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Abstract

The present study is focused on mining planning with an emphasis on the 
graph theory model proposed by Lerchs-Grossmann. The original paper published 
by Lerchs-Grossmann about determination of optimum final pit does not report 
the computational algorithm to solve the problem. This paper discusses and pres-
ents an algorithm based on the maximum flow graph computational work from 
Ford Fulkerson. The main steps for solving the problem and the results of the 
two-dimensional models are discussed.

Keywords: Lerchs-Grossmann; Optimum Pit; Graph; Ford Fulkerson.

Resumo

O presente trabalho tem como foco o planejamento de lavra com ênfase no 
modelo da teoria dos grafos de Lerchs-Grossmann. O trabalho publicado pelo 
autor em que se discute o teorema para a determinação da cava final ótima não 
apresenta o algoritmo computacional para resolver o problema. Esse trabalho 
apresenta um algoritmo baseado no fluxo máximo dos grafos como discutido no 
trabalho computacional de Ford Fulkerson. Serão apresentados os passos prin-
cipais para resolução do problema e os resultados dos testes realizados para mo-
delos bidimensionais.
 
Palavras-chave: Lerchs-Grossmann; cava final; grafo; Ford Fulkerson.
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1. Introduction

2. Neighborhood Matrix

The purpose here is to suggest 
a logical construction of a system to 
search for the final pit. This algorithm 
provides all principles to build the 
algorithm in 2D and 3D. It begins by 
constructing the neighborhood matrix 
that is responsible for indicating to 
the algorithm which block should be 

removed in order to mine a lower block. 
A depth search engine was the 

chosen tool to find the validity group 
of blocks to be mined and, from all 
the sequences validated, the one that 
will be, in fact, applied. This search-
ing mechanism reflects the property of 
this methodology of emulating mining 

operations. The branches generated by 
these processes are visually similar to 
the cuts of mining extractions.

After identifying the graph, Ford 
Fulkerson theorem will be used to select 
the feasible ones and, from those, to 
finding the set of blocks that optimize 
the “profit” flow.

The neighborhood matrix is the 
mathematical argument to identify the 

neighbors of a certain block. For example, 
in a block model with N elements, an 

NxN array can be assembled as shown 
in figure 1.
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Figure 1
Model of Neighborhood Matrix and 
One-pointed arc connecting 
between blocks

Figure 2
Searching in depth (step 1)

Figure 3
Search step 2 and 
Neighborhood Matrix filled by flow

The digit 1 seen in the table at 
position (2, 3) means that there is a 
one-pointed arc from block 2 to block 

3. Otherwise, at the position (3,2), the 
digit 0 found indicates there will be 
no arc connecting block 3 to block 2, 

defining a one-pointed arc as shown in 
figure above.

3. Search in depth

The concept of stack will be used 
for searching in depth. This stack will 
be constructed by superimposing the 
blocks, starting with the deepest one, 

using the arcs defined by the neighbor-
hood matrix. Considering the block 
model of figure 2 as an example, the 
deepest block will be the base of the 

stack. The neighborhood matrix will 
be used to find the adjacent block to the 
block 1 that will be the next to be place 
at the stack (block 4)

Considering again the neighborhood 
matrix to verify block 4 nearest neighbors, 

the block 9 will be placed at the stack and 
so forth in an interactive process.

In this example, the neighborhood 
matrix shows that block 9 does not have 
any neighbor. The algorithm eliminates, 
then, the block 9 from the stack and 
restarts the search from the previous 
position (block 4). Similarly, all blocks 

already computed will be eliminated 
from additional searching. In the step 
illustrated by figure 4, blocks 7 and 8 
don’t have neighbors, consequently, are 
eliminated from the stack and return the 
algorithm to block 4. Furthermore, all 

neighbors of block 4 have already been 
visited and likewise are excluded from 
the stack.

Thus, the algorithm returns to 
block 1, where neighbors 3 and 4 are 
still able to be part of the search. This 
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Figure 4
Search final step and 

Neighborhood Matrix filled by flow

Figure 5
Block Model according
 to Fulkerson algorithm

cyclic mechanism is repeated until all 
blocks are removed from the stack. The 
blocks sequence encountered is stored 

in the neighborhood flow matrix. It 
should be pointed out that the example 
used here represents 45°slope angles; 

if gentler angles are to be modeled the 
neighborhood matrix should enclose 
further neighboring blocks.

4. Ford Fulkerson

The algorithm proposed by Ford 
Fulkerson is very efficient in solving the 

problem of maximizing flow. It works 
with a set of directed graphs that rep-

resent the flow from one end (source) to 
the other (destination).

Even though the benefit function 
can assume values below zero, negative 
vertices are not allowed in a network 
flow. All the other vertices are, therefore, 
increased by the same value, then normal-
izing the tree. For better understanding of 
the algorithm theory, some concepts must 
be accepted:

•	 Arc capability: Maximum flow 
carried by the arc (Cij);

•	 Remaining capacity of an arc: 
If through the arc(ij) flow a quantity (φij) 
lower than its capacity (Cij) Its remaining 
capacity is given by Cij – φij;

•	 Saturated Arc: The arc whose 
remaining capacity is null;

•	 Saturated Elementary Path: It is 
a path without repeat vertices; with no 
negative flow and at least one of its arcs 
is saturated. 

•	 Saturated Chain: At least one of 
its arc has zero remaining capacity in the 
forward direction. At least one of its arc 
has zero flow in reverse direction.

5. Ford Fulkerson implementation

The example presented in Figure 
6 will be used to illustrate the first step 

of the algorithm. This step consists in 
saturating the elementary paths.

The values in the block model have 
been normalized.
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Figure 6
Block Model example for Ford Fulkerson.

Table 1
Saturated elementary paths

Figure 7
Flow relative to the saturation
of the elementary path

All paths must be searched indi-
vidually and orderly. Path X0-A-D-Xf 
must be investigated prior to path X0-

A-E-Xf and so on. In this example, the 
algorithm would build up the informa-
tion given in table 1 and the effective 

flow shown in figure 7. 
Here, the flow corresponds to the 

benefits function.

Path Arcs with the smallest 
remaining capacity Saturating flow Arc(s) Saturated

X0-A-D-Xf (A,D)=6 6 (A,D)

X0-A-E-Xf (X0,A)=8;(A,E)=8 8 (X0,A);(A,E)

X0-B-D-Xf (B,D)=6 6 (B,D)

X0-B-E-Xf (B,E)=6;(E,Xf)=6 6 (B,E)(E,Xf)

X0-B-F-Xf (X,B)= 4 4 (X,B)

X0-C-F-Xf (C,Xf)=4 4 (C,Xf)
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First step (Primal)

Second step (Dual)

Figure 8
Dual result of Ford Fulkerson.

Third Step (Flow Cutting):

The flow entering the system 
through the node X0 (14 +16 +4 = 34) 
matches the flow exiting the system 
through node Nf (12 + 14 + 8 = 34). 

At this point one has maximized the 
direct flow of this graph. Neverthe-
less, the goal of the algorithm is global 
maximization, which can be seen as 

the duality problem in linear systems. 
The algorithm, then, guarantees the 
minimization of the remaining flow in 
the opposite direction.

One of the most important con-
cepts used in programming is of dual-
ity. A problem associated to another 
problem is classified as Dual where the 

original problem is called Primal. In this 
context it is represented by the objective 
of maximizing the flow of blocks in the 
forward direction. In this step, the aim 

is to maximize the matrix related to 
maximum flow. The associated problem 
referred is to as Dual, which in this case, 
is the reverse flow.

Maximize: Z = Cx Constrained by: AX ≤ b X ≥ 0

The dual stage aims to minimize 
the remaining flow of the non-saturated 
chains. To detect an unsaturated chain 

from X0 to Xf the following steps 
should be performed.

 Since the problem has to do with 

the reverse flow, the aim is to minimize 
the transposed matrix related to mini-
mize constraining flow.

Minimize: W = by Constrained by: ATY ≥ C    Y ≥ 0

After applying the procedures to 
minimize the reverse flow (dual problem) 

the optimal flow is achieved, which in the 
example used here is 40 (Xf = 12+14+14) 

as shown in figure 8.

The arcs that does not affect the 
maximum network flow should be "de-
leted".  In the case of a block model, the 
blocks that do not contribute to increase 
the benefit function would be casted off. 

The final pit not just finds the maximum 
possible flow, but also should identify 
which blocks that should be mined and 
which should not. Thus, the remaining 
vertices (blocks) in the network flow must 

comply with two conditions: There would 
be at least one arc in the forward direction 
with positive remaining capacity. There 
would be at least one arc in backward 
direction with positive flow.
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6. Result

Figure 9
Tree cut

To illustrate the applicability of the 
algorithm discussed in this paper, table 2 

shows the results of the Lerch Grossman 
algorithm applied to the previous section.

-1 -2 -1 0 6 11 24
-3 0 1 7 12 25 23
-6 -1 4 11 24 26 20

-10 -8 -1 20 21 25 16 Table 2
Lerch Grossman final pit

The pit value is 24 financial uni-
ties and the blocks at the pit limit are 
highlighted. The same section was used 

as input into the algorithm using the 
Python programing language.

 The output is presented in  

figure 10. 
The same blocks are selected to be 

mined resulting in the same pit value.

Figure 10
Results classical methodology x Block 
Model and results of the algorithm
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7. Conclusion

8. References

Ford Fulkerson algorithm prioritizes 
the cash flow results to analyze the whole 
set of blocks. The search engine in depth 
based on the idea of building stacks to 
find the pits candidates proved to be very 
simple  For a three dimensional system, 
the neighborhood matrix needs not be 
modified. however, an indexing algorithm 
should be used to identify the sections in 

the actual block model.
The graph theory showed to be 

applicable to mathematically represent a 
geological block model. The matrix was 
built up in a way that its maximum and its 
minimized transpose represents the set of 
blocks that optimize the project cash flow.

The mathematical algorithm finds 
the true optimum unlikely approxima-

tion methodologies. A two-dimensional 
section was used to describe the applica-
tion of the algorithm. The results were 
compared with the traditional Lerch-
Grossmman algorithm achieving the 
same results. Nevertheless, the Graph 
would be more suited to manage irregu-
lar blocks and models with different 
angles of slope.
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