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Abstract  -  Chemical engineering optimization represents a significant challenge due to the complexity of 
the mathematical models that are frequently required in this area. These models are normally associated with 
nonlinear equations that represent mass, energy, and momentum balances, which are submitted to physical, 
constitutive, environmental, and design limitations. The design of chemical systems is generally carried out by 
considering the model, the vector of design variables, and system parameters as deterministic values, i.e., small 
variations in these quantities do not affect the objective function. In this contribution, a new methodology based 
on a double loop iteration process to evaluate the influence of uncertainties on chemical engineering design 
is proposed. The inner optimization loop is used to find the solution associated with the highest probability 
value by using the so-called Inverse Reliability Analysis and the outer loop is the regular optimization loop 
used to determine the vector of design variables. For this aim, the Multi-Objective Optimization Water Cycle 
Algorithm is improved, adopting a mechanism of neighborhood exploration. For illustration purposes, the 
proposed methodology is applied to mathematical functions and to chemical engineering design. The obtained 
results demonstrate that the proposed strategy represents an interesting alternative to reliability design in 
chemical engineering.
Keywords: Chemical engineering design; Reliability-based optimization; Water cycle algorithm; Nono- and 
multi-objective problems; Inverse reliability analysis.

INTRODUCTION

Traditionally, in chemical engineering design, 
the model, the vector of design variables, and the 
vector of parameters are considered as deterministic 
quantities, i.e., the possible influence of uncertainties 
on the resulting design is disregarded. However, small 
variations in these quantities can affect the vector of 
objective functions and, consequently, the optimal 
design. Among the main sources of uncertainties 
observed in engineering processes, we can cite (Ritto 
et al., 2008; Leidemer, 2009): i) uncertainties in the 
parameters of the model, such as geometrical and 

constitutive parameters; and ii) simplifications adopted 
in the model formulation. It is important to add that 
other sources may exist, such as the uncertainty 
associated with process variability, i.e., disturbances 
in the variables of the process such as air and/or 
liquid flows, temperature variations and material 
compositions. In general, even if the global minimum 
solution is found, it may be difficult to implement it in 
practice, e.g., due to the requirement of a high degree 
of fabrication accuracy. In this context, it is necessary 
to consider the influence of uncertainties during 
chemical engineering design to minimize the effect of 
these quantities on the vector of objective functions.
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Various probabilistic methods have been proposed 
over the years to deal with uncertainties. Among these, 
reliability-based optimization (RBO) appears as one of 
the most employed approaches. According to Du and 
Chen (2004), RBO emphasizes high reliability in the 
design by ensuring the probabilistic achievement of the 
considered constraint at a desired level. Traditionally, 
deterministic analyses around the nominal solution 
are necessary to evaluate the probability value. Monte 
Carlo simulation is commonly used for this purpose 
(Du and Chen, 2004). The major difficultly associated 
with this approach is the associated computational 
cost (Carter, 1997; Melchers 1999). To overcome this 
limitation, different optimization-based approaches 
propose to determine the probability of failure 
without using simulation methods (Deb et al., 2009). 
In these approaches, the vector of random variables 
is converted from the physical space to the standard 
space. A different optimization problem is formulated 
to compute the largest probability of failure, which is 
simultaneously equated to the desired value (Deb et 
al., 2009). Thus, the RBO approach can be classified 
into four main categories based on the approach used 
to determine the probability of failure (Agarwal, 2004; 
Deb et al., 2009): i) simulation methods, ii) double-
loop methods, iii) decoupled methods, and iv) single-
loop methods. According to Aoues and Chateauneuf 
(2009), the convergence of a given RBO problem 
depends on both the initial design and the optimization 
method.

Traditionally, RBO problems are treated in 
the mono-objective context; then, by defining a 
reliability parameter, the optimization technique is 
applied. In this case, the computational cost increases 
since the optimization procedure is applied many 
times to evaluate the influence of the reliability 
parameter on the value of the objective function. 
In this contribution, a multi-objective problem is 
defined. The original objective is associated with 
the maximization of the reliability parameter during 
the reliability analysis. To solve this multi-objective 
problem, the Multi-objective Optimization using the 
Water Cycle Algorithm (e-MOWCA) is proposed. The 
e-MOWCA algorithm is based on the extension of the 
Water Cycle Algorithm (WCA) to the multi-objective 
context through the incorporation of three operators, 
namely non-dominated sorting, crowding distance, 
and neighborhood exploration. The influence of 
uncertainties is evaluated by using Inverse Reliability 
Analysis (IRA) (Du, 2005). The proposed methodology 
is based on a double-loop iteration process. In the 
outer optimization loop, e-MOWCA is carried out 
to define the vector of design variables, which is 
necessary to solve the reliability-based multi-objective 
optimization problem. In the inner optimization loop, 
the IRA procedure is carried out to find the point with 

the highest associated probability value, in agreement 
with the optimum values determined by using the 
outer optimization loop.

The organization of this paper is the following. 
The next two sections present reviews on WCA and 
e-MOWCA, respectively. Subsequently, a description 
of the RBO and IRA concepts are presented. The 
proposed methodology is then presented in the section 
devoted to Methodology. For illustration purposes, 
the section Numerical Results brings applications 
involving mathematical functions and three chemical 
engineering test cases, as follows: i) Heat Exchanger 
Network Design, ii) Reactor Network Design, and iii) 
Catalyst Mixing Problem. Finally, the conclusions are 
outlined in the last section of the present contribution.

WATER CYCLE ALGORITHM (WCA)

WCA, an optimization technique that belongs to 
the family of bio-inspired optimization algorithms, 
differs from other evolutionary approaches in the 
scheme used to generate potential candidates to solve 
the optimization problem. Proposed by Eskandar 
et al. (2012), this optimization technique is based 
on the water cycle process (or hydrological cycle or 
H2O cycle) that describes water movement on the 
earth through three basic mechanisms: evaporation, 
precipitation, and surface run-off. In general, water 
moves downhill, creating streams and rivers from the 
mountains to the sea. Streams and rivers collect water 
from the rain and other streams on their way downhill. 
In the rivers and lakes, water evaporates when plants 
give off water, in accordance with the transpiration 
process. Clouds are generated from evaporated water 
taken to the atmosphere. The clouds condense in the 
colder atmosphere and release the water back in the 
form of rain, thus creating new streams and rivers. 
The parameters considered by using the WCA are the 
following: population size, number of generations, 
number of rivers and constant evaporation condition. 
The complete description of the proposed operators to 
update the population of each generation of the WCA 
can be found in Eskandar et al. (2012). 

The WCA strategy has been successfully tested in 
various fields of science, such as: engineering system 
design (Eskandar et al., 2012), optimization of truss 
structures (Eskandar et al., 2013), determination of 
optimal number, location, and size of multiple types 
of distributed generation units in distribution systems 
(Baghipour et al., 2014), solution of a quadratic 
assignment problem (Parhizgar and Shiri, 2014), 
optimization of a photovoltaic energy conversion 
system under partial shading condition (Sarvi et al., 
2014), solution of mathematical test cases considering 
a new strategy to determine the evaporation rate 
(Sadollah et al., 2015a), optimization of classical 
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benchmark discrete truss design problems (Sadollah et 
al., 2015b), solution of differential-algebraic optimal 
control problems (Carvalho, 2015), solution of non-
convex short-term hydrothermal scheduling due to 
valve point effects (Haroon and Malik, 2016), solution 
of benchmark functions and the chaos suppression 
problem using back stepping control (Pahnehkolaei et 
al. 2017), among others.

MULTI-OBJECTIVE OPTIMIZATION
WATER CYCLE ALGORITHM (E-MOWCA)

Due to the success observed in applications in 
the mono-objective context, the WCA was extended 
to consider multi-objective optimization problems. 
Sadollah et al. (2015c,d) proposed the Multi-objective 
Optimization Water Cycle Algorithm (MOWCA). The 
strategy of the extended WCA to solve problems with 
multiple objectives is defined through the incorporation 
of two operators to the original algorithm, namely the 
mechanisms of rank ordering and crowding distance. 
The performance of MOWCA was evaluated by using 
benchmark functions and a mechanical engineering 
system design problem (Sadollah et al., 2015c,d). 

In the present contribution, a new strategy, 
e-MOWCA, is proposed to solve multi-objective 
problems. e-MOWCA incorporates to the algorithm 
proposed by Sadollah et al. (2015c,d) a new operator, 
namely, the neighborhood exploration. This operator 
is dedicated to refining the potential solution 
candidates in each generation through the mechanism 
of neighborhood exploration, as proposed by Hu et 
al. (2005). The e-MOWCA algorithm presents the 
following structure. An initial population of size 
N is generated randomly. All dominated solutions 
are removed from the population through the Fast 
Non-Dominated Sorting operator (Deb, 2001). The 
population is sorted into non-dominated fronts Fj (sets 
of vectors that are non-dominated with respect to each 
other). This procedure is repeated until each vector 
becomes a member of a front. Then, three candidates 
are selected randomly from the population. A child 
(raindrop) is generated and this process continues until 
N children are created. Starting from population P1 of 
size N, neighbors (Z) are generated for every individual 
of the population, as follows (Hu et al., 2005):

of individuals in each pseudo front is given by (Hu et 
al., 2005):

Z x x D g x D gk k( ) / , /= − ( ) + ( )( )2 2

where Dk(g) (Dk(g)=(k/ξ)(U-L)) is a n
 vector dependent 

of the generation counter g. ξ is the number of pseudo 
fronts (curves) defined by the user. The initial maximum 
neighborhood size for a given population is Dk(0)=[U-L]. 
L and U represent the lower and upper bounds of the 
design variables, respectively. The pre-defined number 

n rn kk k= = …−1 2, , ,ξ

where nk is the number of individuals in the k-th front 
and r (<1) is the reduction rate. For a given population 
with N individuals, nk can be calculated as follows:

n N r
r

rk R
k
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where Rpf is the number of pseudo curves (fronts).
According to Hu et al. (2005) and Lobato and 

Steffen Jr (2011), if r <1 the first pseudo curve has 
the highest number of individuals. In this case, each 
pseudo curve presents an exponentially reducing 
number of solutions, which emphasizes a local 
search. Great r values result in more solutions in the 
last pseudo curve, emphasizing the global search. 
Consequently, the generated neighbors are classified 
according to the dominance criterion and only the 
non-dominated neighbors (P2) will be associated 
with P1 to determine P3. The population P3 is then 
classified according to the dominance criterion. If the 
number of individuals in the population P3 is larger 
than a given value defined by the user, it is truncated 
according to the Crowding Distance criterion (Deb, 
2001). The Crowding Distance describes the density 
of solutions surrounding a given vector. An infinite 
Crowding Distance (or an arbitrarily large number for 
practical purposes) is assigned to the vectors with the 
smallest or largest values of each objective function. 
For the remaining vectors, the Crowding Distance is 
calculated according to:

dist
f f
f fx

j

m
j i j i

j max j min
i
=

−
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+ −∑
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where fj corresponds to the j-th objective function and 
m is the number of objective functions.

In this work, the treatment of constraints is performed 
by using the Static Penalization Method proposed by 
Castro (2001). Limited values are attributed to each 
objective function to play the role of penalization, which 
guarantees that any non-dominated solution dominates 
any solution that violates at least one constraint. Any 
solution that violates a constraint will dominate any 
solution that presents two constraint violations, and 
so on. Therefore, layers of solutions are obtained and 
the number of constraint violations corresponds to the 
solution rank. For a given constrained problem, the 
vector containing the objective functions is given by:

(1)

(2)

(3)

(4)
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where f(x) is the vector of objective functions, rp is 
the penalty vector, and nviol is the number of violated 
constraints.

Regarding the number of objective function 
evaluations, e-MOWCA requires more evaluations 
than the original MOWCA proposed by Sadollah et 
al. (2015c,d) due to the refinement procedure used 
during the application of the neighborhood exploration 
operator (the population is evaluated 2N times in 
each generation). The adopted refinement procedure 
accelerates the convergence process, but increases 
the number of objective function evaluations. In this 
case, population size and generations number can be 
adjusted to make e-MOWCA as fast as MOWCA and 
other multi-objective algorithms.

RELIABILITY-BASED
OPTIMIZATION (RBO)

Commonly, the solution of deterministic 
optimization problems is obtained on a given 
constraint boundary (or at the intersection of more 
than one constraint boundary), as presented in Figure 
1. In this case, any perturbation in the vector of design 
variables x1 and x2 results in an infeasible solution with 
a probability distribution around the optimal solution. 

According to Deb et al. (2009), RBO can be 
understood as the ability of a system or component 
to perform its required functions under determined 
conditions. RBO emphasizes high reliability in the 
design by ensuring the probabilistic achievement of 
the considered constraints at a pre-defined level (Du, 
2005). The RBO approach in the context of engineering 
systems is based on the probability of the desired 
performance of the system to fail (Deb et al., 2009). 

To find a reliable solution (i.e., a small associated 
probability to produce an infeasible solution), the true 
optimal solution must be penalized and an interior 
solution can be chosen within the feasible region. 
From a given reliability measure α, it is desired to find 
a feasible solution that ensures that the probability of 
having an infeasible solution is given by (1-α). The 
reliability measure is obtained through the considered 
uncertainties. Mathematically, the RBO problem can 
be formulated as (Deb et al., 2009):

f x f x r np viol( ) ≡ ( ) +

Figure 1. Concept of the RBO procedure (Deb et al., 
2009).

min ( , )f x xd r

subject to:

Pr , , , ,G x x j nj d r j g( ) ≤( ) ≥ = …0 1α

x x x i ndi
l

di di
u

d≤ ≤ = …, , ,1

where f and Gj are the objective and constraint 
functions, respectively, xd is the vector of design 
variables (deterministic values associated with the 
lower xdi

l and upper xdi
u limits), xr is the vector of 

random variables, ng is the number of probabilistic 
constraints, nd is the number of design variables, nr is 
the number of random variables, and αj is the desired 
reliability. Pr is the probability of Gj to be less than or 
equal to zero (Gj>0 indicates failure). The probability 
of failure can be defined by a cumulative distribution 
function, as follows (Deb et al., 2009):

Pr ,G x x f x dxj d r X r r
G j

( ) ≤( ) = … ( )∫ ∫
≤

0
0

where fX is a joint probability density function. 
Equation (9) should be evaluated along the design 

space specified by the vector of inequality constraints 
to determine the probability of failure Pr. The analytical 
(or numeric) evaluation of Eq. (9) is expensive due 
to the specified domain. To overcome this difficulty, 
the original problem with random variables xr can be 
transformed into a similar problem with new random 
variables (u) by using the so-called Rosenblatt 
transformation (Rosenblatt,1952). In this approach, 
considering the new search space (u-space), the most 
probable point (MPP) for failure is found by locating 
the minimum distance between the origin and the limit-
state (or the constraint function), which is defined by 
the reliability coefficient β. The probabilistic constraint 
in Eq. (9) can be further expressed through an inverse 
transformation, as given by Eq. (10).

Pr ,G x xj d r( ) ≤( ) = ( )0 Φ β

(5)

(6)

(7)

(8)

(9)

(10)
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where Φ is the standard normal distribution function. 
This transformation is used by different approaches 
to measure the associated reliability and avoid the 
evaluation of the integral given by Eq. (9). In the 
reliability coefficient approach, this parameter is used 
to describe the probabilistic constraint in Eq. (9). 

To solve RBO problems, various approaches are 
available. Four of the most commonly used are the 
following: First Order Reliability Method (FORM), 
Second Order Reliability Method (SORM), Sequential 
Optimization and Reliability Assessment (SORA), 
and Inverse Reliability Analysis (IRA) (Du, 2005). 
In general, the idea is to overcome the computational 
difficulties by simplifying the integral of fX(xr) in Eq. 
(9) and determining an approximation for Gj(xd,xr) 
(Deb et al., 2009). 

The IRA approach, a strategy considered as a tool 
to evaluate the probabilistic constraints, is discussed 
in the following.

INVERSE RELIABILITY ANALYSIS (IRA)

According to Du (2005), IRA consists in the 
formulation of an inverse problem for reliability 
analysis. This can be performed to find the value of 
Gp, as given by Eq. (11):

G(xd,xr) on the β-circle (or β-sphere for a 3-D problem 
or β-hyper sphere for a higher dimensional problem).

The mathematical model for the MPP search is 
then stated as follows: find the MPP u* where the 
performance function G(u) is minimized while u* 
remains on the surface of the β-circle. This procedure 
can be summarized according the following steps (Du, 
2005):

i. Inform the input starting point (k = 0, u0 = 0, β, 
and distribution type);

ii. Evaluate Gj(u
k) and ∇Gj(u

k). Compute a as 
follows:

Pr ,G x x Gd r
p( ) ≤( ) = α

Equation (11) indicates that the probability of 
the performance function G(xd,xr) is equal to a given 
reliability measure α if G(xd,xr) ≤ Gp, in which Gp is 
estimated by using FORM. In order to apply the FORM 
approach, the function G’(xd,xr) is used as expressed 
by Eq. (12) and the MPP for Pr(G’j(xd,xr)≤0)= 
Pr(G’j(xd,xr)≤GP) is considered as being u*.

G G x x G' x x
d r

pd r, ,( ) = ( ) −

From FORM, if the probability α is known, the 
reliability coefficient is given by:

β α= ( )−Φ 1

where the absolute value is used since the reliability 
coefficient is the minimum distance between the origin 
and the limit state (or the constraint function) and is 
always nonnegative.

Figure 2 shows that the MPP u* is a tangent point of 
the circle with radius β and the performance function 
G(xd,xr)-G

p=0. Additionally, u* is a point associated 
with the minimum value of G(xd,xr) on the circle. 
Therefore, the MPP search for an inverse reliability 
analysis problem becomes: find the minimum value of 

Figure 2. The Inverse MPP Search (Du, 2005).

a
G u

G u
k j

k

j
k

=
∇ ( )
∇ ( )

iii. Update uk+1 = -bak and k = k + 1;
iv. Repeat this procedure (steps ii and iii) until 

convergence (|uk+1 - uk| > tolerance) is achieved.

METHODOLOGY

This section presents the e-MOWCA+IRA 
(solution of multi-objective optimization problems 
considering reliability) methodology proposed in this 
paper. As mentioned, the e-MOWCA+IRA approach 
is based on a double loop iteration process. In the outer 
loop, the e-MOWCA strategy is carried out as a regular 
optimization loop to optimize the reliability-based 
optimization problem. IRA is performed in the inner 
loop to find the MPP, according to the vector of design 
variables computed by using e-MOWCA. Figure 3 
presents the flowchart regarding the e-MOWCA+IRA 
strategy.

The e-MOWCA+IRA strategy is written according 
to the pseudo-code below:

(11)

(12)

(13)

(14)
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i. Initially, the RBO problem (in terms of the 
objective function, constraints, number of variables, 
reliability index, and types of distribution) and 
the WCA parameters (population size, number of 
generations, number of rivers, evaporation condition 
constant, number of pseudo curves and reduction rate) 
are defined by the user;

ii. Outer loop: the population of candidates (vector 
of design variables - xd) is generated by using the 
e-MOWCA strategy. This population consists of 
individuals (deterministic values) created considering 
the application of the WCA operators to form a new 
population, as mentioned earlier. In this case, only the 
vector of design variables are generated;

iii. Inner loop: for each candidate generated by using 
the WCA operators, the IRA procedure is evaluated to 
determine the value of inequality constraints through 
the determination of the vector of random variables - 
xr;

iv. The values of xd and xr are used to evaluate 
the vector of objective functions and the vector of 
inequality constraints;

v. The treatment of the constraints is performed 
through the Penalty Function Method;

vi. After the evaluation of the vector of objective 
functions, the operators defined in the e-MOWCA 
strategy are applied. First, the fast non-dominated 
sorting operator is used to classify the population 
according to the Pareto dominance. In the following, 
the neighborhood exploration operator is utilized to 
explore potential solutions. Finally, the crowding 
distance operator is applied to reduce the number of 
non-dominated solutions in each generation;

vii. This process is repeated until convergence is 
achieved (i.e., the maximum number of generations is 
found).

In summary, to determine the parameter variations 
in the proposed methodology, the IRA strategy in 
association with the user-defined parameters – number 
of random variables, type of distribution (mean value 
and variation coefficient) and reliability index – is 
used to evaluate the probabilistic constraints. After 
the application of the IRA strategy for each potential 
candidate, the vector of random variables is obtained 
and, consequently, the constraints and the vector 
of objective functions are evaluated. This process 
continues until all the individuals of the population are 
considered. 

It is worth mentioning that a normal distribution 
is adopted for the design variables. According to Yin 
and Chen (2006), this type of distribution is commonly 
used in engineering applications to describe the linear 
relationship between the changing variance and the 
mean value; i.e., σx=rxμx, where μx and σx represent the 
mean and the standard deviation, respectively, and rx is 
the variation coefficient. Rosenblatt (1952) claims that 
to deal with non-normal distributions, it is necessary 
to convert the mean and the standard deviation of this 
type of distribution to an equivalent value with normal 
distribution. According to Rackwitz–Fiessler’s Two-
parameter Equivalent Normal Method (Rosenblatt, 
1952), the determination of an equivalent normal 
distribution at a point of interest X* can be expressed 
as follows:

Figure 3. Flowchart of the e-MOWCA+IRA strategy 
proposed to solve RBO problems.

σ φx
N

x
*

x
*F X f X= ( ) { } ( )−Φ 1 /

µ σx
N *

x
*

x
NX F X= − ( ) 

−Φ 1

where ϕ is the Probability Density Function (PDF) 
of the standard normal distribution. Fx and fx are the 
Cumulative Distribution Function (CDF) and PDF of 
the non-normal distribution of X, respectively. In this 
case, both the mean value and the standard deviation 
of a particular type of distribution are transformed into 
equivalent values with normal distribution.

(15)

(16)
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NUMERICAL RESULTS

To evaluate the ability of the proposed methodology 
to solve multi-objective optimization problems 
considering reliability (e-MOWCA), the developed 
multi-objective algorithm will be initially applied 
to classical benchmark problems (deterministic test 
cases). Then, the e-MOWCA strategy will be used 
to solve chemical engineering systems with different 
levels of complexity in the presence of uncertainties. 
It is worth mentioning that both algorithms were 
implemented by considering the Microsoft Windows® 

Platform and Matlab Software® (2MG RAM). The 
computational time for each application was evaluated 
by using a PENTIUM IV (3.2 GHz and 2 GB RAM) 
microcomputer.

Comparative Study using the e-MOWCA, 
MOWCA, and NSGA-II Approaches

In the present work, the so-called ZDT functions 
(Zitzler et al., 2000) are used to test the performance 
of the proposed multi-objective algorithm, as given by 
Eq. (17) to Eq. (20).

The test functions ZDT1 and ZDT2 present convex 
and non-convex Pareto optimal fronts, respectively. 
ZDT3 represents the discreteness feature, in which 
the Pareto optimal front consists of several disjointed 
continuous convex parts. For all the problems 
considered, the number of design variables is equal to 
15 (m=15 in Eq. (18) to Eq. (20)) and a set of 1000 
uniformly spaced Pareto optimal solutions are chosen 
to compare the convergence (ϒ) and diversity metric 
(Δ), defined as (Zitzler et al., 2000; Deb, 2001):

ZDT =
( )
( ) ≡ ( ) ( ) ( )( )


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where di is the Euclidean distance calculated between 
the Q non-dominated solution obtained by the studied 
algorithms and the Pareto Optimal solution (analytical 
solution), d  is the average distance, dl and df are the 
distances between the extreme solutions of the Pareto 
Optimal.

The parameters considered for each multi-
objective optimization algorithm are presented in 
Table 1. The metrics values obtained after 50 runs of 
each ZDT function are summarized in Table 2. Note 
that the metrics computed by using the e-MOWCA 
strategy are similar to those obtained by using NSGA 
II and MOWCA. In this context, the performance of 
the proposed methodology considering these metrics 
is similar that those obtained by other evolutionary 
algorithms.

The number of objective function evaluations in 
each algorithm is 20100, i.e., all algorithms presented 

Table 1. Parameters considered for the various multi-
objective optimization algorithms to solve the ZDT 
functions.
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(18)

(19)

(20)

(21)
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the same computational cost. In terms of computational 
time, all algorithms required 20 seconds to obtain the 
Pareto’s Curve, approximately.

Figure 4 presents the Pareto’s Curve for the three 
ZDT functions considering MOWCA, NSGA II, and 
e-MOWCA strategies, where it is possible to observe 
that the results obtained by using e-MOWCA are close 
to the ones determined by other evolutionary strategies 
and the analytical solution (Pareto’s Curve).

Chemical Engineering Test Cases
In this section, the proposed e-MOWCA+IRA 

methodology is evaluated considering different 
chemical engineering design problems: i) Heat 
Exchanger Network Design, ii) Reactor Network 
Design, and iii) Catalyst Mixing Problem. It is 
worth mentioning that originally all the mentioned 
problems were studied in the deterministic context. 
In this contribution, these problems will be studied 
considering uncertainties. For this purpose, the mean 
values were defined by considering the original 
mathematical model and the variation coefficients 
were defined by considering a few runs to evaluate 
their influence on the optimization process. In the 
context of the mentioned applications, the following 
points should be taken into account:

i. The multi-objective problem formulated for each 
test case consists of the original objective function 
minimization (or maximization) and the maximization 
of the reliability coefficient. Thus, each application is 
formulated as a bi-objective optimization problem;

ii. In order to evaluate the performance of the 
proposed methodology (e-MOWCA+IRA), the 
e-MOWCA is associated with another classical strategy 
to deal with reliability, i.e., the FORM strategy (First 
Order Reliability Method);

iii. The parameters used by e-MOWCA in both 
algorithms are presented in Tab. 3. For these parameters, 
the number of objective function evaluations in 
e-MOWCA+IRA and e-MOWCA+FORM are 
50+100×100×NIRA and 50+100×100×NFORM, respectively. 
NIRA and NFORM are the average number of evaluations 
required by IRA and FORM during the search process, 
respectively;

iv. The random variables u are considered as being 
equal to zero in the first iteration of IRA and FORM;

v. The derivatives of Gj were obtained analytically 
due to their simplicity;

Table 2. Average (ϒ, Δ) and variance (σ2) values obtained by the algorithms.

Figure 4. Solutions obtained considering the three 
ZDT functions and the different algorithms.

(c) ZDT3 function.

(b) ZDT2 function.

(a) ZDT1 function.

vi. The stopping criterion used to finish the 
e-MOWCA strategy is the maximum number of 
generations; 
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vii. The Euclidean norm of the vector u being 
smaller than 1.0×10-5 along two consecutive iterations 
was considered as the stopping criterion used to 
conclude IRA and FORM strategies;

viii. For each test case, to formulate the reliability-
based multi-objective optimization problem, the 
components of the vector of random variables (xr) are 
considered as uncertain quantities and the vector of 
design variables (xd) is considered as being composed 
by deterministic values;

ix. The type of probability distribution, the mean 
values, and the variation coefficients are defined for 
each design variable for each test case;

x. For all test cases, the following range for the 
reliability coefficient (β) is considered: 0.1 ≤ β ≤ 
5 (corresponding to the reliability measure (α): 
53.9828% ≤ α ≤ 99.9999 %).

Heat Exchanger Network Design
This problem consists in minimizing the overall heat 

exchange area in a heat exchanger network, as shown 
in Figure 5 (Floudas and Pardalos, 1990; Angira and 
Babu, 2003). In this case, the stream should be heated 
from 100 oF to 500 oF by using three hot streams with 
different inlet temperatures.

Mathematically, this optimization problem can be 
formulated as follows (Angira and Babu, 2003):

where x1, x2, and x3 are areas of heat exchangers and 
x4, x5, x6, x7, and x8 are temperatures of streams, as 
shown in Fig. 5. Equations (24) to (26) represent the 
energy balances for each heat exchanger and Eqs. (27) 
to (29) represents the maximum demands of heating 
utilities for each heat exchanger. The design space for 
this problem is given by (Angira and Babu, 2003): 
100≤x1≤10000, 1000≤x2, x3≤10000, and 10≤x4, x5, x6, 
x7, x8≤1000.

The global optimum reported by Floudas and 
Pardalos (1990) and obtained by Angira and Babu 
(2003) by using the Differential Evolution approach 
is: [x1 x2 x3 x4 x5 x6 x7 x8 f] =[579.19 1360.13 5109.92 
182.01 295.60 217.92 286.40 395.60 7049.25].

In the reliability context, the multi-objective 
problem is formulated in terms of the vector of design 
variables (xdi, i=1, 2, …, 8) (defined as deterministic 
quantities) and of the vector of random variables (xrj, 
j=1, 2, …, 7). Mathematically:

Table 3. Parameters considered by using e-MOWCA 
to solve the chemical engineering test cases.

Figure 5. Heat exchanger network design problem 
(Angira and Babu, 2003).

min f x x x= + +1 2 3

subject to:

0 0025 1 04 6. ( )x x+ − =
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considering the design space as given by: 
100≤xd1≤10000, 1000≤xd2, xd3≤10000, 10≤xd4, xd5, xd6, 
xd7, xd8≤1000, and 0.1≤β≤5. Reliability is evaluated by 
considering the mean values and variation coefficients 
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presented in Tab. 4. It is worth mentioning that 
the mean values were defined by considering the 
information presented in the original mathematical 
model. In addition, each variation coefficient was 
defined after some preliminary runs and its influence 
on the optimization process.

Figure 6 presents the Pareto’s Curve obtained by 
using e-MOWCA+IRA and e-MOWCA+FORM 
considering β1=β2=β3=β in Eqs. (34) to (36) (all 
constraints present the same reliability coefficient), 
and normal distribution for all design variables, with 
the mean values and variation coefficients shown in 
Tab. 4. 

In this figure, note that both algorithms converge 
to the same Pareto’s Curve, i.e., the IRA strategy 
was able to obtain a similar result to those obtained 
by using the FORM strategy. For both algorithms the 
value of the objective function increases depending 
on β. Although the design space for the β value has 
been defined as 0.1≤β≤5, e-MOWCA+IRA and 

e-MOWCA+FORM converge to values smaller than 
1.0. In this case, there are no values of design variables 
that can satisfy the probabilistic constraints for β>1 
(corresponds to 84.1345% of the reliability measure). 
Consequently, the maximum reliable solution 
obtained for this test case is 84.1345%. In terms of 
computational cost, the required average numbers 
of objective function evaluations were 150050 
(NIRA=15) and 150200 (NFORM=16), respectively. The 
deterministic solution results 10050 evaluations. As 
mentioned, this difference is due to the introduction 
of IRA (or FORM), which is necessary to evaluate the 
influence of uncertainties on the optimization process. 
In terms of computational time, the e-MOWCA+IRA 
and e-MOWCA+FORM strategies required 150 and 
160 seconds to obtain the Pareto’s Curve, respectively.

Table 5 presents some points of Pareto’s Curve 
(A to F, see Fig. 6) obtained by the proposed 
methodology (e-MOWCA+IRA). Note that xd2 and xd3 
increase depending on β (the increase of the reliability 
coefficient implies an increase of the area of the heat 
exchanger). Oscillatory behavior is observed for the 
remaining variables. 

The influence of the distribution type on the Pareto’s 
Curve was also evaluated, in which combinations 
of the normal (N) and lognormal (LN) distributions 
were considered as follows: Type I ([xr1 xr2 xr3 xr4 xr5 
xr6 xr7]=[N N N N N N N]), Type II ([xr1 xr2 xr3 xr4 xr5 
xr6 xr7]=[N N N LN LN LN LN]), and Type III ([xr1 
xr2 xr3 xr4 xr5 xr6 xr7]=[LN LN LN N N N N]). Figure 
7 presents the obtained Pareto’s Curves by applying 
e-MOWCA+IRA to solve the heat exchanger network 
design.

Note that the value of the objective function increases 
depending on β. Additionally, it can be observed that 
the results were influenced by the type of distribution 
considered. Types I, II and III present similar profiles 
belonging to the interval 0.1≤β≤0.9. In other regions 

Table 4. Statistical data considered in the heat exchanger network design problem.

Figure 6. Trade-off frontier between the reliability 
coefficient and the optimal solution of the heat 
exchanger network design problem.

1Deterministic solution and 2Reliability solution.	

Table 5. RBO results associated with the heat exchanger network design problem considering different values of β 
by using the e-MOWCA+IRA strategy.
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of the specified domain, the e-MOWCA+IRA does not 
find solutions that satisfy the probabilistic constraints. 

Reactor Network Design
Ryoo and Sahinidis (1995) and Angira and Babu 

(2003) previously studied the next example, which is 
associated with a reactor network design, as shown in 
Fig. 8. 

This system represents a sequence of two CSTR 
(Continuous Stirred Tank Reactor) reactors, where the 
consecutive reaction A→B→C takes place (A, B and 
C are the components of this system). The objective 
of the problem is to maximize the concentration of the 
product B in the output stream. According to Angira 
and Babu (2003), this problem becomes complex due 
to presence of a local minimum solution (f=-0.375), 
which is close to a global minimum solution (f=-
0.3881).

Mathematically, the problem is formulated as 
follows:

where xj (j=1, 2, 3, 4) represents the concentration 
of species A and B in the output stream of reactors 1 
and 2, respectively, xk (k=5, 6) represents the volume 
of reactors 1 and 2, respectively, and ki (i=1, …, 4) 
represents the reaction constants (k1=0.09755988, 
k2=0.99k1, k3=0.0391908 and k4=0.9k3). Equations 
(38) to (41) represent the mass balances and Eq. 
(42) represents an empirical equation that relates the 
volume of the two reactors as mentioned by Ryoo and 
Sahinidis (1995). 

Angira and Babu (2003) determined the global 
optimum solution ([x1 x2 x3 x4 x5 x6 f]=[0.771462 
0.516997 0.204234 0.388812 3.036504 5.096052 
0.388812]) of this problem in the deterministic context 
by using the Differential Evolution algorithm. In the 
reliability context, this problem is transformed in a 
multi-objective problem formulated in terms of the 
vector of design variables (xdi, i=1, 2, …, 6) and the 
vector of random variables (xrj, j=1, 2, …, 4):

Figure 7. Influence of the type of distribution in trade-
off frontier between the reliability coefficient and the 
optimal solution of the heat exchanger network design 
problem.

Figure 8. Reactor network design problem (Angira 
and Babu, 2003).
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The associated mean values and variation 
coefficients are shown in Table 6. To analyze the 
reliability in both algorithms, the mean values were 
defined considering the parameters presented in the 
original test case. The variation coefficients were 
defined after some preliminary runs to evaluate its 
influence on the optimization process.

Figure 9 presents the Pareto’s Curve obtained by 
using the e-MOWCA+IRA and e-MOWCA+FORM 
strategies considering that all variables follow a 
normal distribution with the mean values and variation 
coefficients presented in Table 6. In this figure, it 
is important to observe that both the algorithms 
converge to the same Pareto’s Curve, thus evidencing 
the quality of the proposed strategy to deal with 
reliability in comparison with the FORM strategy. In 
addition, the value of the objective function decreases 
(maximization problem) as β increases. This result 
is different from the earlier test case, where the 

design space for β converges for a smaller range as 
compared with the original design space; namely, 
the problem of reactor network design converges 
to values in the range 0.1≤β≤5. In this case, all the 
values of the design variables were able to satisfy the 
probabilistic constraint for any value of β. In terms 
of computational cost, e-MOWCA+IRA required 
80050 evaluations of the objective function (mean 
value; NIRA=8), e-MOWCA+FORM required 80150 
evaluations of the objective function (mean value; 
NFORM=9) and 10050 evaluations were necessary for 
the deterministic context. In terms of computational 
time, the e-MOWCA+IRA and e-MOWCA+FORM 
required 80 and 90 seconds to obtain the Pareto’s 
Curve, respectively.

Table 7 presents selected points of the Pareto’s 
Curve obtained by e-MOWCA+IRA. Note that xd2 
increases depending on β and other variables exhibit 
oscillatory behavior. 

The influence of the type of distribution on the 
Pareto’s Curve was also evaluated by considering 
the following combinations of the normal (N) and 
lognormal (LN) distributions: Type I ([xr1 xr2 xr3 xr4]=[N 
N N N]), Type II ([xr1 xr2 xr3 xr4]=[N N LN LN]), Type 
III ([xr1 xr2 xr3 xr4]=[LN LN N N]), and Type IV ([xr1 
xr2 xr3 xr4]=[LN LN LN LN]). Figure 10 presents the 
Pareto’s Curve as obtained by using e-MOWCA+IRA 

Figure 9. Trade-off frontier between the reliability 
coefficient and the optimal solution of the reactor 
network design.

Table 6. Statistical data considered in the design of the 
reactor network.

1 Deterministic solution and 2Reliability solution.

Table 7. RBO results associated with the reactor network design considering different values of β by using the 
e-MOWCA+IRA strategy.

Figure 10. Influence of the type of distribution on the 
trade-off frontier between the reliability coefficient 
and the optimal solution of the reactor network design.
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to solve the problem of reactor network design. For 
all configurations (Types I, II, III, and IV) the results 
are similar considering β<1 (approximately). The 
distributions Type I and II present similar behavior 
for the remaining values of β. Discrepant behavior is 
verified for the distributions Type I and II. Therefore, 
the type of distribution influences the objective function 
calculation. Additionally, the objective function value 
decreases as β increases (maximization problem).

Catalyst Mixing Problem
The last test case is a classical optimal control 

problem that considers a plug-flow reactor packed 
with two catalysts and involving the reactions (Gunn 
and Thomas, 1965; Logsdon, 1990; Vassiliadis, 1993):

technique, Lobato et al. (2011) (f=0.048079) by using 
the Improved Differential Evolution Adaptive with 
control parameterization technique, etc.

The solution of this problem is performed by 
discretizing the control variable to transform the 
original problem with differential index fluctuation 
into a nonlinear optimization problem with constant 
differential index (equal to 1). For this purpose, the time 
interval t which belongs to [t0 t1 t2 … tf] is discretized 
by using Nelem time nodes. For each subinterval [ti ti+1], 
i=1, 2, ..., Nelem, the control input is approximated by:

S S S
k k k

1 2 3

1 2 3

↔ →
,

in which the symbols k1 and k2 are the reaction rate 
constants of the first two reactions in a reactor where 
the catalyst consists entirely of the substance that 
catalyzes the reversible reactions S1S2, while the 
symbol k3 is the reaction rate constant of the third 
reaction S2→S3. 

The optimal mixing policy of the two catalysts 
must be determined to maximize the production of 
species S3, as follows:

max ( ) ( )f X t X tf f= − −1 1 2

subject to mass balance (non-dimensional form) of 
species S1 (X1) and S2 (X2):

dX
dt

X X        X1
2 1 110 0 1= −( ) ( ) =γ

dX
dt

X X X X       2
1 2 2 210 1 0 0= −( ) − −( ) ( ) =γ γ

0 1 1≤ ≤ =γ ,     tf

where t represents the residence time of the substances 
from the instant of entry to the reactor and tf is the final 
time. The catalyst blending fraction γ (control variable) 
is the fraction of the catalyst formed by the substance 
that catalyzes the reaction S1S2. This fraction can be 
varied along the axial position of the reactor.

This classical problem presents the differential 
index equal to 3, which was first reported by Gunn 
and Thomas (1965) (f=0.047990) and solved by 
Logsdon (1990) (f=0.047989) by using orthogonal 
collocation on finite elements, Vassiliadis (1993) 
(f=0.048055) by using the control parameterization 

γ γ≡ ≤ ≤ +i i i   for   t t t 1

The unknown control input γ(t) is replaced by Nelem 
unknown parameters γ1, γ2, …, γNelem considering a 
piecewise linear approximation. In this formulation, 
the localization of each event ti is also unknown and 
should be calculated, resulting in (2Nelem-1) design 
variables (for this problem, the final time tf is known). 
The resulting non-linear optimization problem (with 
differential index equal to 1) is solved by using the 
e-MOWCA+IRA and e-MOWCA+FORM strategies.

In the reliability context, the proposed multi-
objective problem is formulated in terms of the 
control variable xr (all other parameters are defined as 
deterministic quantities):

max
max ( ) ( )

β
f X t X tf f= − −



 1 1 2

subject to:

dX
dt

x X X        Xr
1

2 1 110 0 1= −( ) ( ) =

dX
dt

x X X x X X       r r
2

1 2 2 210 1 0 0= −( ) − −( ) ( ) =

In this case, the original constraint is evaluated by 
using the following probabilistic constraint:

Pr G Pr xr1 10 0≤( ) ≡ − ≤( ) = ( )Φ β

Pr G Pr xr2 20 1 0≤( ) ≡ − ≤( ) = ( )Φ β

In addition, the time nodes ([t0 t1 t2 … tNelem-1]) are 
considered deterministic design variables, which are 
also determined by using the e-MOWCA+IRA and 
e-MOWCA+FORM strategies:

0 1 1 1≤ ≤ = … −t i Ni elem, , ,

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)



Fran S. Lobato et al.

Brazilian Journal of Chemical Engineering

330

For this purpose, the associated mean values and 
variation coefficients for the control variables are 
presented in Table 8. As explained earlier, the mean 
values were defined considering the original optimal 
control problem and the variation coefficients were 
defined after some preliminary runs to evaluate their 
influence on the optimization process.

Figure 11 presents the Pareto’s Curve obtained 
by using both strategies considering β1=β2=β (all 
constraints present the same reliability coefficient) 
and that all variables follow a normal distribution with 
the mean values and variation coefficients presented 
in Table 8. 

In Figure 11, it is important to observe that both 
strategies were able to obtain the same Pareto’s 
Curve (demonstrating the quality of the solution 
obtained by using the IRA and FORM strategies). 
Note that the value of the objective function decreases 

(maximization problem) as β increases. In terms of 
the average number of objective function evaluations, 
this problem required 120050 evaluations (NIRA=12), 
120050 evaluations (NFORM=12) and 10050 evaluations 
for the deterministic case. In terms of computational 
time, the e-MOWCA+IRA and e-MOWCA+FORM 
strategies required 250 and 260 seconds to obtain the 
Pareto’s Curve, respectively.

Table 9 presents selected points of the Pareto’s Curve 
(A to F, see Figure 11) as obtained by e-MOWCA+IRA. 
Note that the values of xr2 and xr3 increase with β. 
Differently, xr1 decreases as β increases to guarantee 
the obedience of the probabilistic constraints. 

The influence of the type of distribution on the 
Pareto’s Curve was evaluated by using the following 
combinations of the normal (N) and lognormal (LN) 
distributions: Type I ([xr1 xr2 xr3]=[N N N]) and Type 
II ([xr1 xr2 xr3]=[LN LN LN]). The influence of the 
distribution type by using e-MOWCA+IRA to solve 
the catalyst mixing problem is presented in Fig. 12. 
For all configurations, the value of the objective 
function decreases as β increases. Additionally, 
both distribution types present the same behavior 
for β≤1.5 (approximately). However, for β>1.5, 
the distributions Type I and II exhibit discrepant 
behavior.

Figure 11. Trade-off frontier between the reliability 
coefficient and the optimal solution of the catalyst-
mixing problem.

Table 8. Statistical data considered in the catalyst-
mixing problem.

1 Deterministic solution and 2Reliability solution.

Table 9. RBO results associated with the catalyst-mixing problem considering different values of β by using the 
e-MOWCA+IRA strategy.

Figure 12. Influence of the type of distribution on the 
trade-off frontier between the reliability coefficient and 
the optimal solution of the catalyst-mixing problem.
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CONCLUSIONS

In this contribution, a new strategy to solve 
reliability problems was proposed. The strategy named 
as e-MOWCA (Multi-objective Optimization Water 
Cycle Algorithm) is based on the extension of the Water 
Cycle Algorithm proposed by Sadollah et al. (2015c,d) 
to the multi-objective context. This extension consists 
in the incorporation of the neighborhood exploration 
operator, in association with Inverse Reliability 
Analysis (IRA) to deal with uncertainties. 

The proposed multi-objective approach was applied 
to solve classical mathematical problems. The obtained 
results demonstrated that the algorithm was able to 
obtain the Pareto’s Curve in terms of convergence 
and diversity. The methodology proposed to deal with 
uncertainties (e-MOWCA+IRA) was applied to solve 
chemical engineering design problems that exhibit 
different complexities. The test cases evaluated in 
this contribution were solved first by other authors 
considering the deterministic context only. For this 
purpose, all the design variables were defined as 
deterministic quantities, i.e., only the vector of random 
variables contains uncertainties. In addition, the 
number of both random and deterministic variables and 
their corresponding values were defined by the authors 
as based on each deterministic optimization problem 
and by considering some preliminary runs to evaluate 
the influence of these values on the optimization 
process. Each multi-objective problem was formulated 
by considering the original objective function 
associated with the maximization of the reliability 
coefficient. The results obtained by using the proposed 
methodology were compared with those obtained by 
using the e-MOWCA+FORM strategy. In general, 
similar results (in terms of convergence, number of 
objective function evaluations and computational 
time) were obtained by both strategies. This shows the 
capacity of the IRA strategy to deal with uncertainties 
in comparison with the FORM strategy.

It is worth mentioning that the type of probability 
distribution considered influences the solution. As 
expected, the number of objective function evaluations 
is greater than the number of evaluations required by 
classical approaches due to the nature of the adopted 
optimization strategy.

It is worth mentioning that, from the mathematical 
point of view, a deterministic solution is more sensitive 
to small perturbations than a reliable solution, i.e., 
if both solutions (deterministic and reliable) are 
perturbed, the mean and variation coefficient will be 
higher for a deterministic solution as compared to 
a reliable solution. Therefore, the reliability-based 
optimized designs are inherently more reliable than 
the corresponding deterministic solution, which 
justifies the interest in the methodology presented. 

Obviously, the procedure requires more objective 
function evaluations than the deterministic approach. 

Although the influence of uncertainties on the 
vector of design variables was not taken into account, 
the proposed methodology can be easily extended to 
more sophisticated design configurations. In addition, 
a larger number of objective functions can be handled 
as necessary. 

Finally, it can be concluded that the proposed 
strategy represents an interesting alternative to 
reliability design of chemical engineering problems.
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