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ABSTRACT
The importance of the precise estimation of evapotranspiration is directly related to sustainable water usage. Since agriculture represents 
70% of Brazil’s water consumption, adequate and efficient application of water may reduce the conflicts over the use of water among the 
multiple users. Considering the importance of accurate estimation of evapotranspiration, the objective of the present study was to model 
and compare the reference evapotranspiration from different heuristic methodologies. The standard Penman-Monteith method was used 
as reference for evapotranspiration, however, to evaluate the heuristic methodologies with scarce data, two widely known methods had their 
performances assessed in relation to Penman-Monteith. The methods used to estimate evapotranspiration from scarce data were Priestley-
Taylor and Thornthwaite. The computational techniques Stepwise Regression (SWR), Random Forest (RF), Cubist (CB), Bayesian Regularized 
Neural Network (BRNN) and Support Vector Machines (SVM) were used to estimate evapotranspiration with scarce and full meteorological 
data. The results show the robustness of the heuristic methods in the prediction of the evapotranspiration. The performance criteria of 
machine learning methods for full weather data varied from 0.14 to 0.22 mm d-1 for mean absolute error (MAE), from 0.21 to 0.29 mm d-1 
for root mean squared error (RMSE) and from 0.95 to 0.99 coefficient of determination (r²). The computational techniques proved superior 
performance to established methods in literature, even in scenarios of scarce variables. The BRNN presented the best performance overall.

Index terms: Machine learning; model comparison; water management. 

RESUMO
A importância da estimativa precisa da evapotranspiração está diretamente relacionada ao uso sustentável da água. Uma vez que a 
agricultura representa 70% do consumo de água no Brasil, a aplicação adequada e eficiente de água reduz os conflitos sobre o uso da 
água entre os múltiplos usuários. Considerando a importância de uma estimativa precisa da evapotranspiração, o objetivo do presente 
estudo foi modelar e comparar a evapotranspiração de referência a partir de diferentes metodologias heurísticas. O método padrão 
Penman-Monteith foi utilizado como referência para evapotranspiração, porém, para avaliar as metodologias heurísticas com dados 
escassos, avaliou-se o desempenho de métodos difundidos na literatura em relação à Penman-Monteith. Os métodos utilizados para 
estimar a evapotranspiração a partir de dados escassos foram Priestley-Taylor, Thornthwaite. As técnicas computacionais Regressão 
Stepwise (SWR), Random Forest (RF), Cubist (CB), Rede Neural com Regularização Bayesiana (BRNN) e Máquinas de Vetor de Suporte 
(SVM) foram utilizados para estimar a evapotranspiração, tanto com dados meteorológicos escassos, quanto com dados completos. 
Os resultados mostram a robustez dos métodos de aprendizagem de máquina na predição da evapotranspiração. Os critérios de 
desempenho desses métodos para dados meteorológicos completos variaram de 0,14 a 0,22 mm d-1 para erro absoluto médio (MAE), 
de 0,21 a 0,29 mm d-1 para raiz do erro quadrático médio (RMSE) e de 0,95 a 0,99 para o coeficiente de determinação (r²). As técnicas 
computacionais mostraram desempenho superior em todos os cenários em relação aos métodos estabelecidos na literatura. A BRNN 
apresentou o melhor desempenho geral.

Termos para indexação: Aprendizado de máquina; comparação de modelos; gerenciamento de recursos hídricos.

INTRODUCTION
Evapotranspiration is a fundamental parameter 

in comprehending Earth’s hydrological cycle, as well 
as agricultural crops’ water demand (French; Hunsaker; 
Thorp, 2015; Zhang; Kimball; Running, 2016). Since 
agriculture is one of the bases of Brazil’s economy, 
the determination of evapotranspiration has great 
relevance in decision-making, especially for irrigation 

management. In this context, the evapotranspiration 
reflects directly on the calculations of crop’s daily 
demand (Feng et al., 2017a; Guermazi; Bouaziz; Zairi, 
2016; Toureiro et al., 2017).

The precise estimation of evapotranspiration is 
interconnected to sustainable water usage, where the 
supply of adequate amounts of water to crops is crucial 
(Djaman et al., 2018; Petropoulos et al., 2016, 2018). Since 
agriculture represents 70% of Brazil’s water consumption, 
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Figure 1: Localization of area of study and meteorological stations. 

the conflict over water resources in many regions, 
such as the Brazilian Cerrado, has increased with the 
expansion of irrigated areas (Maneta et al., 2009). Taking 
in consideration a specific volume of water, an adequate 
and efficient application of water quantities allows the 
attendance of larger irrigated areas, reducing the conflicts 
over the use of water among the multiple users (Abdullah 
et al., 2015; Karimi; Bastiaanssen, 2015; Khanal; Fulton; 
Shearer, 2017). 

The economical point of view should also be noted,  
for an example, if one chooses to apply a larger amount 
of water than necessary, not only will the expenses with 
electric energy be greater, but there may be losses related 
to soil erosion and leaching of soil nutrients, which leads 
to eutrophication of water bodies (Reddy; Cunha; Kurian, 
2018). On the other hand, when a quantity smaller than 
demanded by the crop is applied, these may present a 
decrease in productivity, resulting in a lower profitability 
of the agribusiness. 

According to the Food and Agriculture Organization 
(FAO), the standard method for the determination of 
reference evapotranspiration (ETo) is the Penman-
Monteith methodology (Allen et al., 1998). However, this 
methodology requires a wide range of climatic variables 
measured at site, such as temperature (maximum, average 
and minimum), solar radiation, wind speed and relative 
humidity, variables that aren’t readily available for many 
regions (Abdullah et al., 2015; Feng et al., 2017a). This 
fact makes it relevant to investigate more parsimonious 
and efficient possibilities for the estimation of reference 
evapotranspiration.

Heuristic methods, also known as machine 
learning or pattern recognition algorithms, have presented 
promising results in the modeling of meteorological 
parameters (Adnan; Latif; Nazir, 2017; Feng et al., 2017b; 
Yao et al., 2017; Zhou et al., 2017). These authors have, 
for other regions, estimated evapotranspiration from 
the same meteorological data required by the Penman-
Monteith, as well as from scarce data. Methods such 
as neural networks, regression trees, support vector 
machines and many others present, for the most part, 
a heuristic characteristic coupled with a high ability 
to generalize and model patterns (Wang et al., 2017b, 
2017c). 

Considering the importance of accurate estimation 
of evapotranspiration for the region and the high 
generalization capacity of machine learning algorithms, the 
objective of the present study was to model and compare 
the reference evapotranspiration from different heuristic 
methodologies, using as reference the standard Penman-
Monteith equation.

MATERIAL AND METHODS

Study area

The study area comprises the mesoregions Noroeste 
de Minas and Triângulo Mineiro/Alto Paranaíba in the 
state of Minas Gerais, Brazil (Figure 1). Altogether, 85 
municipalities compose the two mesoregions, with a total 
area and population of approximately 154 thousand km2 
and 2.7 million inhabitants.
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Table 1: Meteorological stations, geographic coordinates and altitude.

Municipality State OMM* Latitude Longitude Hypsometry (m)
Formoso MG 83334 -14.93° -46.25° 840.0
Arinos MG 83384 -15.91° -46.10° 519.0
Unaí MG 83428 -16.36° -46.88° 460.0
Paracatu MG 83479 -17.24° -46.88° 712.0
João pinheiro MG 83481 -17.73° -46.17° 760.4
Capinópolis MG 83514 -18.71° -49.55° 620.6
Ituiutaba MG 83521 -18.95° -49.52° 560.0
Patos de Minas MG 83531 -18.51° -46.43° 940.3
Frutal MG 83574 -20.03° -48.93° 543.7
Uberaba MG 83577 -19.73° -47.95° 737.0
Araxá MG 83579 -19.60° -46.94° 1023.6

* Denomination of the meteorological station according to the world meteorological organization.
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The Noroeste de Minas and Triângulo Mineiro/
Alto Paranaíba are similar mesoregions in their extensive 
plateau in regions of savannah, which facilitates the 
planting and use of agricultural machinery. For these 
reasons, medium and large sized entrepreneurs have 
widely explored the region while developing local 
agriculture with extensive use of technology (Bastos; 
Gomes, 2010). 

The mesoregions have a characteristic climate of 
the Brazilian Cerrado, with annual rainfall varying from 
1000 to 1400 mm, and presenting two well defined seasons, 
where 80 to 90% of the annual rainfall predominates during 
the rainy season (Mello et al., 2007). During the dry season, 
the water scarcity strongly affects the region, whereas the 
production of the second harvest is only possible through 
intensive use of irrigation.

Data

For the development of the study, daily data were 
used referring to 11 meteorological stations spaced in 
the study area (Figure 1). The adopted study period 
was between 1987 and 2016, summing 30 years of 
climatological information. The data were obtained 
from the Meteorological Database for Teaching and 
Research (BDMEP), a database of the National Institute 
of Meteorology (INMET) of Brazil. The stations are 
located in the mesoregions of the Triângulo Mineiro/
Alto Paranaíba and Noroeste de Minas. The information 
concerning the geographic coordinates, referenced in 
the Datum WGS-84, and hypsometry of each station are 
presented in Table 1.

The data provided by the meteorological 
stations, which were used in the present research are: 
average (Tavg, °C), maximum (Tmax, °C) and minimum 
air temperature (Tmin, °C); relative humidity (RH, 
%); solar radiation (SR, MJ m-2 d-1); and, wind speed 
(Ws, m s-1).

Reference evapotranspiration

The reference evapotranspirat ion is  the 
evapotranspiration referring to a hypothetical crop 
that completely covers the soil, is in active growth, 
does not present water and nutritional restriction, and 
presents specific characteristics such as albedo equal 
to 0.23 and height between 8 and 15 cm (Allen et al., 
1998). Among the various methods of ETo estimation, 
the Penman-Monteith (Equation 1), presented by the 
FAO, is recommended as the standard (Torres; Walker; 
McKee, 2011):

where: ETo = reference evapotranspiraton by Penman 
Monteith, mm d-1; Rn = net radiation, MJ m-2 d-1; G = soil 
heat flux, MJ m-2 d-1; Tavg = mean air temperature, °C; Ws 
= wind speed at 2 m height, m s-1; es = saturation vapour 
pressure, kPa; ea = actual vapour pressure, kPa; Δ Δ = slope 
of the saturation vapour pressure function, kPa °C-1; and, 
γ = psychometric constant, kPa °C-1.
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In order to evaluate the performance of machine 
learning methods using scarce meteorological data, the 
methodologies adopted in this research were the Priestley-
Taylor (Priestley; Taylor, 1972) and Thornthwaite 
(Thornthwaite, 1948) (Equations 2 and 3):

where: ETpt = reference evapotranspiration by Priestley-
Taylor, mm d-1; and, α = empirical coefficient equivalent 
to 1.26.

in which: ETtw = reference evapotranspiration by 
Thornthwaite, mm month-1; d = days in a month; Ta = 
monthly mean temperature, °C; and, I = annual heat index.

Modeling strategies

Stepwise Regression

One of the difficulties when working with linear 
regressions is selecting the predictors to be employed in 
the model. The Stepwise Regression (SWR) is a numerical 
modeling that may be applied by computational techniques, 
in which the independent variables are repeatedly removed 
and added to the multiple linear regressions in order to verify 
which equation will adapt and perform the best (Abraham 
et al., 2017). The final model is shown in Equation 4:

where: β0 = linear regression gain; β1...βn = offsets for every 
independent variable; X1...Xn = independent variables.

Random Forest

Random Forest (RF) is a machine learning method 
capable of performing both classification and regression 
procedures. A large number of regressions trees are created 
each from a “Bootstrap” sampling of the original dataset 
(Breiman, 2001). As an inherent characteristic of machine 
learning methods are the ability to solve complex interactions 
between predictor variables, even when they present high 
collinearity (Brokamp et al., 2017). In the case of regressions, 
the final prediction is performed through the means between 
the predictions of each tree (Rahman et al., 2016).

Cubist Regression

The Cubist regression (CB) is also based in 
regression trees. At the end of the model are generated 
several rules, where each rule is associated with a linear 
model. The model has the characteristic of being based on 
multiple regression models, making the final product the 
average of these. Although the prediction is made based 
on a multiple linear regression, the result is smoothed by 
the means of the predictions realized in previous knots of 
the tree (Im et al., 2012).  

Bayesian Regularized Neural Network

The neural network is formed by simple elements 
operating in parallel. Inspired by a biological neural 
network, the neural network receives its independent 
neurons in its input. The variables are passed to subsequent 
layers of neurons, where, passing through a transfer 
function, the weighted sum of input values are calculated, 
providing an output for the neuron in analysis (Wang et 
al., 2017a). The bayesian regularized neural networks 
(BRNN) are more robust than the networks that use the 
back propagation of the errors, besides avoiding the over-
fitting of the model (Ticknor, 2013). 

Support Vector Machines

Support vector machines (SVMs) are considered 
as supervised learning methods, which can be used both 
to classify a set of samples and to regress them. When a 
dataset is submitted to SVM analysis, they separate the data 
by constructing hyperplanes, aiming at the implantation 
of surfaces with the greatest possible margin between 
the datasets considered as different (Wang et al., 2017a). 
The larger the margin of the hyperplane, the greater is the 
generalization capacity of the model created to predict or 
classify the data set.

Performance criteria

In this study, five methods of pattern recognition 
were evaluated and compared to each other based on 
mean absolute error (MAE), root mean squared error 
(RMSE) and coefficient of determination (r²), which can 
be expressed by Equations 5 to 7:
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Table 2: Combinations of input variables for each artificial intelligence method.

SWR RF CB BRNN SVM Input combination
SWR1 RF1 CB1 BRNN1 SVM1 Tmax, Tavg, Tmin, RH, SR, Ws
SWR2 RF2 CB2 BRNN2 SVM2 T, RH, SR, Ws
SWR3 RF3 CB3 BRNN3 SVM3 T, RH, SR
SWR4 RF4 CB4 BRNN4 SVM4 T, SR
SWR5 RF5 CB5 BRNN5 SVM5 T, RH

RF: Random Forest; CB: cubist; BRNN: Bayesian Regularized Neural Network; SVM: Support Vector Machine; SWR:  Stepwise 
Regression. 

Table 3: Statistical parameters for the daily data set.

Xmean Xmax Xmin Sx Cv Cx R
Tmax 31.00 42.50 9.00 3.21 0.10 -0.32 0.71
Tavg 24.82 33.85 7.50 2.75 0.11 -0.43 0.67
Tmin 18.64 28.70 -2.00 3.14 0.17 -0.81 0.45
SR 18.95 33.00 6.00 4.40 0.23 -0.12 0.84
RH 66.48 100.00 17.30 14.47 0.22 -0.17 -0.52
Ws 1.82 10.30 0.00 1.19 0.65 1.14 0.54
ETo 4.15 10.10 0.80 1.30 0.31 0.79 1.00

in which: Oi = observed evapotranspiration data of order 
i; and, Pi =  simulated evapotranspiration of order i. The 
Penman-Monteith ETo will be used as reference for 
observed values.

The absolute mean error indicates the mean 
amplitude of the errors, whereas the root of the mean 
squared error adds a greater weight to the errors of greater 
magnitude, being important for highlighting possible 
outliers. The coefficient of determination indicates how 
much the generated model explains the observed variable.

Models validation

For heuristic methods, datasets are commonly 
divided in proportions such as 70-30 or 80-20 for training 
and test sets. However, the ideal ratio isn’t a consensus. 
For this reason, the data set was initially randomly divided 
into a training set containing only 1% of the data, which 
was gradually increased in order to verify how much 
longer the models would take to train and if performance 
improvement was significant. The training set was used to 

train and obtain optimal tuning parameters for each model, 
after that, a repeated k-fold cross validation was performed, 
where k = 10, and the number of repetitions = 10. The 
models were then used to predict the ETo for the test set.

Input combination scenarios

To evaluate the performance of the methods based 
on machine learning, five scenarios were simulated by 
different input combinations of variables for the models. 
The combinations used in this study are presented in 
Table 2, where, as can be seen, the numbers in front of each 
method indicate the input combination. For the scenarios 
“2” through “5”, with the intention to reduce possible 
collinearity effects, only the temperature variable with 
highest correlation to ETo (T) was used.

RESULTS AND DISCUSSION

Data analysis

The statistics of daily climatic parameters, Xmean, 
Xmax, Xmin, Sx, Cv e Cx, which denote the mean, maximum, 
minimum, standard deviation, coefficient of variation and 
skewness, respectively, are shown in Table 3. The daily 
ETo ranged from 0.80 to 10.10 mm, with a mean of 4.15 
mm and Cv of 0.31. SR presented a daily average of 18.95 
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Figure 2: Correlation and interaction between climatic variables for the training phase.

MJ m-2, ranging from 6.00 to 33.00 MJ m-2 throughout 
the study period. Along with SR, the Tmax and Tavg showed 
greater correlation to ETo than Ws, RH and Tmin. The 
temperature variables showed overall low coefficient of 
variation. In Figure 2 it is possible to verify the behavior of 
the variables in relation to ETo as well as among themselves 
for the training phase. Besides asymmetry, the kurtosis may 
also be observed in the diagonal plot of Figure 2. 

Although presenting high correlation among 
themselves, the maximum, mean and average temperature 
were kept for the computational modeling of the scenario 
“1”. This was done in the expectation that they could 
increase the explanatory power of these methods, given 
that machine learning methods are known to present high 
capacity of finding patterns in the data, even if they have 
high collinearity. For the remaining scenarios, only the Tmax 
was used, due to its higher correlation to ETo (Table 3).

Thornthwaite and Priestley-Taylor methods

The Priestley-Taylor method presented superior 
performance over the Thornthwaite method (Table 4). 
This was expected because the Thornthwaite is a monthly 
evapotranspiration method based solely on the average air 
temperature, while the Priestley-Taylor method takes in 
account the solar radiation, the climatic variable of highest 
correlation to ETo in the region (Table 3). The Priestley-
Taylor method presented MAE and RMSE of 0.58 and 
0.80 mm d-1, respectively, about 38% lower than the errors 
obtained through the Thornthwaite method.

The Priestley-Taylor method showed a greater 
efficiency than the Thornthwaite method, which 

corresponds to the lower data dispersion and is represented 
by the coefficient of determination (Figure 3). The 
Priestley-Taylor was more effective as well, as its fit line 
is closer to the ideal (1:1). 

Heuristic methods	

The size of training set was gradually increased 
during training phase. However, by the time the training 
set was composed by 20% of the original dataset, the time 
required to train the models had increased over 20 times 
while little performance enhancement was observed. 
Using 20% of dataset as training set improved MAE and 
RMSE by only 0.01 to 0.02 mm d-1. For these reasons and 
because the performance was already judged satisfactory, 
further analysis and discussion were based on the training 
set composed by 1% of full dataset.

While modeling evapotranspiration in each 
scenario, different optimal parameters were obtained for 
the heuristic methods. Optimal tuning parameters for the 
scenarios “1”, “2”, “3”, “4” and “5” were: for RF, 5, 2, 
2, 2 and 2 variables randomly chosen to build each tree, 
respectively, with 500 trees for all the scenarios; for the 
hidden layer of the BRNN model, 5, 5, 5, 5 and 4 neurons, 
respectively; for the number of neighbors and committees 
in the CB models, equal to 20 and 9, 20 and 9, 10 and 9, 
20 and 0, and, 20 and 0, respectively. SWR final equations 
were composed by Tmax, Tmed, RH, SR and Ws for scenario 
“1”, Tmax, SR and Ws for scenario “2”, and for the other 
scenarios, all available variables were used. SVM models 
kept the C parameter at a constant 1 for all scenarios.
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Table 4: Performance criteria of the Priestley-Taylor and 
Thornthwaite models in relation to Penman-Monteith.

MAE RMSE r²
Priestley-Taylor 0.58 0.71 0.80
Thornthwaite 0.93 1.15 0.39

MAE is in mm per day; RMSE is in mm per day; r² is dimensionless.

Figure 3: Comparison between the reference evapotranspiration estimated by the Priestley-Taylor and 
Thornthwaite methods in relation to the Penman-Monteith method.

The validation and testing performance of the 
SWR, RF, CB, BRNN and SVM methods for predicting 
ETo are presented in Table 5. The methods based on all 
available data (input combination “1”) presented higher 
accuracy (Table 5). The methods using only Tmax, RH, SR 
e Ws still presented high performance in the estimation 
of ETo, with r² varying between 0.93 and 0.98. The best 
performing methods, from best to worst, were BRNN, CB, 
RF, SWR and SVM. In addition, the training time of the 
models for the methods was considered (machine cost), 
which is highly dependent on the computer processor 
speed and number of cores available. Although providing 
the third best prediction performance, the RF method 
presented the highest machine cost, taking up to 10 times 
longer to train its models when compared to the CB and 
BRNN models. The methods with lowest machine cost 
were the SVM and SWR; on the other hand, these methods 
had lower performance when compared to the others. 

Gocić et al. (2015) estimated the reference 
evapotranspiration in Serbia using heuristic methods and 
obtained, at their best result, MAE and RMSE equal to 0.054 
and 0.233 mm d-1, respectively. The values of MAE were 
lower than the findings of the present study; on the other hand 
its RMSE was higher, which may indicate that, although the 
models are more accurate, they are not as efficient.	

When comparing the Priestley-Taylor method to 
the heuristic methods while using only temperature and 

radiation as input, the mean MAE and RMSE obtained 
by the heuristic methods were 28% and 15% lower, 
respectively, which is given by the superiority of the 
methods based in patterns recognition over traditional 
methods. Using scarce data, the authors Shiri et al. (2014)  
estimated reference evapotranspiration for Iran using 
several methods, including SVM and artificial neural 
networks (ANN). While using temperature and radiation 
data as input for SVM and ANN methods, Shiri et al. 
(2014) obtained values of MAE ranging from 0.33 to 
0.64 mm d-1, and RMSE ranging from 0.45 to 0.80 mm 
d-1, where the intermediate values referred to semi-arid 
regions, results similarly to the ones presented here.

It is important to highlight the robustness of 
the machine learning methods, since the validation 
performance presented better metrics than conventional 
equations diffused in the literature, such as the Priestley-
Taylor and Thornthwaite equations. The way the training 
and test sets were divided shows the high generalization 
capacity of the applied methods, since 1% of the 
meteorological station data (training set) was able to 
explain all the rest of the data (test set - 99%). This 
indicates that even with a dataset composed of a few 
years, the models would still be able to obtain similar 
performance as presented here.

Figure 4 illustrate the dispersions of the estimates 
obtained for the test phase by the optimal models. The 
fit line for the BRNN and CB models were very close 
to the ideal line (1:1) (Figure 4), however, for the input 
combinations 3, 4 and 5, BRNN performed better. The 
dispersion of the data, represented by r², was lower for 
the BRNN and CB methods, with similar performance. 
The SVM and SWR methods showed similar data 
dispersion, and the worst results among all methods 
here tested. 
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Table 5: Comparisons of the different methods in ETo prediction.

Validation Testing
MAE RMSE r² MAE RMSE r² Time 

RF1 0.15 0.21 0.98 0.14 0.20 0.98 1071
RF2 0.18 0.23 0.97 0.18 0.23 0.97 564
RF3 0.35 0.51 0.85 0.37 0.54 0.83 343
RF4 0.42 0.59 0.80 0.43 0.57 0.78 199
RF5 0.71 0.93 0.50 0.71 0.86 0.50 182
CB1 0.11 0.14 0.99 0.11 0.14 0.99 99
CB2 0.14 0.19 0.98 0.14 0.19 0.98 76
CB3 0.35 0.51 0.85 0.37 0.53 0.83 60
CB4 0.40 0.56 0.81 0.41 0.58 0.80 48
CB5 0.68 0.88 0.55 0.67 0.86 0.56 48

BRNN1 0.11 0.14 0.99 0.11 0.14 0.99 87
BRNN2 0.15 0.19 0.98 0.15 0.20 0.98 73
BRNN3 0.37 0.53 0.84 0.38 0.54 0.83 57
BRNN4 0.40 0.56 0.82 0.41 0.57 0.81 55
BRNN5 0.68 0.88 0.55 0.67 0.86 0.56 54
SVM1 0.21 0.29 0.95 0.21 0.29 0.95 40
SVM2 0.26 0.34 0.93 0.27 0.35 0.93 39
SVM3 0.42 0.63 0.78 0.42 0.63 0.77 35
SVM4 0.42 0.62 0.79 0.43 0.64 0.77 34
SVM5 0.71 0.92 0.51 0.69 0.90 0.53 34
SWR1 0.21 0.29 0.95 0.22 0.29 0.95 23
SWR2 0.26 0.34 0.93 0.27 0.35 0.93 23
SWR3 0.44 0.62 0.78 0.44 0.62 0.78 23
SWR4 0.44 0.60 0.79 0.45 0.62 0.77 23
SWR5 0.71 0.92 0.51 0.69 0.89 0.53 23

RF: Random Forest; CB: cubist; BRNN: Bayesian Regularized Neural Network; SVM: Support Vector Machine; SWR: Stepwise 
Regression; MAE is in mm per day; RMSE is in mm per day; r² is dimensionless; Time is in seconds.

The input combinations “4” presented higher 
explanatory power over the input combination “5”, which 
was expected, since SR presented higher correlation to ETo 
than RH (Table 3). For this reason, the use of RH instead 
of SR influenced on a much more significant dispersion 
of the data for the scenario “5”. Thus, using only Tmax 
and RH in the daily estimate of evapotranspiration isn’t 
as efficient, though its performance is still superior to 
estimating average evapotranspiration monthly, as in the 
case of the Thornthwaite method.

In general, the greater the number of variables 
available, the greater was the efficiency and effectiveness 
of modeling by the computational methods. This implies 
that a complete database (Tmax, Tavg, Tmin, RH, SR and Ws) 
are necessary for a precise estimation of ETo. However, 
the results obtained while using fewer climatic variables 
indicates that the high generalization capacity of the 
models presented here are a viable reality for regions that 
lack meteorological datasets, or even have only a couple 
of years of data.
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Figure 4: Comparison between the observed values and those estimated by the optimal models of the heuristic 
methods.

The ETo calculated by the Penman-Monteith 
method was adopted in this study as reference, though 
this method isn’t a direct measure of evapotranspiration. 
For this reason, the Penman-Monteith method also 
presents errors when compared to methods such as the 
lysimeter. In this context, the ideal approach would 
be fitting the models to evapotranspiration measured 
directly, where the methods could present even better 
results.

It is important to emphasize that for these 
regions, even though some meteorological stations are 
available, those are punctually acquired data, losing 
representativeness the farther the agricultural properties 
are. Therefore, the heuristic methodologies presented here 
open up the opportunity for irrigation managers to access 
precise estimations of evapotranspiration according to 
local data availability.

CONCLUSIONS
The present work evaluated and compared 

the performance of the pattern recognition methods 
RandomForest, Cubist, Bayesian Regularized Neural 
Networks, Support Vector Machines and Stepwise 
Regression in the estimation of ETo using the climatic 
variables maximum, average and minimum temperature, 
relative humidity, solar radiation and wind speed. The 
climatic data from 11 meteorological stations present in 
the mesoregions of the Triângulo Mineiro/Alto Paranaíba 
and Noroeste de Minas were used. In general, the heuristic 
methods presented better results when a greater number of 
variables were available. The results show the robustness 
of the methods in the prediction of the ETo, and, even in 
scenarios of scarce data, presented smaller errors than 
alternative methods established in the literature. The 
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climatic variables that presented the highest correlations 
and explanatory power over the evapotranspiration 
phenomenon were solar radiation and temperature. To 
conclude, the Bayesian Regularized Neural Network 
model presented, for all combinations of data entry, the 
most accurate and precise results. The results can be 
applied within the water resource management field, 
mainly in aid to estimation of evapotranspiration for 
irrigation and water balance.
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