Engenharia Civil

Determinação da distribuição de temperatura em perfis de aço parcialmente protegidos: método simplificado

(A simplified method for assessing the temperature distribution in partially protected steel sections)

Flávio Antônio Ferreira

PROPEC - Mestrado em Construção Metálica, Engenheiro Civil, Mestrando Depart. de Eng. Civil Escola de Minas - UFOP - Ouro Preto, MG, Brasil. E-mail: tonicoferreira@yahoo.com.br

Antonio Maria Claret

PROPEC - Mestrado em Construção Metálica, D.Sc., Professor Associado Depart. Eng. de Controle e Automação - Escola de Minas - UFOP - Ouro Preto, MG, Brasil. E-mail: amclaret@pq.cnpq.br

Aldo Santolin

PROPEC - Mestrado em Construção Metálica, Engenheiro Civil, Mestrando Depart. de Eng. Civil Escola de Minas - UFOP - Ouro Preto, MG, Brasil. E-mail: alsantolin@click21.com.br

Resumo

No Brasil, a proteção passiva de estruturas metálicas (Costa, 2001) pode custar entre 15% e 30% do custo total da estrutura, o que tem um significativo impacto sobre a competitividade desse produto (Claret, 2000). A técnica de proteção parcial da estrutura oferece uma alternativa para a elevação da competitividade do aço na construção civil. Nesse trabalho, apresenta-se uma formulação analítica para a determinação da distribuição de temperatura em perfis metálicos parcialmente protegidos em situação de incêndio. A formulação se baseia na transferência de calor por radiação, convecção e condução em uma seção não homogeneamente aquecida em incêndio. Análises comparativas com métodos de transferência de calor baseados em elementos finitos são apresentadas. As conclusões indicam que a formulação apresentada é representativa da distribuição de temperatura em perfis parcialmente protegidos, quando comparada ao método de elementos finitos, viabilizando seu emprego no âmbito dos métodos simplificados de dimensionamento em situação de incêndio.

Palavras-chave: Engenharia de incêndio, análise térmica, proteção passiva parcial, estruturas de aço.

Abstract

In Brazil, the passive protection of steel structures costs between 15% and 30% of the total cost of the structure and may have a significant impact on the competitiveness of steel as building structural material, (Claret, 2000). The technique of structural partial fire protection offers an alternative solution for this problem. In this work, a parametric method for temperature distribution in partially protected steel profiles in a fire situation is presented. The formulation is based on heat transferred by radiation, convection and conduction in a section not homogeneously heated in the fire. Comparative analyses with methods based on finite elements are presented. The conclusions indicate that the presented formulation is sufficiently representative of the profile temperatures in fire as obtained through finite element method and can be used used in the scope of simplified design methods.

Keywords: Fire engineering, thermal analysis, partial fire protection, steel structures.

Determinação da distribuição de temperatura em perfis de aço parcialmente protegidos: método simplificado

1. Introdução

O custo da proteção passiva de estruturas metálicas (Costa, 2001; Claret, 2000) tem sido um fator restritivo ao desenvolvimento do mercado de aço para a construção civil. Como o aço não protegido, em situação de incêndio, aumenta sua temperatura rapidamente, uma estrutura de aço não protegida sujeita ao ataque do fogo pode tornar-se incapaz de suportar as cargas aplicadas, devido à redução de sua rigidez e resistência em temperaturas elevadas.

Durante muitos anos, as estruturas metálicas brasileiras foram alvo de grande preocupação com relação a sua resistência ao fogo. Uma das razões para isto é, sem dúvida, a experiência dos corpos de bombeiros no combate de incêndios em edificações horizontais dotadas de coberturas metálicas leves, que, em geral, entram em colapso em temperaturas relativamente baixas.

A utilização de proteção passiva em elementos estruturais é a forma mais simples de garantir sua estabilidade estrutural, o que, juntamente com a estanqueidade e o isolamento do compartimento, é requisito básico à resistência ao fogo de tais elementos. O principal oponente ao uso da proteção passiva é o seu alto custo. As exigências de resistência ao fogo dada pela norma brasileira NBR 14432 (2000) são bastante onerosas e o custo da proteção passiva de um edifício de andares múltiplos de aço é, em média, aproximadamente 20% do custo total da estrutura metálica, o que tem um significativo impacto sobre a competitividade desse produto (Claret, 2000).

A NBR 14343 (1999), em seu item 8.5, descreve equações analíticas para o cálculo da elevação de temperatura em perfis metálicos sem proteção passiva e para perfis com proteção total. No entanto, a norma não faz nenhuma menção ao uso de proteção parcial. O objetivo desse trabalho é apresentar uma equação analítica, suficientemente precisa, para determinação da elevação de temperatura em perfis parcialmente protegidos.

2. Metodologia

Será deduzida uma equação analítica para determinação da elevação de temperatura em perfis metálicos parcialmente protegidos. Os resultados obtidos pela equação analítica proposta serão comparados com os resultados obtidos por meio do software TASEF, Sterner et. al. (1990), que emprega o Método dos Elementos Finitos para a obtenção do histórico de temperaturas em corpos submetidos à elevação de temperatura. Nele, as seções transversais dos corpos são divididas em um número de elementos bidimensionais, conforme mostrado na Figura 1 para um perfil tipo I. Uma explicação detalhada da discretização em elementos finitos adotada pelo TASEF é dada em Ferreira et. al. (2005). As comparações serão realizadas para diversos perfis com espessuras de proteção parcial variando de 5 a 50mm. O material de proteção utilizado é uma argamassa projetada com massa específica de 280 kg/m³, calor específico de 1100 J/kg°C e condutividade térmica de 0,17 W/ m°C. As análises térmicas serão realizadas considerando o incêndio-padrão dado pela ISO 834 (1975).

3. A técnica de proteção parcial

A distribuição das tensões nas secões dos elementos estruturais é não uniforme devido ao fato de a distribuição de temperatura no compartimento incendiado e o ataque do fogo serem, em geral, não uniformes. Assim, os colapsos estruturais ocorrerão naquelas seções onde os esforços internos devido às ações mecânicas e térmicas forem maiores. A proteção passiva pode ser aplicada, então, naquelas regiões do perfil onde as tensões causam essa falha. A técnica de proteção parcial busca o nível adequado de resistência ao fogo do elemento estrutural, que pode ser analisado isoladamente ou como parte de uma subestrutura, através da proteção apenas das regiões que desenvolvam maiores tensões em situação de incêndio, e é potencialmente econômica em regiões, como o Brasil, onde o custo do material de proteção é alto.

Trabalhos anteriores já atentavam para a viabilidade dessa técnica. Wang (1997) publicou um estudo sobre o comportamento de vigas mistas de aço e concreto de aço e concreto parcialmente protegidas. Em seu trabalho, ele protegeu apenas a mesa inferior e ¹/₄ da alma do

Figura 1 - Discretização da seção transversal em elementos finitos pelo TASEF.

perfil, Figura 2, determinou a distribuição de temperatura na seção transversal e analisou a resposta estrutural através do método dos elementos finitos. Os resultados confirmaram que o custo total da proteção foi reduzido.

Claret et al. (1999) e Costa (2000) desenvolveram um trabalho, também em vigas mistas de aço e concreto, mas considerando proteção de parte do vão, Figura 3. Eles consideraram proteção em 60%, 70% e 80% do vão das vigas e razões de carga entre 0,4 e 0,8 da carga máxima, distribuída uniformemente sobre a viga. As conclusões de seu trabalho sugerem que esta técnica de proteção parcial leva a economias da ordem de 40 a 60% do custo da proteção passiva, mas aplicações práticas dessa técnica ainda dependem de validações através de trabalhos experimentais.

Ferreira et al. (2005) realizou uma análise paramétrica da resistência de colunas de aço parcialmente protegidas com proteção passiva apenas nas mesas do perfil, Figura 4.

4. Determinação da temperatura em perfis parcialmente protegidos

Para a dedução da equação analítica, para o cálculo da elevação de temperatura, em perfis parcialmente protegidos, faz-se necessária, primeiramente, a dedução da equação para o cálculo da elevação de temperatura em perfis totalmente protegidos.

4.1 Perfis totalmente protegidos

Para a determinação da elevação de temperatura, em perfis revestidos por material de proteção térmica, deve-se considerar o equilíbrio térmico entre o calor emitido pelos gases quentes, o calor absorvido pelo material de revestimento e o calor absorvido pelo aço. Para a dedução da equação de elevação de temperatura, no perfil serão adotadas as seguintes hipóteses:

- Elemento totalmente imerso no ambiente em chamas.
- Distribuição de temperatura uniforme no elemento.

A Figura 5 ilustra, esquematicamente, o equilíbrio térmico para um corpo qualquer com proteção térmica submetido a um fluxo de calor.

Considerando-se o equilíbrio térmico para a situação esquematizada na Figura 5, isto é, considerando que o fluxo de calor incidente sobre o perfil revestido é igual ao fluxo de calor absorvido pelo material acrescido do fluxo de calor conduzido por ele, tem-se:

$$\dot{Q} = \dot{Q}_{cond,m} + \dot{Q}_{abs,m} \tag{1}$$

Por outro lado, o fluxo de calor absorvido pelo perfil é igual àquele conduzido pelo material de proteção térmica, ou seja,

$$\overset{\bullet}{Q}_{abs,a} = \overset{\bullet}{Q}_{cond,m} \tag{2}$$

Das equações (1) e (2), tem-se:

$$\dot{Q}_{cond,m} = \dot{Q} - \dot{Q}_{abs,m} = \dot{Q}_{abs,a}$$
(3)

Figura 4 - Proteção parcial proposta por Ferreira et. al. (2005).

REM: R. Esc. Minas, Ouro Preto, 60(4): 645-655, out. dez. 2007 647

(4)

Desenvolvendo a equação (3), tem-se:

$$\frac{\lambda_m A_m \Delta \theta_m}{t_m} = \alpha \Big(\theta_g - \theta_{m,ext} \Big) A_m - m_m c_m \overset{\bullet}{\theta}_m = m_a c_a \overset{\bullet}{\theta}_a$$

$$\frac{A_m(\theta_{m,ext} - \theta_a)}{t_m/\lambda_m} = \frac{(\theta_g - \theta_{m,ext})A_m}{1/\alpha} - \rho_m t_m A_m c_m \overset{\bullet}{\theta}_m = \rho_a V_a c_a \overset{\bullet}{\theta}_a$$

$$\frac{A_m(\theta_{m,ext} - \theta_a)}{t_m/\lambda_m} = \frac{\left(\theta_g - \theta_{m,ext}\right)A_m - \left(\frac{1}{\alpha}\right)\rho_m t_m A_m c_m \theta_m}{1/\alpha} = \rho_a V_a c_a \theta_a$$

Utilizando-se as propriedades das proporções, tem-se:

$$\frac{\left[\left(\theta_{m,ext}-\theta_{a}\right)+\left(\theta_{g}-\theta_{m,ext}\right)-\left(\frac{1}{\alpha}\right)\rho_{m}t_{m}A_{m}c_{m}\overset{\bullet}{\theta}_{m}\right]A_{m}}{\frac{1}{\alpha}+\frac{t_{m}}{\lambda_{m}}}=\rho_{a}V_{a}c_{a}\overset{\bullet}{\theta}_{a}$$

$$\frac{\left[\left(\theta_{g}-\theta_{a}\right)-\left(\frac{1}{\alpha}\right)\rho_{m}t_{m}A_{m}c_{m}\dot{\theta}_{m}\right]A_{m}}{\frac{1}{\alpha}+\frac{t_{m}}{\lambda_{m}}}=\rho_{a}V_{a}c_{a}\dot{\theta}_{a}$$

$$\dot{\theta}_{a} = \frac{\left[\left(\theta_{g} - \theta_{a}\right) - \left(\frac{1}{\alpha}\right)\rho_{m}t_{m}A_{m}c_{m}\dot{\theta}_{m}\right]}{\left(\frac{1}{\alpha} + \frac{t_{m}}{\lambda_{m}}\right)\rho_{a}c_{a}}\frac{A_{m}}{V_{a}}$$

$$\mu = \frac{A_m}{V_a}$$

onde: m é o fator de massividade da seção protegida.

Logo a equação (9) fica:

$$\frac{\Delta \theta_a}{\Delta t} = \left[\frac{\mu(\theta_g - \theta_a)}{\rho_a c_a} - \frac{\binom{1}{\alpha}\mu\rho_m t_m c_m \dot{\theta}_m}{\rho_a c_a}\right] \frac{1}{\binom{1}{\alpha} + \binom{t_m}{\lambda_m}}$$

Para valores práticos de $\frac{1}{\alpha} e^{\frac{t_m}{\lambda_m}}$, pode-se admitir que:

$$\frac{\binom{1}{\alpha}}{\binom{1}{\alpha} + \binom{t_m}{\lambda_m}} \cong 0 \quad e \quad \frac{1}{\binom{1}{\alpha} + \binom{t_m}{\lambda_m}} \cong \frac{1}{\binom{t_m}{\lambda_m}}$$

Com essa simplificação, iremos desprezar a parcela de absorção do material de proteção. Logo a equação (11) fica:

(5)
$$\Delta \theta_{a} = \left[\frac{\mu (\theta_{g} - \theta_{a})}{\binom{t_{m}}{\lambda_{m}} \rho_{a} c_{a}} \right] \Delta t$$
(13)

A equação (12) é uma equação simplificada para o cálculo, razoavelmente preciso, da elevação de temperatura nos perfis de aço revestido de material de proteção térmica quando se despreza a parcela de absorção térmica do material de proteção.

(7) 4.2 Perfis parcialmente protegidos

Na seção de aço parcialmente protegida como mostrado na Figura 5, haverá um fluxo de calor adicional na parte protegida vindo da parte não protegida do perfil que se encontra com temperatura superior a parte protegida. Substituindo a equação (10) na equação (13)

termos, novamente, o termo
$$\frac{A_m}{V_a}$$
 na (9)

equação de elevação de temperatura do perfil totalmente protegido:

(10)
$$\Delta \theta_{a} = \left[\frac{A_{m}(\theta_{g} - \theta_{a})}{\binom{t_{m}}{\lambda_{m}}}\right] \frac{\Delta t}{\rho_{a}c_{a}V_{a}} \quad (14)$$

Nota-se que o termo dentro do colchete na equação (14) nada mais é que o fluxo de calor no elemento de aço advindo, por condução, do material de proteção térmica. Conforme dito anteriormente, haverá um fluxo adicional de calor na região protegida advindo da parte não protegida do perfil. Esse fluxo adicional de calor é tomado como sendo dado pela expressão

(11)

(12)
$$q = \beta \frac{A^* (\theta_g - \theta_a)}{\begin{pmatrix} t_m \\ \lambda_a \end{pmatrix}}$$
(15)

inteiramente análoga à expressão do fluxo de condução entre colchetes da equação (14) a menos do parâmetro que é um parâmetro destinado a calibrar a solução analítica ora proposta com a solução dada pelo programa TASEF, que utiliza o Método dos Elementos Finitos. Nessa expressão, A* refere-se à área lateral não protegida do perfil. A determinação dos valores de b é descrita em Ferreira (2006) e variam com a massividade do perfil segundo as expressões:

$$\begin{split} \beta &= 0,575 \log \left(\mu . t_m . d \right) + 0,390 & \text{para } \mu \leq 100 \\ \beta &= 0,539 \log \left(\mu . t_m . d \right) + 0,352 & \text{para } 100 < \mu \leq 300 \\ \beta &= 0,177 \log \left(\mu . t_m . d \right) + 0,211 & \text{para } \mu \geq 300 \end{split}$$

Adicionando a equação (15) na equação (14), tem-se:

$$\Delta \theta_{a} = \left[\frac{A_{m} \left(\theta_{g} - \theta_{a} \right)}{\left(\frac{t_{m}}{\lambda_{m}} \right)} + \beta \frac{A^{*} \left(\theta_{g} - \theta_{a} \right)}{\left(\frac{t_{m}}{\lambda_{a}} \right)} \right] \frac{\Delta t}{\rho_{a} c_{a} V_{a}}$$

$$\mu^* = \frac{A^*}{V_a}$$

onde μ^* é o fator de massividade relativo à seção não protegida.

Para o tipo de proteção parcial descrito na Figura 4, o μ^* fator pode ser dado por:

$$\mu^* = \frac{2t_m}{A_a} \tag{20}$$

5. Resultados

(16)

(17)

(18)

As Figuras 7 a 12 e as Tabelas 1 a 3 ilustram a elevação de temperatura, nos pontos indicados na Figura 6, em três perfis metálicos com diferentes espessuras de proteção parcial, obtidas pelo TASEF (Método dos Elementos Finitos) e pela equação analítica ora proposta. O tipo de proteção parcial adotada é o esquematizado na Figura 4. Portanto as elevações de temperatura são calculadas nas mesas dotadas de proteção. Favoravelmente à segurança, admite-se que os demais pontos da mesa do perfil esteja sob mesma temperatura dos pontos mostrados na Figura 6 e que a alma está sob temperatura uniforme. Tanto as análises simplificadas, quanto as análises por elementos finitos, foram realizadas

(19) de acordo com o item 8.5.1.1.2 da NBR 14343 (1999), assumindo o valor da emissividade resultante como sendo 0,5 para todo o perfil.

Figura 5 - Fluxo de calor no material de proteção térmica.

Figura 6 - Pontos onde serão mostradas as elevações de temperatura.

5.1 Perfis com $\mu \le 100$

A Tabela 1 e as Figuras 7 e 8 mostram a elevação de temperatura do perfil CVS 500x250, que possui massividade inferior a 100 m^{-1} .

5.2 Perfis com 100 < $\mu \le 300$

A Tabela 2 e as Figuras 9 e 10 mostram a elevação de temperatura do perfil HP 310x125, que possui massividade superior a 100 e inferior a 300 m⁻¹.

5.3 Perfis com μ > 300

A Tabela 3 e as Figuras 11 e 12 mostram a elevação de temperatura do perfil VS 200x29, que possui massividade superior a 300 m^{-1} .

6. Conclusão

Nesse trabalho foi apresentada uma formulação analítica para a obtenção da elevação de temperatura em perfis parcialmente protegidos. Observando-se as Figuras 7 a 12, conclui-se que:

- A formulação apresentada é suficientemente precisa para uso no âmbito de métodos simplificados de dimensionamento em incêndio, visto haver concordância entre os resultados da solução via Método dos Elementos Finitos e da equação (18) corrigida pelo coeficiente b mostrado na equação (16).
- Sem proteção passiva, é praticamente impossível atingir níveis de resistência adequados.

Figura 7 - Perfil CVS 500x250: $t_m = 5mm$, $t_m = 25mm$, $t_m = 50mm$.

Flávio Antônio Ferreira et al.

- A técnica de proteção parcial, para qualquer TRRF, mostra-se extremamente viável para perfis com fator de massividade inferiores a 300m⁻¹, visto que, com proteção parcial das mesas conseguem-se elevações de temperatura bem inferiores à dos gases quentes.
- Em perfis com fator de massividade superiores a 300m⁻¹, a técnica de proteção parcial não se mostrou muito eficiente, para TRRF's superiores a 90 minutos, visto que, para tempos superiores a este, a temperatura do perfil é praticamente igual à dos gases quentes.

É importante ressaltar que a elevação de temperatura da parte não protegida do perfil é obtida pela equação descrita no item 8.5.1.1 da NBR 14343 (1999).

7. Lista de símbolos Letras romanas maiúsculas

A_m= área do material de proteção.

 A^* = área lateral não protegida do perfil.

Q = fluxo de calor proveniente do incêndio.

 $\dot{Q}_{cond,m}$ = fluxo de calor conduzido pelo material de proteção.

 $\dot{Q}_{abs,m}$ = fluxo de calor absorvido pelo material de proteção.

 $\dot{Q}_{abs,a}$ = fluxo de calor absorvido pelo aço.

TRRF = tempo requerido de resistência ao fogo.

 V_a = volume de aço.

Letras romanas minúsculas

 $b_f =$ largura da mesa.

 $c_a = \text{calor específico do aço.}$

 $c_m =$ calor específico do material de proteção.

d = altura da seção.

h = distância entre as faces internas das mesas de perfis "I" e "H".

 t_m = espessura do material de proteção contra incêndio.

Figura 10 - Perfil HP 310x125: t_m = 10mm, t_m = 25mm, t_m = 40mm.

Determinação d	la distribuição	de tempe	atura er	n perfis	de aço	parcialmente	protegidos:	método	simplificado
Tabela 1 - Elevaçã	io de temperatur	a no perfil C	VS 500x2	50.					

Perfil CVS 500x250 - Variação de Temperatura (°C)											
Tempo		t _m = 5mm		t _m = 10mm		t _m = 15mm		t _m = 20mm		t _m = 25mm	
(min)	Gases	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.
0	20	20	20	20	20	20	20	20	20	20	20
6	603	94	90	77	71	67	61	60	55	54	51
12	705	198	237	158	184	136	154	120	136	108	123
18	766	307	368	246	292	212	246	188	218	170	197
24	809	412	479	334	389	290	332	259	297	235	268
30	842	506	570	417	475	365	411	328	370	300	336
36	869	589	649	494	550	437	482	395	437	363	399
42	892	660	708	564	615	503	545	459	498	423	458
48	912	721	759	626	672	564	602	518	554	480	512
54	930	773	802	682	721	620	653	572	605	533	562
60	945	816	837	732	764	671	699	623	651	583	608
66	960	853	868	775	801	717	739	669	693	629	650
72	973	884	893	814	833	758	776	712	731	671	688
78	985	910	916	847	862	795	808	751	765	711	724
84	996	933	935	877	887	829	837	786	796	747	756
90	1006	953	952	903	909	858	863	818	825	780	786
96	1016	970	967	926	929	885	887	847	850	811	814
102	1025	985	981	846	947	909	908	873	874	839	839
108	1033	998	993	965	963	930	927	897	895	864	862
114	1041	1010	1005	981	978	950	945	919	915	888	883
120	1049	1021	1015	995	991	967	961	938	933	909	903
		I	Perfil CV	S 500x25	50 - Vari	iação de l	Tempera	atura (°C)			
Tempo	Gasos	t _m = 3	80mm	t _m = 35mm t _m = 40mm				t _m = 4	5mm	t _m = 50mm	
(min)	Gases	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.
0	20	20	20	20	20	20	20	20	20	20	20
6	603	40								20	
12		49	47	46	45	43	43	40	41	38	40
	705	49 98	47 112	46 90	45 105	43 83	43 98	40 77	41 92	38 72	40 87
18	705 766	49 98 155	47 112 180	46 90 142	45 105 167	43 83 132	43 98 156	40 77 123	41 92 146	38 72 115	40 87 138
18 24	705 766 809	49 98 155 215	47 112 180 246	46 90 142 199	45 105 167 229	43 83 132 185	43 98 156 214	40 77 123 172	41 92 146 200	38 72 115 161	40 87 138 189
18 24 30	705 766 809 842	49 98 155 215 276	47 112 180 246 309	46 90 142 199 256	45 105 167 229 288	43 83 132 185 239	43 98 156 214 270	40 77 123 172 224	41 92 146 200 253	38 72 115 161 210	40 87 138 189 239
18 24 30 36	705 766 809 842 869	49 98 155 215 276 336	47 112 180 246 309 368	46 90 142 199 256 313	45 105 167 229 288 345	43 83 132 185 239 292	43 98 156 214 270 324	40 77 123 172 224 274	41 92 146 200 253 304	38 72 115 161 210 258	40 87 138 189 239 288
18 24 30 36 42	705 766 809 842 869 892	49 98 155 215 276 336 393	47 112 180 246 309 368 424	46 90 142 199 256 313 367	45 105 167 229 288 345 399	43 83 132 185 239 292 344	43 98 156 214 270 324 375	40 77 123 172 224 274 324	41 92 146 200 253 304 353	38 72 115 161 210 258 306	40 87 138 189 239 288 334
18 24 30 36 42 48	705 766 809 842 869 892 912	49 98 155 215 276 336 393 448	47 112 180 246 309 368 424 477	46 90 142 199 256 313 367 420	45 105 167 229 288 345 399 449	43 83 132 185 239 292 344 395	43 98 156 214 270 324 375 424	40 77 123 172 224 274 324 372	41 92 146 200 253 304 353 400	38 72 115 161 210 258 306 352	40 87 138 189 239 288 334 379
18 24 30 36 42 48 54	705 766 809 842 869 892 912 930	49 98 155 215 276 336 393 448 499	47 112 180 246 309 368 424 477 525	46 90 142 199 256 313 367 420 469	45 105 167 229 288 345 399 449 496	43 83 132 185 239 292 344 395 443	43 98 156 214 270 324 375 424 470	40 77 123 172 224 274 324 372 419	41 92 146 200 253 304 353 400 444	38 72 115 161 210 258 306 352 397	40 87 138 189 239 288 334 379 422
18 24 30 36 42 48 54 60	705 766 809 842 869 892 912 930 945	49 98 155 215 276 336 393 448 499 548	47 112 180 246 309 368 424 477 525 570	46 90 142 199 256 313 367 420 469 517	45 105 167 229 288 345 399 449 496 541	43 83 132 185 239 292 344 395 443 488	43 98 156 214 270 324 375 424 470 513	40 77 123 172 224 274 324 372 419 463	41 92 146 200 253 304 353 400 444 486	38 72 115 161 210 258 306 352 397 440	40 87 138 189 239 288 334 379 422 463
18 24 30 36 42 48 54 60 66	705 766 809 842 869 892 912 930 945 960	49 98 155 215 276 336 393 448 499 548 593	47 112 180 246 309 368 424 477 525 570 612	46 90 142 199 256 313 367 420 469 517 561	45 105 167 229 288 345 399 449 496 541 582	43 83 132 185 239 292 344 395 443 488 532	43 98 156 214 270 324 375 424 470 513 553	40 77 123 172 224 274 324 372 419 463 505	41 92 146 200 253 304 353 400 444 486 526	38 72 115 161 210 258 306 352 397 440 481	40 87 138 189 239 288 334 379 422 463 502
18 24 30 36 42 48 54 60 66 72	705 766 809 842 869 892 912 930 945 960 973	49 98 155 215 276 336 393 448 499 548 593 635	47 112 180 246 309 368 424 477 525 570 612 651	46 90 142 199 256 313 367 420 469 517 561 603	45 105 167 229 288 345 399 449 496 541 582 621	43 83 132 185 239 292 344 395 443 488 532 573	43 98 156 214 270 324 375 424 470 513 553 592	40 77 123 172 224 274 324 372 419 463 505 545	41 92 146 200 253 304 353 400 444 486 526 563	38 72 115 161 210 258 306 352 397 440 481 520	40 87 138 189 239 288 334 379 422 463 502 539
18 24 30 36 42 48 54 60 66 72 78	705 766 809 842 869 892 912 930 945 960 973 985	49 98 155 215 276 336 393 448 499 548 593 635 675	47 112 180 246 309 368 424 477 525 570 612 651 687	46 90 142 199 256 313 367 420 469 517 561 603 642	45 105 167 229 288 345 399 449 496 541 582 621 657	43 83 132 185 239 292 344 395 443 488 532 573 612	43 98 156 214 270 324 375 424 470 513 553 592 627	40 77 123 172 224 274 324 372 419 463 505 545 584	41 92 146 200 253 304 353 400 444 486 526 563 598	38 72 115 161 210 258 306 352 397 440 481 520 557	40 87 138 189 239 288 334 379 422 463 502 539 573
18 24 30 36 42 48 54 60 66 72 78 84	705 766 809 842 869 892 912 930 945 960 973 985 996	49 98 155 215 276 336 393 448 499 548 593 635 675 712	47 112 180 246 309 368 424 477 525 570 612 651 687 720	46 90 142 199 256 313 367 420 469 517 561 603 642 679	45 105 167 229 288 345 399 449 496 541 582 621 657 690	43 83 132 185 239 292 344 395 443 488 532 573 612 648	43 98 156 214 270 324 375 424 470 513 553 592 627 661	40 77 123 172 224 274 324 372 419 463 505 545 545 584 620	41 92 146 200 253 304 353 400 444 486 526 563 598 632	38 72 115 161 210 258 306 352 397 440 481 520 557 593	40 87 138 189 239 288 334 379 422 463 502 539 573 607
18 24 30 36 42 48 54 60 66 72 78 84 90	705 766 809 842 869 892 912 930 945 960 973 985 996 1006	49 98 155 215 276 336 393 448 499 548 593 635 675 712 746	47 112 180 246 309 368 424 477 525 570 612 651 687 720 751	46 90 142 199 256 313 367 420 469 517 561 603 642 679 713	45 105 167 229 288 345 399 449 496 541 582 621 657 690 721	43 83 132 185 239 292 344 395 443 488 532 573 612 648 683	43 98 156 214 270 324 375 424 470 513 553 592 627 661 692	40 77 123 172 224 274 324 372 419 463 505 545 584 620 654	41 92 146 200 253 304 353 400 444 486 526 563 598 632 663	38 72 115 161 210 258 306 352 397 440 481 520 557 593 627	40 87 138 189 239 288 334 379 422 463 502 539 573 607 638
18 24 30 36 42 48 54 60 66 72 78 84 90 96	705 766 809 842 869 892 912 930 945 960 973 985 996 1006 1016	49 98 155 215 276 336 393 448 499 548 593 635 675 712 746 777	47 112 180 246 309 368 424 477 525 570 612 651 687 720 751 779	46 90 142 199 256 313 367 420 469 517 561 603 642 679 713 745	45 105 167 229 288 345 399 449 496 541 582 621 657 690 721 750	43 83 132 185 239 292 344 395 443 488 532 573 612 648 683 715	43 98 156 214 270 324 375 424 470 513 553 592 627 661 692 722	40 77 123 172 224 274 324 372 419 463 505 545 545 584 620 654 686	41 92 146 200 253 304 353 400 444 486 526 563 598 632 663 693	38 72 115 161 210 258 306 352 397 440 481 520 557 593 627 659	40 87 138 189 239 288 334 379 422 463 502 539 573 607 638 667
18 24 30 36 42 48 54 60 66 72 78 84 90 96 102	705 766 809 842 869 892 912 930 945 960 973 985 996 1006 1016 1025	49 98 155 215 276 336 393 448 499 548 593 635 675 712 746 777 806	47 112 180 246 309 368 424 477 525 570 612 651 687 720 751 779 805	46 90 142 199 256 313 367 420 469 517 561 603 642 679 713 745 775	45 105 167 229 288 345 399 449 496 541 582 621 657 690 721 750 777	43 83 132 185 239 292 344 395 443 488 532 573 612 648 683 715 745	43 98 156 214 270 324 375 424 470 513 553 592 627 661 692 722 749	40 77 123 172 224 274 324 372 419 463 505 545 584 620 654 686 716	41 92 146 200 253 304 353 400 444 486 526 563 598 632 663 693 721	38 72 115 161 210 258 306 352 397 440 481 520 557 593 627 659 689	40 87 138 189 239 288 334 379 422 463 502 539 573 607 638 667 695
18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108	705 766 809 842 869 892 912 930 945 960 973 985 996 1006 1016 1025 1033	49 98 155 215 276 336 393 448 499 548 593 635 675 712 746 777 806 833	47 112 180 246 309 368 424 477 525 570 612 651 687 720 751 779 805 830	46 90 142 199 256 313 367 420 469 517 561 603 642 679 713 745 775 802	45 105 167 229 288 345 399 449 496 541 582 621 657 690 721 750 777 803	43 83 132 185 239 292 344 395 443 488 532 573 612 648 683 715 745 745 773	43 98 156 214 270 324 375 424 470 513 553 592 627 661 692 722 749 775	40 77 123 172 224 274 324 372 419 463 505 545 545 584 620 654 686 716 745	41 92 146 200 253 304 353 400 444 486 526 563 598 632 663 693 721 747	38 72 115 161 210 258 306 352 397 440 481 520 557 593 627 659 689 718	40 87 138 189 239 288 334 379 422 463 502 539 573 607 638 667 695 722
18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114	705 766 809 842 869 892 912 930 945 960 973 985 996 1006 1016 1025 1033 1041	 49 98 155 215 276 336 393 448 499 548 593 635 675 712 746 777 806 833 858 	47 112 180 246 309 368 424 477 525 570 612 651 687 720 751 779 805 830 853	46 90 142 199 256 313 367 420 469 517 561 603 642 679 713 745 775 802 828	45 105 167 229 288 345 399 449 496 541 582 621 657 690 721 750 777 803 826	43 83 132 185 239 292 344 395 443 488 532 573 612 648 683 715 745 773 799	43 98 156 214 270 324 375 424 470 513 553 592 627 661 692 722 749 775 799	40 77 123 172 224 274 324 372 419 463 505 545 545 584 620 654 686 716 745 772	41 92 146 200 253 304 353 400 444 486 526 563 598 632 663 693 721 747 772	38 72 115 161 210 258 306 352 397 440 481 520 557 593 627 659 689 718 745	40 87 138 189 239 288 334 379 422 463 502 539 573 607 638 667 695 722 747

Obs.: TASEF = Temperatura calculada pelo software TASEF. E.A. = Temperatura calculada pela equação analítica.

Perfil HP 310 x 125 - Variação de Temperatura (°C)											
Tempo	Casas	t _m = 5mm		t _m = 1	0mm	t _m = 1	5mm	t _m = 20mm		t _m = 25mm	
(min)	Gases	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.
0	20	20	20	20	20	20	20	20	20	20	20
6	603	129	102	82	92	67	79	82	74	51	65
12	705	180	267	188	242	155	206	188	193	117	167
18	766	415	409	306	375	257	325	302	305	200	267
24	809	522	523	421	486	362	428	407	405	289	359
30	842	611	615	525	578	461	518	498	493	377	441
36	869	677	688	614	653	549	594	575	568	459	514
42	892	723	746	689	714	626	658	641	633	535	579
48	912	756	793	750	765	692	713	697	689	602	636
54	930	790	831	801	807	748	760	745	737	661	687
60	945	833	863	942	842	796	800	786	779	714	731
66	960	874	890	975	871	835	834	823	815	760	770
72	973	906	913	903	897	869	863	854	846	801	805
78	985	931	932	927	919	898	889	882	874	836	835
84	996	952	949	947	938	922	912	906	898	867	863
90	1006	969	965	964	954	943	932	928	919	894	887
96	1016	984	978	979	969	961	949	947	938	918	909
102	1025	997	991	992	983	977	965	964	955	939	928
108	1033	1009	1002	1004	995	991	979	979	970	957	946
114	1041	1019	1012	1015	1006	1003	992	993	984	974	862
120	1049	1029	1022	1025	1016	1015	1004	1006	997	988	977
_			Perfil HF	9 310 x 12	25 - Vari	ação de	Tempera	atura (°C)			
Tempo	Gasas	t _m = 3	80mm	t _m = 35mm		t _m = 40mm		t _m = 45mm		t _m = 50mm	
(min)	Gases	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.
0	20	20	20	20	20	20	20	20	20	20	20
6	603	46	60	42	58	39	54	36	51	34	49
12	705	105	152	95	144	87	133	80	124	74	116
18	766	181	243	165	230	151	214	139	199	129	186
24	809	263	329	241	312	222	291	206	271	191	255
30	842	346	407	319	388	296	363	275	339	256	320
36	869	424	477	394	457	367	429	343	403	321	381
42	892	497	541	465	520	435	490	408	462	383	438

Flávio Antônio Ferreira et al.

Tabela 2 - Elevação de temperatura no perfil HP 310x125.

Obs.: TASEF = Temperatura calculada pelo software TASEF.

E.A. = Temperatura calculada pela equação analítica.

Determinação da distribuição de temperatura em perfis de aço parcialmente protegidos: método simplificado

Perfil VS 200 x 29 - Variação de Temperatura (°C)											
Tempo		t _m = 5mm		t _m = 10mm		t _m = 15mm		t _m = 20mm		t _m = 25mm	
(min)	Gases	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.
0	20	20	20	20	20	20	20	20	20	20	20
6	603	248	282	184	192	147	148	122	121	104	105
12	705	499	569	403	454	340	374	292	314	255	275
18	766	658	695	574	613	506	536	449	468	401	419
24	809	750	763	689	710	630	648	575	585	524	534
30	842	805	809	765	774	719	727	671	672	624	625
36	869	843	843	817	819	783	784	744	739	702	697
42	892	872	870	854	852	829	826	798	790	763	754
48	912	896	893	883	879	864	859	840	831	811	800
54	930	916	913	906	902	892	886	873	863	850	838
60	945	933	931	925	921	914	908	900	890	881	868
66	960	949	946	942	938	933	927	922	912	906	894
72	973	963	960	957	953	950	944	940	931	928	916
78	985	976	973	970	967	964	959	957	948	946	935
84	996	988	985	983	979	978	972	971	963	962	952
90	1006	999	996	994	991	989	984	984	976	976	967
96	1016	1009	1007	1005	1001	1000	996	995	988	989	980
102	1025	1018	1016	1015	1011	1011	1006	1006	1000	1000	992
108	1033	1027	1025	1024	1021	1020	1016	1016	1010	1011	1004
114	1041	1036	1034	1033	1030	1029	1025	1025	1020	1021	1014
120	1049	1044	1042	1041	1038	1038	1034	1034	1029	1030	1023
			Perfil VS	6 200 x 2	9 - Varia	ação de T	Temperat	tura (°C)			
Tempo	Gasas	t _m = 3	80mm	t _m = 35mm		t _m = 4	10mm	t _m = 4	5mm	t _m = 5	i0mm
(min)	Gases	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.	TASEF	E.A.
0	20	20	20	20	20	20	20	20	20	20	20
6	603	90	94	79	86	71	80	64	76	59	72
12	705	224	247	199	226	177	210	159	197	149	187
18	766	359	381	324	353	292	330	264	311	250	296
24	809	479	494	437	461	399	435	365	413	347	394
30	842	578	585	535	552	495	524	457	501	436	480
36	869	660	660	617	628	577	600	538	576	516	556
42	892	725	721	686	691	647	665	608	641	587	621
48	912	779	771	743	744	707	719	670	697	648	677
54	930	822	812	791	788	757	765	723	745	702	726
60	945	957	846	830	825	800	805	768	786	749	768
66	960	887	876	863	857	837	838	807	821	790	805
72	973	911	900	891	884	868	868	841	852	825	837
78	985	932	922	915	907	895	893	871	879	856	866
84	996	950	940	936	928	918	915	897	903	883	890
90	1006	966	957	954	946	938	935	919	923	907	912
96	1016	980	971	969	962	956	952	939	942	928	932
102	1025	993	985	984	976	972	967	957	958	947	950
100	1033	1004	997	996	989	986	981	973	973	964	965

Tabela 3 - Elevação de temperatura no perfil VS 200x29.

TASEF = Temperatura calculada pelo software TASEF. Obs.:

E.A. = Temperatura calculada pela equação analítica.

Flávio Antônio Ferreira et al.

Letras gregas maiúsculas

 $\Delta \theta_a$ = elevação de temperatura no aço

 Δt = variação do tempo

Letras gregas minúsculas

 $\alpha =$ fluxo de calor, dado no item 8.5.1.1.2.

 β =fator que ajusta a solução analítica à solução pelo Método dos Elementos Finitos.

 θ = temperatura.

 θ_a = temperatura do aço.

 θ_{o} = temperatura dos gases.

 $\theta_{m,ext}$ = temperatura na parte externa do material de proteção.

 θ_m = temperatura do material de proteção.

 $\lambda_m =$ condutibilidade térmica do material. de proteção.

 $\rho_a = \text{massa específica do aço.}$

 ρ_m = massa específica do material de proteção contra incêndio.

8. Agradecimentos

Os autores agradecem a Capes, CNPq e a CST pelo financiamento desse trabalho.

9. Referências bibliográficas

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT) NBR 14343, (1999). Dimensionamento de Estruturas de Aço de Edifícios em Situação de Incêndio – Procedimento. Rio de Janeiro, Brasil.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT) NBR 14432, (2000). Exigências de Resistência ao Fogo de Elementos Construtivos de Edificações – Procedimento. Rio de Janeiro, Brasil.

CLARET, A. M. *Resistência ao fogo de estruturas: alternativas técnicas para a redução do custo da proteção passiva*. Ouro Preto: Escola de Minas, Universidade Federal de Ouro Preto, 2000. (Relatório Interno L01/2000).

CLARET, A. M., BURGESS, I. W., PLANK, R. J. Studies of the behaviour of steel beams in fire. Research Report DSCE/99/F/5. Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK. 1999.

COSTA, I. A. *Estudo paramétrico da resistência ao fogo de vigas mistas de açoconcreto*. Ouro Preto: Escola de Minas, Universidade Federal de Ouro Preto, 2001. (Dissertação de Mestrado).

FERREIRA, F. A. Contribuição ao estabelecimento de um método simplificado para o dimensionamento ao fogo da proteção parcial de colunas de aço. Ouro Preto: Universidade Federal de Ouro Preto. 274p. 2006. (Dissertação de Mestrado).

FERREIRA, FA., ANDRADE, A. F. T., CLARET, A. M. *Determinação paramétrica da resistência ao fogo de pilares de aço parcialmente protegidos*. In: IBERIAN LATIN-AMERICAN CONGRESS ON COMPUTATIONAL METHODS IN ENGINEERING - CILAMCE, 25. Guarapari, Espírito Santo, Brasil. 2005.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ISO 834. Fire resistance tests - elements of buildings construction. Geneva, Swiss. 1975.

- STERNER, E., WINCKSTRÖM, U. Temperature analysis of structures exposed to fire. Users Manual. Swedish National testing Institute, Fire Technology, SP Report. 1990.
- WANG, Y. C. Composite beams with partial fire protection. *Fire Safety Journal*, v.30, p. 315-332, 1997.

Artigo recebido em 20/04/2006 e aprovado em 25/07/2007.

