Influence of the substitution of Y₂O₃ for CeO₂ on the mechanical and microstructural properties of silicon nitride

(Influência da substituição de Y₂O₃ por CeO₂ nas propriedades mecânicas e microestruturais do nitreto de silício)

J. V. C. de Souza², C. A. Kelly¹, M. R. V. Moreira¹, M. V. Ribeiro¹, C. dos Santos¹, O. M. M. Silva³, M. A. Lanna³

¹FAENQUIL-DEMAR, Polo Urbo Industrial s/n, Gleba AI-6, Lorena, SP 12600-000

²UNESP-FEG, Av. Dr. Ariberto Pereira da Cunha 333, Guaratinguetá, SP 12516-410 ³CTA-AMR-Div. Materiais, Pça. Mal. do Ar Eduardo Gomes 50, S. J. Campos, SP 12228-904

candido@feg.unesp.br

Abstract

This work investigated the substitution of Y_2O_3 for CeO₂ in liquid-phase sintered silicon nitride ceramics. Cost reduction as well as good physical, mechanical and microstructural properties are the main objectives of the present study. Two powder mixtures were prepared, varying the contents of α -Si₃N₄, Al₂O₃, AlN, Y₂O₃ and CeO₂. The mixtures were homogenized in ethanol, dried in a rotating evaporator and kiln, respectively, and then uniaxially (100 MPa) and cold isostatically pressed (300 MPa). The samples were sintered at 1850 °C for 1 h in a graphite resistive furnace under nitrogen atmosphere. After sintering the density of the samples was higher than 97% of the theoretical value. The fracture toughness and hardness were higher than 5.28 MPa.m^{1/2} and 17.12 GPa, respectively. Phase analysis by X-ray diffraction and scanning electron microscopy revealed the presence of α -SiAION and β -Si₃N₄. **Keywords:** Si₃N₄, liquid-phase, Y₂O₃, CeO₂, fracture toughness, hardness.

Resumo

Este trabalho foi proposto com objetivo de analisar a possibilidade da substituição de Y_2O_3 por CeO₂ na sinterização via fase líquida de nitreto de silício (Si₃N₄), visando obter um material com boas propriedades físicas, mecânicas e microestruturais, além da redução de custos de produção desta cerâmica. Para o desenvolvimento deste trabalho foram preparadas duas misturas de pós, variando-se as proporções entre α -Si₃N₄, Al₂O₃, AlN, Y₂O₃ e CeO₂. As misturas de pós foram homogeneizadas em etanol, secas em evaporador rotativo e estufa, respectivamente. Em seguida, prensadas uniaxialmente (100 MPa) e isostaticamente a frio (300 MPa). As amostras foram sinterizadas à 1850 °C durante 1 h, em forno com elemento resistivo de grafite sob atmosfera de nitrogênio. Após sinterização, as amostras apresentaram densidades relativas superiores a 97% do valor teórico. A tenacidade à fratura e a dureza foram superiores a 5,28 MPa.m^{1/2} e 17,12 GPa, respectivamente. As análises de fases por difração de raios X e microscopia eletrônica de varredura mostraram a presença das fases α -SiAlON e β -Si₃N₄.

Palavras-chave: Si_3N_4 , fase líquida, Y_2O_3 , CeO_2 , tenacidade à fratura, dureza.

INTRODUCTION

Due to its excellent properties, silicon nitride (Si_3N_4) is a promising material for several structural applications, such as: combustion gas exhaust valve, sealing, piston and combustion chambers and others. Such inherent properties of Si_3N_4 result from strong and directional covalent bonding between Si and N, resulting in a material with low selfdiffusion coefficient, but difficult to sinter without additives [1]. In the last decades, dense Si_3N_4 ceramics have been obtained by liquid-phase sintering using small amounts of sintering additives to enhance diffusion, decrease porosity and, consequently, improve densification and mechanical properties of dense Si_3N_4 . Y_2O_3 is one of the most often used additives in the liquid phase sintering of silicon nitride. However, due to the high cost of the material, other alternatives have been researched, including CeO_2 , which is about twenty times cheaper than Y_2O_3 [2, 3].

Si₃N₄ shows low resistance to oxidation and creep if compared to other covalent ceramics, such as silicon carbide (SiC) [2, 3]. A way of improving such properties involves the use of additives rich in Al, Y and O ions, which enter the crystalline structure of Si₃N₄, resulting in substitutional and/or interstitial solid solutions called SiAlONs. Upon sintering these materials, α -Si₃N₄ grains are formed in the liquid phase rich in Al, Y and O ions. Al and O substitute Si and N, respectively. Meanwhile, Y ions occupy interstitial positions of the structure, stabilizing the α phase at high sintering temperatures [2, 4, 5].

The objective of this study was to investigate the substitution of Y_2O_3 by CeO_2 in silicon nitride liquid phase sintering, obtaining ceramics with high densification, good mechanical properties and relatively low production costs.

EXPERIMENTAL PROCEDURE

The materials used in this study were: α -Si₃N₄ (99.9 % - H. C. Starck - Germany), Y₂O₃ and AlN (Fine grade - H. C. Starck - Germany); CeO₂ (high purity - H. C. Starck - Germany), Al₂O₃ (AS 250K - Baikalox) and nitrogen gas (Type 4.6 - White Martins).

The powder batches were prepared in a planetary mill for 3 h using isopropanol as vehicle. The suspensions were dried and subsequently sieved. The compositions of

Table I - Compositions of the prepared powder mixtures.[Tabela I - Composições das misturas preparadas de pós.]

Label -	Composition (wt %)							
	α -Si ₃ N ₄	Al ₂ O ₃	AlN	CeO ₂	Y ₂ O ₃			
SNAYA	- 78.50	3.50	12.00	-	6.00			
SNACA		5.50	12.00	6.00	-			

the different powder mixtures are represented in Table I.

Rectangular green bodies (16.36 x 16.36 x 7.5 mm) were uniaxially pressed under 100 MPa and subsequently isostatically pressed under 300 MPa. After compaction, the green density was geometrically estimated. The samples were involved in a powder bed consisting of 70% Si₃N₄ and 30% BN and then sintered in a furnace with graphite heating elements (Thermal Technology Inc. type 1000-4560-FP20) under nitrogen. The heating and cooling rate were 25 °C/min up to the maximum sintering temperature of 1850 °C. The holding time was 1 h.

The relative density of the sintered samples was determined by immersion in distilled water. The weight loss was determined before and after sintering. Phase analysis was carried out by X-ray diffraction using Cu-K α radiation and scanning speed of 0.02°/s. Polished samples were submitted to chemical etching in NaOH:KOH (1:1 at 500 °C/10 min) to reveal the microstructure. Scanning electron micrographs of the sintered samples were obtained. Vickers hardness values were measured applying a load of 20N for 30 s. For statistical reasons, 20 indentations were made in each sample. The fracture toughness was determined by measuring the crack length created during the hardness tests. The values of the fracture toughness were calculated using the relationship proposed by Evans and valid for Palmqvist type cracks [6].

RESULTS AND DISCUSSION

The values of green density, final density and weight loss of the samples are shown in Table II. The results revealed relative densities above 97% of the theoretical density (%TD) for both samples. However, sample labeled SNAYA showed a higher value of the relative density with lower weight loss, suggesting the efficiency of the liquid phase formed in this system, which probably allowed good wettability of α -Si₃N₄ particles, assisting the liquid phase sintering mechanisms. The high weight loss observed for the SNACA samples was probably due to volatilization of CeO₃ during sintering.

Table II - Green density, final density and weight loss of sintered samples.

[Tabela II - Densidade a verde, densidade final e perda de massa das amostras sinterizadas.]

Sample	Green Density	Final Density	Weight loss		
	(% TD)	(% TD)	(%)		
SNAYA	60.06	98.18	2.62		
SNACA	62.94	97.40	5.86		

The X-ray diffraction patterns of the sintered samples are shown in Table III, along with the relative contents of α -SiAlON to β -Si₃N₄ phases. In SNACA samples, only α -SiAlON was observed, showing the good efficiency of this system in the stabilization of α -Si₃N₄, allowing solid solution and holding the transformation from α -Si₃N₄ to β -Si₃N₄ during sintering. For SNACA samples, α -SiAlON was the predominant phase. A small amount of β -Si₃N₄ was also noticed, revealing limited transformation from α -Si₃N₄ to β -Si₃N₄.

Table III - X-ray diffraction patterns and α -SiAlON: β -Si₃N₄ ratio.

[Tabela III - Difratogramas de raios X e razão entre as fases α -SiAlON e β -Si₂N₄.]

Sample	Phases	$\alpha \text{-}SiAlON{:}\beta \text{-}Si_3N_4$
SNAYA	α-SiAlON	100:00
SNACA	β- Si ₃ N ₄ , α-SiAlON	19:81

The microstructures of sintered samples are shown in Fig. 1. Elongated grains with high aspect ratio (length/ diameter), characteristic of α -Si₃N₄ and β -Si₃N₄ can be seen. SNAYA samples (Fig. 1a) depicted homogeneous dispersion of relatively small grains compared to SNACA samples (Fig 1b), whose microstructure clearly consisted of a mixture of fine α -SiAION and coarse β -Si₃N₄ grains.

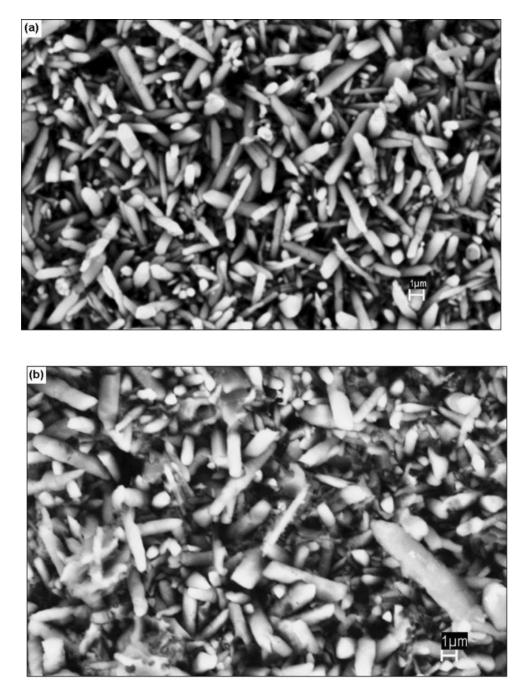


Figure 1: SEM micrographs of chemically etched (a) SNAYA and (b) SNACA surfaces. *[Figura 1: Micrografias de amostras atacadas quimicamente (a) SNAYA e (b) SNACA.]*

The hardness and fracture toughness of SNAYA and SNACA sintered samples are listed in Table IV. The results showed that SNAYA samples depicted higher hardness values, mainly due to the predominance of α -SiAlON, inherently harder than β -Si₃N₄. Conversely, the same samples presented fracture toughness values lower than those of SNACA samples because of the larger aspect ratio and mixed microstructure, as it could be seen from the corresponding micrographs.

Table IV - Hardness and fracture toughness of SNAYA and SNACA sintered samples.

[Tabela	<i>IV</i> -	Dureza	е	tenacidade	à	fratura	de	amostras
sinteriza	idas S	SNAYA e	SI	VACA.]				

Sample	Hardness (GPa)	Fracture Toughness (MPa.m ^{1/2})
SNAYA SNACA	$\begin{array}{c} 19.86 \pm 0.32 \\ 17.12 \pm 0.54 \end{array}$	5.28 ± 0.15 6.34 ± 0.41

CONCLUSIONS

It is possible to obtain dense Si_3N_4 with good mechanical properties at low cost, replacing Y_2O_3 by CeO_2 . The densification of Si_3N_4 containing AlN:CeO₂ was nearly identical to that of the composition containing AlN: Y_2O_3 . However, AlN:CeO₂ stabilized the β -Si₃N₄ phase whereas AlN: Y_2O_3 stabilized α -SiAION. Therefore, distinct mechanical properties were observed. The former was tougher whereas the latter was harder.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to CNPq, FAPESP and CAPES for their financial support.

REFERENCES

[1] W. Dressler, R. Riedel, Progress in silicon-based nonoxide structural ceramics, International J. of Refractory Metals & Hard Materials 15 (1997) 13.

[2] A. Rosenflanz, I. W. Chen, Kinetics of phase transformations in SiAlON ceramics: II. Reaction Paths, J. Eur. Ceram. Soc. **19** (1999) 2337.

[3] C. Santos, J. V. C. Souza, K. Strecker, S. Ribeiro, O. M. M. Silva, C. R. M. Silva, Alpha-SiAlON ceramics with elongated grain morphology using an alternative sintering additive, Mater. Lett. **58** (2004) 1792.

[4] S. Kurama, M. Hermann, H. Mandal, The effect of processing conditions, amount of additives and composition on the microstructure and mechanical properties of alpha-SiAION ceramics, J. Eur. Ceram. Soc. **22** (2002) 109.

[5] W. W. Chen, et al, Effect of processing on the morphology of alpha-SiAlON grains. Mater. Lett. **46** (2000) 343.

[6] R. R. F. Silva, Cinética de sinterização e desgaste de pastilhas de corte do sistema Si_3N_4 -CeO₂-AlN, Tese de Doutorado em Engenharia e Ciência dos Materiais, Universidade de Aveiro, Aveiro, Portugal (1992).