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ABSTRACT 

The present study had as objective to evaluate the genotypic diversity and biological characteris-
tics, such as hemolysin, protease, elastase of 56 clinical strains of Pseudomonas aeruginosa isolated 
from 13 cystic fi brosis (CF) patients attending at the School Hospital of Campinas State University 
(UNICAMP), Brazil. Genotypic diversity has been determined by Ribotyping (RT) and the pattern 
of the enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) of each strain. The produc-
tion of elastase was signifi cantly different only among mucoid and nonmucoid isolates. Joint results 
obtained by (RT) and ERIC-PCR methods were able to discriminate all strains isolated from both 
the same and different patients. Additionally, we observed four strain clusters with low diversity. The 
most infective strains were located in just two clusters. These results suggest that either there is a 
strong selection towards a specifi c genotype or that specifi c isolates could be responsible for the ini-
tial and subsequent colonization processes. More studies are necessary to know if these conclusions 
can be generalized for the general CF population.
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INTRODUCTION

Cystic fibrosis (CF) is the most common sin-
gle gene disorder in Caucasian populations. It 
occurs approximately once in every 3,600 live 
births.1 CF is chiefly characterized by chronic 
obstruction and infection of the respiratory 
tract, exocrine pancreatic insufficiency and 
its nutritional consequences, and elevated 
levels of sweat electrolytes.2 Most CF patients 
suffer from chronic and, ultimately fatal, pul-
monary infections caused by bacterial strains 
such as Staphylococcus aureus, Haemophilus 
influenzae, and Pseudomonas aeruginosa. 
Initial colonization of airways by P. aerugi-
nosa is usually due to nonmucoid isolates 
that convert themselves to the mucoid phe-
notype, which is refractory to phagocytosis, 
resistant to antibiotics,3 and predominates 
during chronic lung infection. Multiple co-
lonial bacterial morphotypes with different 
antibiotic resistances and a large number 
of extracellular virulence factors, which are 

tightly regulated by cell-to-cell signalling 
systems, are often isolated from sputum.4,5 
The formation of mucoid colonies of P. 
aeruginosa composed of alginates, involving 
algD genes, protects the bacterium from the 
host’s immune response and from antibiot-
ics, and thus contributes to chronic pulmo-
nary inflammation.6 Other virulence factors 
can cause pulmonary damage by different 
mechanisms such as Exoenzyme S, Exotoxin 
A, Elastase and Phospholipases. Exoenzyme 
S is encoded by the exoS gene, an ADP-ribo-
syltransferase that is secreted by a type-III 
secretion system directly into the cytosol of 
epithelial cells.7 Exotoxin A, is encoded by the 
toxA gene and inhibits protein biosynthesis. 
LasB elastase, a zinc metalloprotease encoded 
by the lasB gene, has an elastolytic activity on 
lung tissue8 and the phospholipids contained 
in pulmonary surfactants may be hydrolysed 
by two phospholipases encoded by plcH and 
plcN (PLC-H and PLC-N, respectively).9
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P. aeruginosa is intrinsically resistant to several anti-
microbial drug classes and can rapidly develop resistance 
to other drugs during chemotherapy, making medical 
treatment difficult and ineffective. Once chronic infec-
tion is established, P. aeruginosa is virtually impossible to 
eradicate and is associated with increased mortality and 
morbidity in CF patients.10

Investigations of the nosocomial epidemiology of P. 
aeruginosa have been hampered by the inadequate dis-
criminatory ability of classical phenotypic methods such 
as serotyping, phage and pyocin typing, and biotyping.11,12 
Modern DNA-based techniques, such as enterobacterial 
repetitive intergenic consensus PCR (ERIC-PCR) and 
Ribotyping, have been widely used in the epidemiologi-
cal investigation of many microorganisms, including P. 
aeruginosa.13

In the present study, genotypic and phenotypic char-
acteristics of 56 Pseudomonas aeruginosa isolates obtained 
from 13 cystic fibrosis patients have been evaluated. The 
evaluation of the genotypic characteristics was accom-
plished by combining ribotyping (RT) and enterobacte-
rial repetitive intergenic consensus-PCR (ERIC-PCR) 
techniques as described by Wolska & Szweda (2008) and 
Liu et al. (1995).14,15 These results were compared with 
the phenotypic characteristics (biological) and all joint 
results were used to establish the epidemiology of this 
species in CF patients.

MATERIALS AND METHODS

Bacterial strains and media

This was a retrospective study where all 56 strains (26 mu-
coid and 30 nonmucoid) were isolated from the sputum 
during an exacerbation crisis of 13 CF patients attending 
at the Pediatric Sector of Clinical Hospital of the Campi-
nas State University (UNICAMP), Campinas, SP, Brazil, 
between April 1996 and January 1998 (Ethical Comission 
Process number n° 045/98 CEP/FCM from 05/27/98). 
Data about age, sex and antimicrobial treatment were not 
available. The isolates were identified by colony pigmen-
tation, grape-like odor, motility, and biochemical tests 
[carbohydrate fermentation of Glucose, Lactose and Su-
crose (-), citrate assimilation (+), lysine decarboxylase (-), 
indol (-), oxidase (+), beta-hemolysis on blood-agar (+), 
and DNAse (-)].16

Colony morphology

The colony phenotype classified as mucoid or nonmu-
coid of each isolate was performed after grown on Luria-
Bertani (LB) agar plates (24 h incubation at 37°C).17

Chromosomal DNA extraction

Chromosomal DNA extraction was performed according 
to the CTAB method.18

Ribotyping (RT) analyses

Ribotyping was peformed as described as Nociari et al., 

1996.19 Genomic DNA of Pseudomonas aeruginosa, puri-

fied as previously described,18 was digested with the re-

striction enzyme PvuII as specified by the manufacturer 

(Life Technologies) and runned on a 0.7% submersed 

agarose gel electrophoresis system. Size-separated re-

striction fragments were transferred to a 0.45 µm ni-

trocellulose membrane (Pharmacia) and Southern blot 

experiments were accomplished using the 16s rDNA 

marked fragment20 as a molecular probe for the rDNA 

gene. The rDNA fingerprints were recorded using the 1 

Kba DNA standard (Life Technologies) as a migration 

reference in each gel.

ERIC-PCR conditions and primers

Genomic bacterial DNA (50 ng) was used for the 

ERIC-PCR-reactions using the sequences ERIC 1 (5´-

ATGTAAGCTCCTGGGGATTCAC-3´) and ERIC 2 (5´-

AAGTAAGTgACTGGGGTGAGCG-3´) as described by 

Tosin et al. (2003)21 in a final volume of 50 µL as follows: 

an initial denaturation (94°C, 7 min), followed by 30 cy-

cles of denaturation (90°C, 30 sec), annealing (52°C, 1 

min), and extension (72°C, 8 min) with a single final 

extension (72°C, 16 min). A 7 µL volume of amplicon 

was loaded with 2 µL 2x loadingbuffer (10% glycerol, 

2 mM EDTA, 0.1% xylene cyanol, 0.1 % bromophenol 

blue) into one well of a 15-well 1.2% agarose gel in 1x 

Tris-Borate-EDTA (TBE) buffer with 0.5 µgethidium 

bromide mL-1. A 1 kb DNA ladder (Life Technologies) 

was placed at both ends and in the middle of each gel, 

which was runned at 80V for 3h at room temperature. 

Each ERIC-PCR test was performed in duplicate to en-

sure conformity of each fingerprint.

Fingerprint analyses and statistical analyses

Fingerprints of DNA fragments either obtained by RT22 

or by ERIC-PCR were recorded. The presence of a given 

band was coded as 1, and the absence of a given band 

was coded as 0 in a data matrix, which was analyzed by 

means of the POPGENE software (Version 1.31) with 

the Unweighted Pair Group Method using Arithmetic 

averages (UPMGA).23 A single dendrogram of similar-

ity comprising both techniques (RT and ERIC-PCR) 

was constructed for all isolates studied. Statistical 

analyses were accomplished through Chi-square meth-

odology using the Fisher test. The association between 

rows (groups) and columns (outcomes) was considered 

statistically significant using one tail (http://graphpad.

com/quickcalcs/Contingency1.cfm). Cluster was de-

fined as a group of strains sharing either identical or 

similar characteristics.

Stehling, Leite, Silveira
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Hemolysin production

The method to detect the hemolysin production em-
ployed sheep blood agar. The strains were spread out  
onto the surface of blood agar plates and incubated 
for 18 h at 37°C. The formation of a clear halo around 
the colony was indicative of the production of hemo-
lysin.24

Protease production

Protease production was assayed by growing the strains in 
BHI medium overnight (37°C), followed by inoculation 
in depth in tubes containing 5 mL of a 12% gelatin solu-
tion and incubation at 37°C for 24 h. Protease activity was 
verified by gelatin liquefaction.25

Elastase activity

Elastase activity was assayed by growing strains in BHI 
medium overnight (37°C) and dropping 50 µL of this 
culture onto a Petri dish containing elastase solution agar. 
The culture was incubated at 37°C overnight and elastase 
production was verified by the presence of a clear halo 
around the colony.24

RESULTS

The studied isolate phenotype characteristics (hemolysin, 
protease, and elastase) are shown in Table 1. The isolates 
were identified according to the source patient (e.g., P1, 
P2, P3, etc.) and each patient’s isolated strains were de-
scribed as A, B, C, or D. Production of alginate by the 
strain was identified as either M (mucoid) or NM (non-
mucoid) For example, P1AM means that a mucus pro-
ducing strain (mucoid) (A) was isolated from patient 1, 
while P1AMN is a mucus not producing strains (nonmu-
coid) that was also isolated from patient 1. There was a 
characteristic association only between colony morphol-
ogy and elastase expression (p < 0.05).

The ribotyping (RT) assay was able to detect frag-
ments in 50 out of the 56 isolates and demonstrated 
the presence of eight different DNA fragments with 
molecular weights ranging from 2,151 bp to 12,216 
bp. The detection of ERIC sequences by PCR produced 
19 DNA fragments ranging from 396 bp to 12,216 bp 
with fragments of 12,216 bp, 1,205 bp, 674 bp, and 
488 bp found in 70.4%, 52.0%, 52.0%, and 100.0% 
of the isolates, respectively (results not shown). The 
dendrogram of similarity obtained using the joint re-
sults of RT and ERIC-PCR demonstrated the existence 
of four main clusters (A-D) with a small dissimilar-
ity between clusters; approximately 18% between clus-
ters A and B, 19% between cluster C and A and B, and 
22% between cluster D and the other three clusters 
(Figure 1). Clusters B contained the majority of the 
isolates (n = 30, 53.6%), while cluster A contained 19 

Table 1. Biological characteristics of Pseudomonas 
aeruginosa isolates and colony morphology

Exoenzimes Mucoid strain  Nonmucoid p value

(groups) (outcome1) strain (p ≤ 0.05)*

  (outcome2)

Hem (+)  53.85% 53.33%   

(group 1) (14/26) (16/30) 
p = 0.5911

Hem (-)  46.15% 46.67%

(group 2) (12/26) (14/30)

Prt (+)  38.46% 36.67%   

(group 1) (10/26) (11/30) 
p = 0.5542

Prt (-)  61.54% 63.33%

(group 2) (16/26) (19/30)

Ela (+)  34.62% 63.33%

(group 1) (9/26) (19/30) 
p = 0.0299*

Ela (-)  65.38% 36.67%

(group 2) (17/26) (11/30)

Hem (+) and Prt (+)  11.54%  13.33%

(group 1) (3/26) (4/30) 
p = 0.2308

Hem (-) and Prt (-)  3.85% 23.33%

(group 1) (1/26) (7/30)

Hem (+) and Ela (+)  15.38% 20.00%

(group 1) (4/26) (6/30) 
p = 0.2797

Hem (-) and Ela (-)  11.54% 33.33%

(group 2) (3/26) (1/30)

Prt (+) and Ela (+)  3.85% 3.33%

(group 1) (1/26) (1/30) 
p = 0.5238

Prt (-) and Ela (-)  15.38% 3.33%

(group 2) (4/26) (1/30)

Hem (+) Prt (+) and 15.54% 16.67%

Ela (+)† (group1) (3/26) (5/30) 
p = 0.3250

Hem (-) Prt (-) and 26.92% 16.67%

Ela (-)‡ (group 2) (7/26) (5/30)

Hem, Hemolysin; Prt, Proteinase; Ela, Elastase. *Statistically signifi-
cant (Fisher test) results. †Strains positive for all exoenzyme factors: 
‡Strains negative for all exoenzymes factors.

(33.9%), cluster C contained 5 (8.9%), and cluster D 
contained 2 (3.6%) of the isolates. In these clusters, 
some isolates were allocated in groups of higher or 
lower similarity and most strains were discriminated. In 
cluster A, 14 of the isolates had 100% similarity, forming 
six real clones; in cluster B, 6 of the isolates had 100% 

Molecular typing and biological characteristics of Pseudomonas aeruginosa isolated from cystic fi brosis patients in Brazil
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similarity, forming three real clones. Cluster C had only 
one real clone, which was formed by two isolates. From 
these 10 clones, 8 had strains that were isolated from the 
same patients and 2 had strains isolated from different 
patients; P1CM and P2AM (cluster A) and P3CM and 
P6CNM (cluster B). On the other hand, we also veri-
fied that the same patient could either have genomically 

distinct isolates located in either the same cluster (P2AM 
and P2ANM, P6ANM, and P6CM) or different clusters 
(P1, P6, P11, P13).

It was observed that although some colonies were ge-
nomically identical according to their location in the den-
drogram, they could express different exoenzymes (P1AM 
and P1ANM; Figure 1).

Figure 1: Dendrogram of dissimilarity (%) of Pseudomonas aeruginosa strains including date of isolation and virulence factors.
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DISCUSSION

This work was carried out with the prime objetive of as-
sessing the genomic variability of Pseudomonas aeruginosa 
strains isolated from patientes suffering from cystic fi brosis, 
combining two different molecular techniques in order to 
increase the methodology sensitivity.

To date, several techniques have been used to assess 
the genomic variability of P. aeruginosa, including primed 
PCR,11 pulsed fi eld gel electrophoresis,1,11 ribotyping,26,27 
multi-locus sequence typing (MLST),28 and enterobacterial 
repetitive intergenic consensus-based PCR (ERIC-PCR).29 
Although pulsed fi eld gel electrophoresis (PFGE) is con-
sidered to be the gold standard for the determination of 
genotype characteristics and is largely used throughout the 
world,21,30,31 it is time consuming, requires relatively large 
DNA quantities, and depends on expensive equipment. For 
these reasons, although occurring the possibility of loosing 
a better accuracy of the analysed data, we have chosen to 
combine the results of RT and ERIC-PCR methods to deter-
mine genomic variability and discriminate bacterial isolates 
in different cystic fi brosis patients.14,15 All PCR-based ap-
proaches represent useful tools for the epidemiological typ-
ing of nosocomial bacteria because of their simplicity and 
speed compared with those of PFGE. In the work of Liu et 
al. (1995), it was demonstrated that discriminatory power of 
ERIC-PCR was equivalent to that of PFGE.

Additionally, we determined the production of some 
pathogenicity-related exoenzymes (hemolysin, gelatinase, 
and elastase) to better characterize these isolates in an attempt 
to correlate exoenzyme production with colony morphology.

The dendrogram of similarity obtained using the joint 
results of RT and ERIC-PCR demonstrated the existence 
of four clusters (A-D), with two of them (A and B) con-
taining most of the studied isolates (n = 49, 87.5%). Ad-
ditionally, 10 real clones (100% similarity) were detected. 
Strains were isolated from the same patients in eight of 
the clones, and in two of the clones, the strains were iso-
lated from different patients. Patients could also be colo-
nized by strains classified as belonging to different clus-
ters (A and B, B and C). These observations suggest that 
some of the patients were colonized by either the same or 
different isolates along the time, as previously described 
by Sener et al. (2001).32

The most relevant result of our study is the fi nding that 
four main bacterium clusters, with the predominance of 
two clusters, are responsible for colonizing CF patients. 
This suggests that either there is a strong selection towards 
a specifi c genotype, which could originate by chromosome 
rearrangements,33,34 or that primarily specifi c isolates con-
taining pathogenic gene islands may be responsible for 
the initial and subsequent colonization processes. As this 
study was carried out using a small number of patientes 
and strains this statement cannot be generalized for all 

cystic fi brosis population and further studies must be ac-
complished to confi rm it.

Regarding the biological characteristics studied, a sig-
nifi cant difference between mucoid and nonmucoid isolates 
have been observed only for the production of elastase. The 
results obtained in this work are similar to those published 
by Berka et al. (1981).35 Hemolysin production correlated 
with isolate morphotypes; 80% of mucoid and 20% of non-
mucoid isolates were positive for this characteristic, which 
also confi rms the results obtained in the previous work of 
Stehling et al. (2008)36 in which nonmucoid isolates pre-
sented a statistically signifi cant result regarding elastase 
production when compared with mucoid isolates. However, 
this result does not agree with those published by Storey et 
al. (1992)37 and Jagger et al. (1983)38 that demonstrated that 
elastase production in mucoid and nonmucoid isolates of P. 
aeruginosa was not statistically signifi cant.

Finally, the observation that colonies with identical ge-
nomic backgrounds are able to express different exoenzymes 
would refl ect either their ability to respond to different phys-
iological moments or different tissues of either the same or 
different hosts, as suggested by Stehling et al. (2008).
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