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ABSTRACT
Object-based change detection is a powerful analysis tool for remote sensing data, but few studies consider the potential of temporal 
semivariogram indices for mapping land-cover changes using object-based approaches. In this study, we explored and evaluated the 
performance of semivariogram indices calculated from remote sensing imagery, using the Normalized Differential Vegetation Index 
(NDVI) to detect changes in spatial features related to land cover caused by a disastrous 2015 dam failure in Brazil’s Mariana district. We 
calculated the NDVI from Landsat 8 images acquired before and after the disaster, then created objects by multiresolution segmentation 
analysis based on post-disaster images. Experimental semivariograms were computed within the image objects and semivariogram indices 
were calculated and selected by principal component analysis. We used the selected indices as input data to a support vector machine 
algorithm for classifying change and no-change classes. The selected semivariogram indices showed their effectiveness as input data for 
object-based change detection analysis, producing highly accurate maps of areas affected by post-dam-failure flooding in the region. This 
approach can be used in many other contexts for rapid and accurate assessment of such land-cover changes.

Index terms: Remote sensing; geostatistics; feature extraction.

RESUMO
Recentemente, variáveis geoestatísticas derivadas de imagens de sensoriamento remoto ganharam espaço dentre os procedimentos de detecção 
de mudanças, porém, o potencial temporal destas variáveis para o mapeamento das mudanças baseado na análise por objetos ainda é pouco 
estudado. Neste estudo, o desempenho de um conjunto de índices calculados de semivariogramas derivados de imagens NDVI bitemporais para 
detectar mudanças na cobertura do solo foi analisado e avaliado. O município de Mariana foi selecionado para teste e validação da metodologia 
devido ao grande impacto ocasionado pelo desastre. O processo iniciou-se com a aquisição de imagens Landsat 8 antes e após o desastre e o 
cálculo do NDVI. Os objetos foram criados através da segmentação em multiresolução baseada na imagem pós-desastre. Os semivariogramas 
experimentais foram gerados dentro de cada objeto e os índices foram extraídos e selecionados através da análise de componentes principais. 
Os índices selecionados foram utilizados como dados de entrada para o algoritmo support vector machines para a classificação de áreas 
de mudança e não mudança. Os índices selecionados se mostraram efetivos para a detecção de mudanças, indicando a possibilidade de 
utilização para a detecção de mudanças baseada em objetos, resultando em um mapa precisos das áreas inundadas afetadas pelo desastre. 
Esta abordagem pode ser usada em muitos outros contextos para uma avaliação rápida e precisa de tais mudanças na cobertura do solo.

Termos para indexação: Sensoriamento remoto; geostatistica; extração de atributos.

INTRODUCTION
The collapse of a mining dam in the Brazilian state 

of Minas Gerais on November 5th 2015, considered one of 
the biggest environmental disasters in the country’s history, 
resulted in the destruction of whole communities by a river 
of mud and mining waste. This calamity affected the Gualaxo 
River, a tributary to the Carmo River and ultimately the Doce 
River, waterways that supply water to a significant number of 
municipalities. The flood affected 600 kilometers of riverbed 
and destroyed human and animal lives as well as several 

land-cover classes (such as grasslands, urban areas, and native 
vegetation), including in permanent preservation areas. The full 
extent of the environmental impacts is yet unknown, and the 
changes within the affected area have yet to be fully quantified. 

Remote sensing techniques are effective in capturing 
the structure, rates, and changes of land cover. They can 
supply essential information concerning the ecological status 
of a region, including changes that modify plant phenological 
standards and deforestation (Munroe; Southworth; Tucker 
2002; Tucker et al., 2005; Yue et al., 2003). The Normalized 
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Difference Vegetation Index (NDVI) is an important approach 
to the analysis of land-cover structure analysis and its 
temporal modifications (Griffith et al., 2007). According to 
Costantini et al. (2012) and Garrigues et al. (2006), NDVI 
images are the most robust variable used to describe the spatial 
and temporal heterogeneity of a landscape’s biosphere. In 
addition, these data can be treated as regionalized variables 
once the information contained in a pixel is highly correlated 
with the information contained in neighboring pixels (Acerbi 
Junior et al., 2015; Curran, 1988).

Studies of environmental disasters have emphasized the 
importance of damage determination to assist environmental 
management programs and stressed the use of remote sensing 
images and geostatistical techniques as central tools for this 
kind of analytical approach (Sertel; Kaya; Curran, 2007). 
Combining remote sensing information with GIS techniques 
and geospatial databases can increase the accuracy and reduce 
the processing time of change detection and classification 
procedures (Berberoglu et al., 2000; Berberoglu; Akin 2009; 
Garcia-Pedrero et al., 2015). 

For example, semivariograms are an analytical 
technique used to assess the relationship and variance 
between points based on distance and a given variable. 
These have been used as measures of texture (Curran 1988; 
Woodcock; Strahler; Jupp et al., 1988), for improved image 
classification (Balaguer et al., 2010;  Balaguer-Beser et al., 
2011; Wu et al., 2015 Yue et al., 2013; Powers et al., 2015), 
and more recently, in change detection studies (Costantini 
et al., 2012; Sertel et al., 2007; Gil-Yepes et al., 2016). 
Acerbi Junior et al. (2015) demonstrated the potential of 
semivariogram parameters (derived from bitemporal NDVI 
images) to detect changes in Brazilian savanna vegetation, 
showing that these parameters increased on deforested areas 

and remained constant in regions where the land cover had 
not changed.

In recent years, semivariograms have also contributed 
to object-based image analysis (OBIA) (Meer, 2012). Powers 
et al. (2015) used semivariogram features and OBIA for 
classification of industrial disturbances in forest areas. 
Balaguer et al. (2010) achieved high-accuracy measurements 
by combining semivariogram features and spectral 
information in land cover mapping. Gil-Yepes et al. (2016) 
proposed and evaluated a set of new temporal geostatistical 
features for object-based change detection (OBCD) analysis 
within agricultural plots at two different dates, showing that 
the new set of cross-semivariogram and codispersion features 
provided high global accuracy measures when compared to 
the use of only spectral information.

Textural features have proven to be more effective 
than spectral bands alone for change detection (Chen 
et al., 2012; Wu et al., 2000). However, few studies 
have explored the potential of temporal semivariogram 
features for mapping land cover changes using the OBCD 
approach. We hypothesized that landscape changes 
could be accurately detected using only semivariograms 
calculated from NDVI images and so we explored and 
evaluated the performance of semivariogram indices in 
an object-based approach to detecting land-cover changes 
caused by the 2015 dam-collapse disaster in Brazil. 

MATERIAL AND METHODS
We derived the NDVI from Landsat 8 images for use 

in an object-based change detection approach to analyzing 
land-cover changes in the afflicted area, using the following 
methodology (graphically summarized in Figure 1):

Figure 1: Methodology workflow.
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(1) Image acquisition and NDVI transformation
(2) Object delimitation by multiresolution algorithm based 
on the post-disaster image
(3) Experimental semivariogram computed within the objects
(4) Generation of semivariogram indices, as proposed by 
Balaguer et al. (2010)
(5) Selection of the most important semivariogram indices 
by PCA analysis
(6) Change detection using the Support Vector Machine 
(SVM) algorithm
(7) Evaluation by the confusion matrix and its accuracy 
measures

Study area and data

The district of Mariana is located in the central 
region of Minas Gerais state, Brazil, between the 43º 05’ 
00” and 43º 30’ 00” meridians and the 20º 08’ 00” and 
20º 35’ 00” parallels (Figure 2). The district includes the 
upper portion of the Doce River basin and is characterized 
by hilly relief and abundant tablelands. The climatic 
conditions are typical of humid tropical highlands, with 

hot and rainy summers. The vegetation is predominantly 
composed of Atlantic Forest and Savanna biomes.

We acquired Landsat 8 satellite images from the 
United States Geological Survey for Earth Observation 
and Science (USGS/EROS) from October 2015 (pre-
disaster) and November 2015 (post-disaster), at the 
processing level of Landsat Surface Reflectance, with 
the appropriate geometrical corrections and reflectance 
values to the soil level. We then generated the NDVI 
(Equation 1), which is based on quotients and uses the 
spectral bands from the red and near-infrared bands to 
enhance vegetative characteristics and minimize the 
effects of shadows caused by the terrain’s topography 
(Berra et al., 2012; Vorovencii, 2014). The values of this 
index vary from -1 to 1, calculated as:

Figure 2: Study area location within Minas Gerais state, Brazil.

(1)
ρNIR-ρREDNDVI=
ρNIR+ρRED

where ρNIR  and ρRED are the reflectance values for the 
near-infrared and red wavelengths, respectively.
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Image segmentation 

In the object-based change detection method, 
pixels are not individually classified but rather combined 
into homogenous groups (objects) and classified together 
(Chen et al., 2012; Desclée; Bogaert; Defourny 2006; 
Hussain et al., 2013). The object is characterized using 
a large number of descriptive features derived from 
the images and becomes the basic unit of analysis. In 
comparison with pixel-based methods, additional spatial 
and contextual information can be obtained from the 
objects (Blaschke 2010; Hussain et al., 2013; Ruiz et al., 
2011; Wu et al., 2015).

Object-based semivariogram analysis is based on 
the delimitation of homogeneous groups, in which the 
objects’ boundaries are pre-defined and the semivariogram 
features are extracted from each object. Multiresolution 
segmentation is a basic procedure in the eCognition 
software employed in this study; we used a multiresolution 
segmentation algorithm (Baatz; Schäpe, 2000) to generate 
objects based on the post-disaster NDVI image. The size, 
shape, and spectral variation of each object are controlled 
by three key segmentation parameters: shape, compactness, 
and scale. The shape parameter was set to 0.1 and the 
compactness to 0.5. The most critical step is the selection 
of the scale parameter, which controls the size of the image 
objects. This sets a threshold of homogeneity determining 
how many neighboring pixels can be merged together to 
form an image object (Mui et al., 2015). We tested values 
from 80 to 200 for this parameter and obtained the best 
segmentation result using the value 150. Figure 3 shows 
the image segmentation procedure. 

Figure 3: Image segmentation procedure for feature extraction.

Experimental semivariogram

For continuous variables, such as the NDVI, the 
experimental semivariogram is defined as half of the 
average squared difference between values separated by 
a given lag, where this lag is a vector in both distance and 
direction (Atkinson; Lewis, 2000). The semivariance is 
defined from the spatial variance of measures performed 
in samples from a determined distance “h”, being the 
sum of the squares’ difference between the sampled 
values separated by a distance “h”, divided by two times 
the number of possible pairs on each distance. This was 
estimated using Equation 2:

(2)   
 

   
N h

2

i=1

1γ h = Z x -Z x+h
2N h

  

where N(h) is the number of pairs of points separated by 
the distance h, Z(x) is the value of the regionalized variable 
in the point x, and Z(x+h) is the value of the point (x+h).

The semivariogram is the graphic representation 
of the spatial variance versus distance h, which allows an 
estimate of the variance value for different combinations 
of pairs of points. The semivariance functions are 
characterized by three parameters: sill (σ²), range (φ), 
and nugget effect (τ²). The sill parameter is the plateau 
reached by semivariance values and shows the quantity 
of variation explained by the spatial structure of the 
data. The range parameter is the distance where the 
semivariogram reaches the sill, showing the distance 
until the data are correlated. The nugget effect is the 
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combination of sampling errors and variations that 
happen in scales smaller than the distance between the 
sampled points (Curran, 1988). 

Since we wanted to characterize the NDVI spatial 
variability to obtain maximum detail, we used a one-
pixel interval between two lags (the distance between 
pairs of points in the semivariogram calculation), so the 
lag size was equivalent to the pixel size (30 m). After 
some experimentation to find an appropriate optimal lag 
distance, we fixed the number of lags at 20 pixels (resulting 
in a lag distance of 600 m) to ensure that sill values would 
provide a concise description of data variability. According 
to Woodcock, Strahler and Jupp (1988), the size of the 
samples needs to be larger than the range of influence to 
characterize the initial part of the semivariogram and large 
enough to reveal the presence of periodicity.

Set of semivariogram indices

The set of semivariogram indices we used was 
described by Balaguer et al. (2010) based on the points 
defining the experimental semivariogram. These indices 
describe the shape of the experimental semivariograms and 
therefore the properties that characterize the spatial patterns 
of the image object (Table 1); they have been categorized 
according to the position of the lags used in their definition 
(near the origin and up to the first maximum). The devised 
feature groups provide information such as the change ratio, 
slope, concavity, and convexity (curvature) level of the 
images and data variability. 

The semivariogram texture description is 
traditionally achieved by fitting a mathematical function 
(i.e. exponential model, gaussian model and spherical 

Group Description Formula

a 1. Ratio between the values of the total 
variance and the semivariance at first lag RVF=

Variance
γ1

 

2. Ratio between semivariance values at 
second and first lag RSF=

γ2
γ1

 

3. First derivative near the origin FDO=
γ2- γ1

h
 

4. Second Derivative at third lag SDT=
γ4- 2γ3+ γ2 

h2  

b 5. First maximum lag value FML=hmax_1 

6. Mean of the semivariogram values up to the 
first maximum MFM=

1
Max_1

∑γi 

7. Variance of the semivariogram values up to 
the first maximum VFM=

1
Max_1

∑(γi-γ)² 

8. Ratio between the semivariance at first 
local maximum and the mean semivariogram 

values up to this maximum
RMM=

γMax_1

γMax_1
Mean  

9. Difference between the mean of the 
semivariogram values up to the first maximum 

(MFM) and the semivariance at first lag
DMF=MFM- γi 

10. Second-order difference between first lag 
and first maximum

SDF=γMax_1-2γMax_1
2

+ γ2 

11. Semivariance curvature AFM=
h
2
(γ1+2( ∑ γ1

max_1-1

i=2

)+γmax_1) - (γ1(hmax_1-h1)) 

Table 1: Semivariogram indices described by Balaguer et al. (2010). 

a=Indices that provide semivariogram information near the origin; b=Indices that provide semivariogram information at first maxima.
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Figure 4: Projection of proposed indices in principal component planes (PC1-PC2).

model) whose parameters (such as sill and range) are 
adopted as texture measures (Chen; Gong, 2004; Woodcock; 
Strahler; Jupp, 1988). This method often suffers from the 
selection of a proper function because simple functions 
are not sufficiently distinguishable and complex ones may 
be subject to overfitting (Chica-Olmo; Abarca-Hernández, 
2000). The semivariogram indices are free of the problems 
caused by modeling the experimental semivariogram and 
thus have become more popular for describing the spatial 
properties of remote sensing images (Wu et al., 2015). 

Feature extraction

We focused on two classes in this study: (1) no-
change objects consisting of areas with the same cover in 
both images and (2) change objects consisting of areas 
affected by flooding from the dam failure. A data set of 
200 objects (with 100 objects per class) was sampled with 
50% of the samples randomly chosen as training samples 
and the rest used as evaluation samples. Within the objects, 
the semivariogram indices were extracted in both images 
using FETEX 2.0 software (Ruiz et al., 2011), a feature 
extraction tool for object-based image analysis. 

Due to the high number of indices, some of the 
information they provide may overlap with others, and so 
are probably redundant in terms of efficiently describing 
the objects. Thus we employed principal component 
analysis (PCA) in order to group and interpret the 
redundancies in the information provided by the analyzed 
semivariogram indices. By choosing the variables with 
higher impact on the first two principal components, 
we were able to reduce the number of variables, avoid 
redundant variables (multicollinearity), and make further 
analyses more efficient. 

Change detection and evaluation

In order to detect changes in the images, we chose to 
use a support vector machine (SVM) algorithm. Consisting 
of a group of theoretically superior machine learning 
algorithms, this approach is especially advantageous in the 
presence of heterogeneous classes for which only a few 
training samples are available (Wu et al., 2015). 

SVMs operate by assuming that each set of inputs 
will have a unique relation to the response variable, and 
that the grouping and relation of these predictors to one 
another is sufficient to identify rules that can be used to 
predict the response variable from new input sets. To do 
this, SVMs project the input space data into a feature space 
with a much larger dimension, enabling linearly non-
separable data to become separable in the feature space. 
For example, this method has been successfully used in 
forestry classification problems (García-Gutiérrez et al., 
2015; Wu et al., 2015). We used the Gaussian or radial 
basis function (RBF) as the Kernel function and performed 
change detection evaluation using a confusion matrix 
(Congalton, 1991) and its accuracy measures, validating 
the results with a manually-produced  map.

RESULTS AND DISCUSSION

Semivariogram indices selection

By computing the PCA over the complete set of 
semivariogram features, we concentrated most of the data’s 
variability in the first components; the resulting visualization 
of the data allows for a better understanding of redundancies 
(Figure 4). The proportion of variability explained by PC1 
and PC2 (the first two principal components) was 53.15%.
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Group Indices PC1 PC2 PC3 PC4 PC5 PC6

a

RVF 1.454 0.13854 0.901146 -0.2345 -0.3515 -1.00135
RSF 1.0986 0.23884 1.362471 1.4613 -0.6134 -0.15828
FDO 1.8309 0.62721 0.007942 1.1657 0.4686 0.13167
SDT 0.3528 -0.96958 -1.34043 0.9214 0.5261 -1.53648
FML 1.1018 -0.90885 0.473809 -1.4019 -0.373 -0.69289

b

MFM 2.4106 0.35916 -0.2202 0.1055 0.4289 0.26043
VFM 2.107 -0.25231 -0.82415 -0.1135 0.1696 0.65377
DMF 2.454 0.23071 -0.28063 -0.2093 0.1089 0.17493
RMM 0.9161 -1.81738 1.014275 0.3209 -0.3654 0.32876
SDF -0.1225 -2.23006 -0.35766 0.3997 0.0717 0.63366
AFM 2.2536 0.07501 -0.28063 -0.8878 -0.1421 0.01068

a=Indices that provide semivariogram information near the origin; b=Indices that provide semivariogram information at first maxima.

Table 2: PCA eigenvalues.

As a result of PCA analysis for the group of indices 
that provide information near the origin, we removed RVF 
and RSF and included FDO and SDT as input data for the 
change detection analysis. After analyzing the indices 
that provided information up to the first maxima, we also 
removed AFM, VFM, FML and RMM and included DMF 
and SDF as further input data. We selected the variables 
that presented higher values in module in the first two 
components (Table 2).

Exploring the semivariogram indices 

We analyzed the semivariogram curves considering 
both the change (Figure 5a) and no-change (Figure 5b) 

classes. In the former, the image’s spatial variability 
changed considerably from native vegetation (pre-
disaster image) to flooded areas (post-disaster image). 
The flooded areas had a low overall variability due to the 
homogeneity of NDVI pixels with low internal variation. 
The high relative variability of native vegetation is 
explained by the presence of high and low NDVI values 
in the same object. In contrast, the semivariogram curves 
for the no-change objects presented similar values.

The pre-selected semivariogram indices decreased 
(FDO and DMF) or increased (SDT and SDF) considerably 
in the presence of changes (Figure 6a) and remained 
almost constant in the absence of changes (Figure 6b).

Figure 5: Semivariograms from pre- and post-disaster images for: (a) change objects; (b) no change objects.
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Figure 6: Values of pre-selected semivariogram indices from image epoch 1 and image epoch 2 for: (a) change 
objects; (b) no-change objects.

Figure 7: Semivariogram representation of the total data variance for the FDO and SDT indices: (a) heterogeneous 
objects, and (b) homogeneous objects.

FDO is the first derivate near the origin and 
represents the slope of the semivariogram at the first two 
lags; it shows the variability changes of the data at short 
distances. FDO presented high values for heterogeneous 
objects (Figure 7a) and low values for homogeneous 
objects (Figure 7b). SDT is the second derivative at 
the third lag. This index approximates the value of the 
second derivative of the semivariogram at the third 
lag. It quantifies the concavity or convexity level of the 
semivariogram at short distances, corresponding with the 
heterogeneity of the objects in the image. Negative values 
indicate that the semivariogram is convex and thus that the 
image is heterogeneous at short distances. SDT presented 
high negative values for change objects (Figure 7a) and 
low negative values for no-change objects (Figure 7b).

DMF is the difference between the mean of the 
semivariogram values up to the first maximum (MFM) 
and the semivariance at the first lag (difference mean of 
semivariogram and first lag semivariance). This index 
shows the decreasing rate of the spatial correlation 
in the image up to the lags where the semivariogram 
theoretically tends to be stabilized. The results showed 
a high variation of DMF values for change objects and 
a relatively low variation of DMF values for no-change 
objects. SDF is the second-order difference between the 
first lag and first maximum. This parameter provides 
information about the semivariogram curvature in that 
interval, also representing the low frequency values in 
the image. SDF values presented a high variation for 
change objects and low variation for no-change objects.
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Confusion Matrix Producer’s accuracy (%) User’s accuracy (%)

Change 100.00   85.71

No Change   93.10 100.00

Overall accuracy (%) 95.12
Kappa   0.88

Figure 8: Change detection results.

Table 3: Confusion matrix of the support vector machines classification.

Change detection assessment

The classification accuracy measures, using the 
selected semivariogram indices as input for the SVM 
algorithm, are shown in Table 3. The semivariogram 
indices showed their effectiveness in the classification 
of change and no-change classes, presenting an 
overall accuracy of 95.12% and producer’s and user’s 
accuracies higher than 85%. Figure 8 shows the change 
detection map (producer’s accuracy = 100%); all objects 
classified as no-change in the map are correct (user’s 
accuracy = 100%). However, according to the validation 

data set, there are still some misclassification problems 
with 14.29% of the objects classified erroneously as 
change (user’s accuracy = 85.71%) and the omission 
of 6.9% of change-class objects in the map.

In summary,  the semivariogram indices 
synthesized the most relevant information about the 
shape of the semivariogram (slope) in a few features. 
They identified the singular points (maxima) and 
enhanced the information contained in the first lags, 
where spatial correlation at short distances is higher. 
These indices also have a specific meaning, allowing 
them to be easily interpreted.
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CONCLUSIONS
In this study, we used spatial context to detect 

land cover changes resulting from a Brazilian dam 
failure using an object-based approach. We explored 
and investigated the potential of semivariogram indices 
as inputs for training the support vector machines 
algorithm for change detection. Our results indicate 
that landscape changes can be accurately detected using 
only textural features calculated from semivariograms 
derived from NDVI images. The semivariogram indices 
selected by PCA analysis showed their effectiveness 
in the classification results, presenting high accuracy 
values. Using semivariograms as the main geostatistical 
tool to describe spatial variability standards in data 
means that indices derived from NDVI variability have 
the potential to discriminate between homogeneous and 
heterogeneous classes within objects. This approach 
can be used in many other contexts for rapid and 
accurate assessment of such land-cover changes. Further 
research should explore the use of geostatistical features 
to characterize the degree of changes as well as the 
impact of the initial land cover class and the image 
segmentation epoch on the analysis results. Other 
studies could analyze the influence of seasonality on 
change detection in vegetated areas.
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