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Resumo

Problemas de otimização estrutural, envolvendo carregamento estático, já vêm 
sendo estudados há algum tempo e, de certa forma, esse tipo de problema já está 
bem definido na literatura especializada, porém problemas envolvendo carregamento 
dinâmico ainda são poucos estudados e problemas envolvendo carregamento dinâmico 
não determinístico menos ainda. O presente trabalho apresenta a formulação do 
problema de otimização de placas submetidas a carregamentos randômicos. Para a 
modelagem da estrutura, utilizou-se o elemento de placa à flexão AST6, que fornece 
essas matrizes explicitamente. Uma redução dinâmica das matrizes de massa e rigidez 
foi utilizada para reduzir o custo computacional do problema. A solução do problema 
foi obtida utilizando o Método dos Pontos Interiores e, para a análise de sensibilidade 
das matrizes de massa e rigidez da estrutura, foi utilizado o método semianalítico. Três 
exemplos são apresentados para demonstrar a confiabilidade do processo. O primeiro 
exemplo é de uma placa isotrópica e os dois outros são problemas envolvendo placas 
do tipo sanduíche. Em todos os exemplos, obteve-se um projeto melhorado, em relação 
à geometria inicialmente proposta.
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Abstract

Structural optimization problems involving static loading have been studied for 
some time and in a way these kinds of problems are widely encountered in literature, 
but problems involving dynamic loading still have few studies not to mention problems 
involving nondeterministic dynamic loading. This paper presents a formulation of the 
optimization problem of plates subjected to random loadings. For the modeling of 
the structure, it used the bending plate element AST6 that explicitly provides these 
matrices, and dynamic mass reduction and rigidity matrices were used to reduce the 
computational cost of the problem. . The  solution was achieved using the Interior 
Point Method and the sensitivity analysis of mass, and for the structure’s stiffness 
matrixes the semi-analytical method was used. Three examples are presented to 
demonstrate the reliability of the process. The first example is an isotropic plate and 
the other two are problems involving sandwich plates. In all examples, an improved 
design in respect to the initially proposed geometry was obtained.
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1. Introduction

Random dynamic loadings are 
only rigorously defined in statistical 
terms, consequently, the analysis of 
structural systems subjected to such 
loadings must be performed through 
statistical methods. They can be pro-
duced by natural phenomena such as 
wind and earthquake or by man in-
duced phenomena like traffic or vibra-
tion of aerospace structures due, for ex-
ample, to the launching of a rocket. Al-
though the analysis of structures under 
random loading is well established, the 
correspondent optimisation problem 
has been only recently tackled. Some 
of the most important recent works in 

the area are quoted in the following 
lines. Kin and Wen (1990), present 
an analysis of the structural reliabil-
ity taking into account the combined 
effect of several random loadings. 
Neubert (1993) studies the maximisa-
tion of structural damping in order to 
diminish the random vibration of the 
structure. Lipton (1994) considers the 
optimum distribution of plate stiffeners 
in plates submitted to multiple case of 
random loadings Alves at al. (2000) 
presents a thorough development of the 
equations for the analytical sensitivity 
analysis of the structural response of 
structures subjected to random load-

ings and validates the formulation 
comparing the results obtained with 
these equations with the ones calcu-
lated by means of the finite difference 
method. Alves at al. (2002) presents the 
complete formulation to the problem 
involves optimisation with random 
loading. Alves and Vaz (2010) presents 
application for truss structures. In this 
work, homogeneous and sandwich 
plates under random dynamic loadings 
are optimised. The AST6 finite element 
is used for the structural discretisa-
tion and the interior point algorithm 
by Herskovits (1995) is applied in the 
optimisation process.

2. The optimisation problem

The proposed optimisation problem 
consists of the minimisation of the struc-
tural mass (volum) of an homogenous or a 
sandwich plate subjected to the condition 

that the probability that the displacement 
and/or acceleration at a given point of 
the plate should not exceed, respectively, 
given bounds for the displacement and/

or acceleration must be less or equal than 
a given bound for the probability. This 
problem is translated as:

Min S ri Ai hi

Subjected to: Pr (ui>umax) < Pdmax

Pr (ui > umax)< Pamax

hl <hi <hu

(1)

In Eq.1, ri, Ai and hi are, respective-
ly, the mass density, area and thickness 
of the ith plate finite element; uj and üj 
are, respectively, the vertical displace-
ment and acceleration at the jth nodal 
point, uj,max and üj,max, respectively, the 

bounds for vertical displacement and 
acceleration at the jth nodal point and 
Pd,max and Pa,max are given bounds for the 
probabilities (for example 1%, 2% or 
5%) associated with the displacement 
and acceleration respectively. Also in 

Eq.1, Pd ( uj > uj,max) is the probability 
distribution function associated with 
the probability of the vertical displace-
ment uj be greater than the given bound 
uj,max,

umax

(2)Pd (ui > uj max) = ∫  p(ui)du
∞

Where p (uj) is the probability density 
function of uj. A corresponding definition 

holds for Pa (üj > üj,max).
The probability density function 

adopted in this work is the Gaussian 
distribution:

[ ]
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√2p sui
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1p(ui) =

(3)

The ergodicity and zero mean as- sumptions transform Eq.3 into.

[ ]
e

√2p sui

-  
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(4)

In Eqs.3 and 4 suj is the standard 
deviation of uj. From the theory of the 

stochastic response of linear Multi Degree 
of Freedom systems suj is obtained by the 

following expression:
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(5)sui =  1  =B ∫  Sy (Ω) dΩ BT
+∞

-∞2p
2

Where B is the matrix whose terms 
are the nj mode components and Sy (Ω) 

is the spectral density matrix of the 
generalised co-ordinates. This matrix is 

defined as: 

(6)Sy (Ω) = H (Ω) Sp (Ω) H (Ω)

In this equation Sp (Ω) is the spectral 
density matrix of the generalised loads and 

H(Ω) is a diagonal matrix whose generic 
term is the complex frequency response 

function of normal mode n given by:

(7)Hn = [ (Kn – MnΩn
2 ) + 2i xn Mn Ωn]

Where Kn, Mn, Ωn and xn are, 
respectively, the generalised stiffness, 
mass, frequency of the exciting force 

and damping ratio of normal mode n. 
The design variables considered are the 
plate thickness in the isotropic plate and 

the sheet and core thickness in the case 
of a sandwich plate. 

3. Sensitivity analysis

The gradients calculation to 
obtain the search direction is performed 
through the analytical method for the 
constraints. Alves (2000) presents a 

thorough development for the sensitivity 
analysis of the structural response due 
to random loading. The developed 
analytical equations are validated by 

a comparison with finite difference 
solutions. In the next section an example 
of the sensitivity analysis of a plate 
structure is presented.

4. Examples of optimization

Example 1. Isotropic Plate

In this example, the isotropic 
plate displayed in Figure 1 is optimised. 
The plate properties are the same as 

indicated in the previous example. The 
following constraint is imposed: the 
probability that the displacement in 

the centre of the plate, uc, is less than 
1mm, should be less than or equal to 
1%. Therefore:

0.001

(8)Pd (uc > 0.001) = ∫  p(uc)du ≤ 1%
∞

Two cases are considered regarding 
the number of variables: 
1. Only one design variable (constant 

plate thickness) for all the mesh ele-
ments in Figure 2A.

2. Four design variables (four different 
plate thickness) as indicated in Figure 
2B.

The results of the optimisation 
problem for the design variable values, 

objective functions and constraints are 
given in tables 1 and 2 for cases 1 and 
2, respectively. The thickness configura-
tion for the optimum design of case 2 is 
displayed in Figure 3. 

Figure 
Plate of analysis.

Table 1
Design variables, objective function 

and constraints in model 1.

Design Variable (m) Obj. Fun. (m3) Const. (%)

Initial 1.00x10-2 1.00 x10-2 0.27

Final 8.29x10-3 8.29x10-3 1.0

2

2

x (m)

y (m)
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Figure 2
A) Optimization for 1 project variable. 
B) Optimization for 4 projects variables.

Figure 3
Thickness Distribution throughout the 
plate considering 4 design variables.

Table 2
Design variables, objective 
function and constraints in model 2.

Design Variable (m) Initial Final

h1 1.0 x10-2 1.06 x10-2

h2 1.0 x10-2 2.61 x10-3

h3 1.0 x10-2 6.41 x10-3

h4 1.0 x10-2 2.68 x10-3

Obj. Fun.(m3) 1.0 x10-2 4.33 x10-3

Const.(%) 0.27 1.0

Example 2. Sandwich Plate

The sensitivity analysis and the 
optimisation of a sandwich plate, Figure 
4, are presented here. This type of 
structure is largely employed in satellite 
structures as they present high bending 

rigidity and low weight. The plate is 
modelled with a 4x4 mesh as indicated 
in Figure 1 and the random loading 
is the same as in Example 1. The 
material properties are given in Table 3. 

Two design constraints are considered 
associated with the displacement uc 

and the acceleration üc at the centre of 
the plate as expressed by the following 
equations:

0.001

(9)Pd (uc > 0.001) = ∫  p(uc)du ≤ 2%
∞

11.5

(10)Pa (üc > 11.5) = ∫  p(üc)du ≤ 10%
∞

Resu lt s  for  t he  s ens i t iv i t y 
analysis of the standard deviation of 
the displacement with respect to the 
design variables taking into account as 
design variables the thickness of the 
upper and lower sheets and the core 
thickness are given in Table 4. These 
results indicate the fair convergence 
of the sensitivity values calculated 

by Finite Difference Method (FDM) 
compared to the values calculated 
by Analytical Method (AM). Finally, 
t he s e  conc lu s ion s  suppor t  t he 
reliability of the optimisation method 
for sandwich plates.

The optimisation is initially 
performed considering the thickness 
of the sheets as the only design 

variable. The results are presented 
in Table 5. Then, both the thickness 
of the sheets and of the core of the 
sandwich plate are taken as design 
variables leading to the results of Table 
6. It must be noted from Table 7 that 
the first constraint becomes active 
when the core thickness is a design 
variable.

4

4

4
4

4
4

4
4

4
4

4
4

4
4

3

3

3
3

3
3

3
3

3
3

2

2

2
2

2

2

1
1

A B

Thickness (m)

2.51E-3

2.68E-3

5.41E-3

1.06E-2



REM: R. Esc. Minas, Ouro Preto, 66(1), 41-47, jan. mar. | 2013 45

Elcio Cassimiro Alves e Luiz Eloy Vaz

Figure 4
Sandwich panel.

Table 3
Material characteristics.

Table 4
Sensitivity analysis results 

for the Sandwich Plate.

Table 5
Design variables, objective function 

and constraints in the sandwich plate.

Aluminium 
2024-T3

Material Isotropic

Elasticity Modulus(N/m2) E=6.80E+10

Shear Modulus(N/m2) G=2.56E+10

Poisson Ratio n=0.33

Density (N/m3) r=2700.0

 Aluminium
HoneyComb

Material Ortotropic 2D

Shear Modulus (N/m2)

G12=1.0e+6 

G1z=2.206E+8 

G2z=1.117E+8 

Poisson Ratio n=0.33

Density(N/m3) r=36.8

AM
FDM

(Dx=10-2)
FDM

(Dx=10-4)
FDM

(Dx=10-6)
FDM

(Dx=10-8)

∂s/∂hs 
(x10-1) 6.0567 13.3341 5.9732 6.04506 6.05668

∂s/∂hh (x10-5) 7.12480 8.1256 7.8654 7.22467 7.12568

Design Variable (m) Initial Final

hs 3.0 x10-3 2.602x10-3

Obj. Func.(Kg) 16.568 14.42

Const. (%) Initial Final

1 0.128 0.545

2 6.78 8.87

Table 6
Design variables, Objective function 

and constraints in the sandwich plate.

Design Variable (m) Initial Final

hs 3.0 x10-3 2.681x10-3

hh 1.0 x10-2 7.965x10-3

Obj. Func. (Kg) 16.568 14.771

Const. (%) Initial Final

1 0.128 2.0

2 6.78 6.63
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Pa (üc > 10) = ∫  p(üc)du ≤ 10%

Pd (uc > 0.008) = ∫  p(uc)du ≤ 2%

Example 3. Sandwich plate with random loading with variable PSDF

The sandwich plate of the previous 
example is now submitted to a random 
load with the Power Spectral Density 

Function (PSDF) indicated in Figure 5 and 
applied at the centre of the plate.

Now the material of the sheets is 

constituted by orthotropic carbon fibres 
with their properties given in Table 7.

Figure 5
Plot of the variable PSDF 
versus exciting frequency.

Table 7
Mechanical proprieties 
of the carbon fibre.

Carbon 
Fibre

Material Ortotrópico 2D

Elasticity Modulus in the longitudinal direction (E1) (N/m2) 200.0E+9

Elasticity Modulus in the lateral direction (E2) (N/m2) 14.5E+9

Shear Modulus (N/m2)
G12 = 4.9E+9
G1z = 4.9E+9
G2z = 4.9E+9

Poisson Ratio n=0.3

Density (N/m3) g=1650.

The imposed constraints for this problem are:

0.008

(11)
∞

10

(12)
∞

The first optimisation is considered 
with only the sheet thickness as design 
variables. The results are shown in Table 8.

Both the thickness of the sheets and 
of the core are considered as design vari-

ables in the second optimisation whose 
results are given in Table 9. It can be 
observed, as in the previous example, that 
the first constraint becomes active when 
both thicknesses are the design variables. 

On the other hand, the first optimisation 
leads to a better design. The reason for 
this is that the mass density of the core is 
smaller than that of the sheets, thus hav-
ing negligible influence on the total mass.

Design Variable (m) Initial Final

hs 2.0 x10-3 1.632x10-3

Obj. Fun.(Kg) 6.968 5.854

Const. (%) Initial Final
1 0.297 1.465
2 5.004 7.999

Table 8
Results for example 3 (11 steps).

Table 9
Design variables, objective function 

and constraints for the sandwich 
panel (10 steps)

Design Variable(m) Initial Final

hs 2.0 x10-3 1.803x10-3

hh 1.0 x10-2 8.598x10-3

Obj. Fun.(Kg) 6.968 6.267

Const. (%) Initial Final

1 0.297 2.002

2 5.004 5.24
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5. Conclusions

The following conclusions are 
drawn from the analysis of the results of 
the examples:

A better design in relation to the 
initial design is obtained in all the anal-
ysed cases. In Example 1, with 4 design 
variables, the variable less altered is vari-
able 1 (h). This is to be expected as the 
elements near the point of application of 
the load must be more rigid. This example 
is illustrative since the real plate has a 

constant thickness.
In the sandwich plate example the 

optimisation process is faster when two 
design variables are used instead of one. 
It must be noted that in this case there is 
an inversion relative to which constraint 
becomes active when compared to the 
first case with one design variable. The 
acceleration constraint tends to be ac-
tive when one design variable is taken 
into account whereas the displacement 

constraint is active when two variables 
are considered. It must be noted that, 
in these examples, the best design is 
obtained when only the sheet thickness 
is taken as design variable. This is due 
to the fact that the material of the core 
is much lighter the sheet material. If 
the mass densities of the sheet and of 
the core are the same, the best design is 
obtained with both thicknesses as design 
variables.
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