inserted into equation (24), the 
asymptotic solution is:

							        (35)

As indicated in the previous case for the packed-
bed tube, the solution for the temperature profile is 
of an asymptotic type and, therefore, validation and 
a domain of feasibility are needed. These tasks are 
performed in the section below.
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Validation and Feasibility Domain of the Asymp-
totic Temperature Profile:

Equation (33) is an asymptotic function valid 
generally for Z > 0 and, as such, it needs validation and 
the feasibility domain for the independent variables, ρ 
and Z. As in the previous case, the temperature profile 
can be used to determine the "bulk" temperature, θb 
(Z), in the capillary domain (Bird et al., 2002). This 
function turned out to be θb (Z)=-4Z. The linear 
portion of the asymptotic temperature profile is a 
direct calculation of the bulk temperature from the 
differential model (see equations (22) - (23)) and also 
yields exactly the same function, indicating a good 
validation of the asymptotic profile. In addition, the 
(local) Nusselt number can be calculated from the 
asymptotic solution and it produces the correct value 
for this case, Nu = 4.364 when the diameter is used as 
the characteristic length (Rolle, 2000).

As suggested by Arce and Trigatti (1994) and from 
the physical point of view, this system describes a 
cooling fluid under Poiseuille flow conditions. This 
implies that, according to the non-dimensional version 
of θ∞ used here, the valid domain for the values of this 
solution should be θ∞ < 0. In a similar way as for the 
packed-bed tube analyzed in the section above (see 
Section 2), values that are located within the domain 
of θ∞ > 0 are not physically meaningful. As pointed 
out by Arce and Trigatti (1994), this potential behavior 
is because the validity of the asymptotic temperature 
profile for the axial variable is Z > 0. As in the previous 
case, the feasibility boundary between the two domains 
for θ∞ can be calculated from the condition θ∞=0 or 
alternatively:

							        (36)

From this function, one can infer that a graph of 
the function given in equation (34) will yield an upper 
region for the boundary between the two domains for θ∞ 
that is the physical meaningful domain. (See Figure 4).

Table 1. Comparative Values of the Predictions of the Asymptotic Solution with the Axial Variable

Axial Distance(Z) θ∞ (0, Z)PFC θ∞ (0, Z)LFC

0.01 0.230 0.252

0.02 0.210 0.212

0.03 0.190 0.172

0.04 0.170 0.132

0.05 0.150 0.092

0.0729* 0.104 0.000

0.1 0.050 -0.108

0.125* 0.000 -0.208

0.2 -0.150 -0.508

0.3 -0.350 -0.908

0.4 -0.550 -1.308

0.5 -0.750 -1.708
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Figure 4. Feasibility Domain for Capillary Tube Flow System.

Also, from equation (34) the largest values of Z for 
which θ∞ > 0 is for the case of ρ=0; therefore, Z = 
0.0729 and the feasibility domain for the temperature 
profile (given by the asymptotic solution) will be for 
when Z > 0.0729 for the entire domain of the radial 
variable, ρ ϵ 0≤ρ≤1. Alternatively, for all values 
of the radial variable to be included, ρ ϵ 0≤ρ≤1 the 
smallest value of Z when the solution θ∞ is physically 
meaningful is Z = 0.0729. Furthermore, if values of 
Z are such that Z<0.0729, the solution is only valid 
for a portion of the radial variable, ρ ϵ 0.54≤ρ≤1. The 
reason behind this behavior (as indicated above) is 
the fact that θ∞ (ρ, Z) changes sign when crossing the 
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feasibility domain. This change of sign (in the values 
of the asymptotic solution) is a result for which the 
asymptotic solution is no longer physically meaningful 
since it has some limitations due to the approximation 
of a linear function with the axial variable, Z. However, 
the minimum value of Z is, in fact, very small and, 
from a practical point of view, the asymptotic solution 
becomes quite useful as a predictive tool for the 
temperature profile and for a large number of practical 
situations.

DISCUSSION OF RESULTS AND BRIEF 
COMPARISON

In the previous section, the analysis of the ranges of 
physically meaningful values related to the asymptotic 
solution for the Plug Flow Case (PFC) in a packed-
bed tube was discussed and illustrated and criteria 
for predicting the different values of the independent 
variables, Z and ρ (where the asymptotic solution is 
physically meaningful) were introduced. Likewise, 
the analysis for the Laminar Flow Case (LFC) in 
a cylindrical capillary tube was analyzed. In this 
section, an illustration of the different temperature 
values predicted by the criteria developed is included. 
In addition, a comparison of the potential impact of 
the hydrodynamics on the behaviors of the predictive 
values of the temperature for both cases is also 
performed.

In order to achieve these goals, Table 1 is 
constructed. This table illustrates the temperature 
values predicted by the asymptotic solutions for both 
the PFC and the LFC for different values of the axial 
variable, Z, and for the particular value of the radial 
variable of ρ=0. This value was selected since it is 
the most conservative value of the radial variable for 
changes in sign of the asymptotic solution since it is at 
the system wall (ρ=1) where the cooling is taking place. 
Let us focus on the first and second column of Table 1, 
i.e., the PFC. Since this is a cooling case, θ∞ (ρ,Z)<0 
in order to show physical significance. However, the 
values are all positive for the range 0 < Z < 0.125. 
The first value of the temperature calculated for Z > 
0.125 is Z = 0.20 and the value of θ∞ (ρ,Z) at this point 
becomes negative (-0.15). The trend continues to be 
with negative values (physically meaningful) for the 
temperature for all the values of Z≥0.2 shown. This 
indicates an excellent consistence with the criteria 
that predicts that Z = 0.125 is the critical point (please 
see the "*" in Table 1 on the value to indicate this 
condition).

The first and the last column in Table 1 indicate 
the behavior for the Laminar Flow Case (LFC). This 

system is also a cooling situation, and θ∞ (ρ,Z) < 0 
in order to be physically meaningful. However, all 
values of the axial variable such as Z < 0.0729 produce 
positive values of the temperature. Values of the axial 
variable larger than Z = 0.0729, see (for example) Z = 
0.1 yield negative values of the temperature θ∞ (ρ,Z)=-
0.108. Larger values of Z (see Table 1) continue to 
yield negative values of the temperature. As before, 
this is an excellent confirmation that the value Z = 
0.0729 is the critical value for changing the domain 
of physical significance of the asymptotic solution (we 
have indicated this with an "*").

It is interesting to note that the LFC shows a 
smaller value of the critical axial distance (Z = 
0.0729) compared to the PFC (Z = 0.125). In terms of 
validity, the LFC shows a larger domain of physically 
meaningful values in the axial variable than the 
PFC. This is a clear effect caused by the different 
hydrodynamic models associated with the two cases 
under analysis. These characteristics are in addition to 
the fact that the hydrodynamics yield different 'local' 
Nu numbers for the cases studied; the Nu for the case 
of the PFC is 3 and the one for the Poiseuille (LFC) 
case is Nu = 8. Both hydrodynamics lead to a linear 
bulk temperature with the axial coordinate, but the 
slopes of these lines are different as they reflect the 
effect of the non-linear function, ψ(ρ).

SUMMARY AND CONCLUDING RE-
MARKS

In this contribution, the effect of the hydrodynamic 
models that control the fluid velocity profile on the 
temperature profile of two cases of heat transfer in 
capillary tubes of cylindrical geometry is analyzed. 
Microscopic, differential models for two cases of 
heat transfer, i.e., a capillary system (with Poiseuille 
flow) under cooling conditions and a packed bed 
system (with plug flow) under cooling conditions were 
developed and their boundary conditions, formulated. 
Asymptotic solutions for the temperature profiles 
of both models were discussed for cases that are 
consistent with a constant wall flux of cooling at the 
outer boundary. Criteria for predicting the feasibility 
domains (of the independent variables, ρ and Z) for 
the physically meaningful values of the temperature 
profiles have been reviewed and extended. These were 
first introduced by Arce and Trigatti (1994) and they 
now have been extended to include both the axial and 
the radial variables of the capillary domain, leading to a 
clear identification of a feasibility domain of the values 
of these variables for which the temperature profile 
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shows physically meaningful values. The analysis 
suggests that, for these cases, the asymptotic solutions 
present limitations for both independent variables 
and not just for one of them as suggested before. It 
is interesting to point out that the technique used to 
yield the asymptotic temperature profiles utilizes a 
combination of microscopic models with macroscopic 
constraints that works efficiently to derive the proper 
asymptotic temperature function. The comparison 
table (see Table 1) for the values predicted for the 
feasibility domain indicates an important influence of 
the hydrodynamics of the flow. Finally, these solutions 
and the range of validity are useful to improve the 
understanding of the behavior of the systems described 
and to show the impact of the hydrodynamics on the 
asymptotic solutions for the temperature profiles.

ACKNOWLEDGEMENTS

An earlier effort related to this research was 
supported by a Fellowship to PA from the National 
Council of Research (CONICET), Argentina. A. 
Nastasia Allred is supported by a University Graduate 
Fellowship at Tennessee Technological University, 
Cookeville, TN-USA.

NOMENCLATURE

cp - Heat capacity of the cooling fluid
C0 - Asymptotic solution constant
c1, c2 - Integration constants
k - Thermal conductivity of fluid
L - Length	 of tube
ρf - Density 
q0 - Heat flux at the wall of the system
r - Radial position 
ρ - Non-dimensional radial position
Rc - Radius of tube
T - Temperature
T0 - Temperature at z=0
θ - Non-dimensional temperature
θ∞ - Asymptotic and non-dimensional temperature
v - Uniform velocity of the fluid in PFC

vz
max - Maximum velocity in LFC

vz (r) - Velocity of fluid in LFC
ψ(ρ) - Asymptotic function in ρ
z - Axial position
Z - Non-dimensional axial position 
Nu - Nusselt Number hL/k 
h - Convective heat transfer coefficient
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