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Abstract
Background: Smoking dependence is a chronic disease and a public health problem. The neurobiology 
of nicotine addiction can explain smoking behavior. This system has genetic variability that has been 
associated with vulnerability to dependence. Genetic variability in the neurobiology of smoking can 
help to understand why individuals exposed to drugs may or may not become addicted. Objective: 
This study aims to address genetic variability in the neurobiology of smoking addiction with a focus on 
polymorphic genes related to the nicotinic response and the dopaminergic reward pathway. Method: 
This work involved a search of the main scientific research on genetic variability in the neurobiology 
of smoking and its effects on smoking behavior. One hundred and five studies were selected, most of 
which highlighted polymorphisms in the genes of nicotinic receptors, dopamine receptors, and nicotine 
metabolism. Results: The majority of studies have focused on genes related to the activation of the 
dopaminergic reward system by nicotine. Combinations between different polymorphisms were also 
highlighted, showing that interactions can determine a genetic profile of predisposition to smoking 
addiction. Additionally, gender and ethnicity were identified as relevant factors. Conclusion: Knowledge 
of the genetic bases involved in the individual response to smoking can enable a better understanding of 
inter-individual differences in smoking behavior, and contribute to improving the treatment of addiction.

Keywords: smoking; genetic polymorphisms; nicotinic dependence; smoking behavior; neurobiological 
genetic variability.

Resumo 
Introdução: A dependência nicotínica é uma doença crônica e um problema de saúde pública. O 
comportamento tabágico pode ser explicado pela neurobiologia da adição, cujas variações genéticas 
têm sido associadas à dependência. A variabilidade genética na neurobiologia do tabagismo pode 
ajudar a entender por que indivíduos expostos a drogas podem ou não se tornar viciados. Objetivo: 
Este estudo tem como objetivo abordar a variabilidade genética na neurobiologia do tabagismo com 
foco em genes polimórficos relacionados à resposta nicotínica e à via de recompensa dopaminérgica. 
Método: Uma pesquisa foi realizada nas principais bases de dados científicos sobre a variabilidade 
genética na neurobiologia do tabagismo e seus efeitos no comportamento do tabagismo. 105 estudos 
foram selecionados, em sua maioria destacando polimorfismos nos genes de receptores nicotínicos, 
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receptores de dopamina e de metabolismo da nicotina. Resultados: A maioria dos estudos concentrou-se 
em genes relacionados à ativação do sistema de recompensa dopaminérgico pela nicotina. Determinadas 
combinações entre genótipos de diferentes polimorfismos também se destacaram, mostrando que 
interações gênicas podem determinar um perfil genético de predisposição ao tabagismo. Além disso, 
gênero e etnia foram identificados como fatores relevantes. Conclusão: O conhecimento das bases 
genéticas envolvidas na resposta individual ao tabagismo pode permitir uma melhor compreensão das 
diferenças interindividuais no comportamento tabágico e contribuir para melhoria dos tratamentos 
disponíveis para a dependência.

Palavras-chave: tabagismo; susceptibilidade genética; dependência nicotínica; comportamento tabágico; 
variabildade genética neurobiológica.

INTRODUCTION
Tobacco smoking is a public health problem internationally recognized as a chemical 

dependency, with industrial cigarettes being considered the most important form of 
consumption1,2. According to the Tobacco Atlas, 5.7 trillion cigarettes were consumed worldwide 
in 20162. Tobacco and tobacco smoke contains more than 8 thousand substances, among which 
nicotine, a psychoactive substance, is responsible for the addictive effects3. The verification of 
this psychoactive role means smoking is classified, according to the Review of the International 
Classification of Diseases and Related Health Problems (ICD10), in the group of mental and 
behavioral disorders related to the use of psychoactive substances4.

Tobacco smoke is the main cause of preventable mortality and morbidity in the world 
and accounts for the deaths of 8 million people per year. Of these, 1.2 million are non-smokers 
exposed to secondhand smoke1. For instance, in 2017, smoking was associated with 12.6% of 
the total deaths in Brazil5. According to data from Vigitel 2019, the total percentage of smokers 
aged 18 or over in Brazil was 9.8%, with 12.3% among men and 7.7% among women. Vigitel 
data points to a reduction in prevalence in both genders, although more pronounced in men6. 
This data indicates a new public health concern regarding the damage to women’s health 
and an increase in tobacco-related diseases1. Although overall consumption has declined in 
recent years, the future path of global tobacco control is still uncertain and future projections 
are worrying. It is estimated that by the end of 2020, more than 10 million people will die from 
cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer caused by 
tobacco use. Half of these deaths will occur during the productive years, with an individual loss 
of 10 to 20 years of life. In 2030, 80% of consumption-related deaths will occur in developing 
countries7.

Despite knowledge of these adverse health effects, smoking addiction explains why 
about 70% of smokers want to quit smoking, but have not succeeded. Of these, about a 
third are successful for just one day and less than 10% are abstinent for twelve months8, with 
cessation treatment being successful in only 35% of cases9. Smoking behavior is complex and 
multifactorial, determined by a combination of biological, psychological, and environmental 
factors8. Heredity is a strong component of tobacco use and its influence on dependence is at 
least 50%10. Genetic variations can influence up to 80% of characteristics of smoking behavior, 
such as initiation, persistence in smoking, and successful cessation11.

Genetic variability in the neurobiology of smoking and other addictions can help to 
understand why individuals exposed to drugs may or may not become addicted. In addition, 
knowledge of the genetic bases involved in the individual response to smoking can contribute 
to improving the treatment of addiction12. In this sense, this study aims to address genetic 
variability in the neurobiology of smoking addiction, focusing on polymorphic genes related 
to the nicotinic response and the dopaminergic reward pathway.

METHOD
This work involved a search of the main scientific research on genetic variability in the 

neurobiology of smoking and its effects on smoking behavior. Bibliographic searches were 
carried out between 2017 and 2020 in the PubMed, Scielo, and Medline databases. The following 
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terms were used: genetic susceptibility, polymorphic genes, smoking, and nicotine addiction. 
Articles in Portuguese and English published between 2000 and 2020 were selected and 
qualified, according to their abstracts, as possible candidates to provide technical-scientific 
bases for this paper. At the end of the search, duplicate references and unavailable full studies 
were excluded. Two researchers analyzed and classified each abstract as being outside or 
within the scope.

RESULTS AND DISCUSSION
The search selected 105 articles that were used as a theoretical basis for the preparation 

of this work. Figure 1 presents the flowchart of the stages of the identification, selection, and 
inclusion of scientific articles.

Figure 1. Flowchart of the identification, selection, and inclusion of scientific articles

Neurobiology of tobacco dependence
The neurobiology of smoking explains the molecular mechanism of the development of 

addiction based on the psychoactive character of nicotine. Inhaled nicotine is absorbed in the 
lungs from cigarette smoke and reaches the brain in 10 to 60 seconds, where it binds to nicotinic 
acetylcholine receptors (nAChR) in the mesolimbic system, producing the addictive effects of 
strengthening the smoking habit through activation of the dopaminergic reward system13,14.

In the presence of nicotine, the flow of dopamine increases in the mesolimbic system, 
activating brain circuits to regulate feelings of pleasure and reward. The mesolimbic 
dopaminergic system is the main neurobiological structure associated with addiction to 
smoking and plays a crucial role in reinforcement15. This system is mainly composed of the 
ventral tegmental area and the accumbens nucleus. These regions are related to the mechanisms 
of addiction to nicotine, such as craving, memory, emotions related to use, tolerance, and 
dysphoria due to abstinence. In addition to dopaminergic hyperactivity, serotonin is released 



44/15

Genetic variations in the neurobiology of smoking behavior

Cad. Saúde Colet., 2023; 31(1):e31010250 | https://doi.org/10.1590/1414-462X202331010250

in the acute phase of nicotine consumption. Additionally, prolonged exposure desensitizes the 
gamma-aminobutyric acid system (GABAergic), an inhibitor of brain systems, which reinforces 
the behavior of compulsive use of nicotine13,14.

The mechanism of activation of the dopaminergic reward system by nicotine occurs 
by binding nicotine to the nicotinic receptors of presynaptic neurons (nAChRs), thereby 
opening cationic channels and, consequently, causing neuronal depolarization. Under these 
circumstances, dopamine and other neurotransmitters are released in the synaptic cleft 
and bind to dopamine receptors (DRDs) in post-synaptic neurons, transmitting the signal 
between neurons. Dopamine is released from the synaptic neurons and some of it is captured 
by dopamine transporters (DAT) in the presynaptic neurons. After reuptake, dopamine can 
then be repackaged into vesicles for use in future neurotransmissions or can be degraded by 
monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT)14 (Figure 2).

Figure 2. Activation of the dopaminergic reward system by nicotine (nAChRs: Nicotinic acetylcholine 
receptors; DRDs: Dopamine receptors; DATs: Dopamine transporters; MAO: Monoamine oxidase; COMT: 

Catechol-O-methyltransferase; NRT: Nicotine Replacement Therapy).

The genes involved in the neurobiology of smoking behavior have been investigated as 
candidates for individual susceptibility to smoking. Among these, special attention has been 
paid to those related to the nicotinic response and the neurotransmitter dopamine, considered 
the key to substance addiction and abuse8,15.

The first group of genes addressed in this study is directly related to the nicotinic response 
and is represented by the CYP2A6 metabolism gene (Cytochrome P4502A6) and by the genes 
encoding the nicotinic acetylcholine receptors, CHRN8,16. The second group includes the genes 
involved in the dopaminergic pathway, which are capable of interfering with the concentration 
of dopamine in the synaptic cleft. These are the dopaminergic receptor genes DRD2/ANKK1 and 
DRD4, the carrier gene of dopamine transporters (SLC6A3), and the genes of metabolism 
Dopamine B-hydroxylase (DBH), Catechol O-methyl transferase (COMT) and Monoamine 
oxidase (MAO)13,15. Table 1 presents the main characteristics of the genes studied in this work.
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GENE VARIABILITY RELATED TO NICOTINIC RESPONSE

Polymorphism of CYP2A6
Approximately 80% of nicotine is converted into cotinine by the action of the enzyme 

expressed by the Cytochrome P4502A6 gene (CYP2A6). Thus, variations in this gene may alter the 
enzymatic activity, interfering with the concentration of nicotine that reaches the target sites16. 
Apparently, CYP2A6 functional polymorphisms, in addition to affecting smoking behavior, are 
also associated with an increased risk of lung cancer17.

An association between CYP2A6 genotypes and nicotine dependence has been reported 
using the Fagerström Test for Nicotine Dependence (FTND) to verify the degree of nicotine 
dependence. Carriers of the wild allele CYP2A6*1, called normal metabolizers, are the most 
susceptible to tobacco dependence due to needing to consume a greater number of cigarettes 

Table 1. Neurobiological genetic polymorphisms associated with smoking behavior

Polymorphism Gene function Variant 
allele Effects on smoking behavior References

CYP2A6 Nicotine 
metabolization *2*4

Lower risk of becoming a smoker, lower degree of 
nicotine dependence, fewer quantity of cigarettes 

consumed, and greater success in cessation

17-21

CHRNA5 rs16969968 Nicotinic acetylcholine 
receptor A

Higher risk of becoming a smoker, greater quantity 
of cigarettes consumed, greater degree of nicotine 
dependence, lower chance of smoking cessation

22-29

CHRNA3 rs1051730 Nicotinic 
Acetylcholine receptor T

Higher risk of becoming a smoker, greater quantity 
of cigarettes consumed, earlier smoking initiation, 
higher cotinine levels, greater degree of nicotine 
dependence, lower chance of smoking cessation

17,22,28-33

CHRNA3 rs578776 Nicotinic acetylcholine 
receptor T

Lower risk of becoming a smoker, fewer quantity 
of cigarettes consumed, lower degree of nicotine 

dependence, greater chance of smoking cessation

25,27,34

CHRNA4 rs1044396 Nicotinic acetylcholine 
receptor T

Higher chance of smoking cessation, lower risk 
of becoming a smoker, lower degree of nicotine 

dependence, lower cotinine levels

19,35-39

CHRNB2 rs2072661 Nicotinic acetylcholine 
receptor A Lower chance of smoking cessation, greater degree of 

nicotine dependence
40-42

DRD2/ ANKK1 
rs1800497 Dopamine receptor A1 (T)

Lower chance of smoking cessation, higher risk of 
becoming a smoker, higher risk of regular use of 

tobacco, earlier smoking initiation, greater degree of 
nicotine dependence, greater quantity of cigarettes 

consumed, shorter periods of abstinence, fewer 
attempts to quit smoking, less effectiveness in NRT  

and bupropion

30,43-49

DRD4 VNTR Dopamine receptor Short 
allele

Lower risk of smoking, fewer cigarettes consumption, 
lower degree of dependence, higher chance of 

smoking cessation using NRT

50-53

SLC6A3 VNTR Dopamine reuptake 9-repeat
Later smoking initiation, shorter period of smoking, 

longer periods of abstinence, greater chance of 
smoking cessation

54-58

DBH rs77905 Dopamine 
metabolizing enzymes G Greater persistence of smoking, less effectiveness in 

NRT
59,60

DBH rs3025343 Dopamine 
metabolizing enzymes A Lower chance of smoking cessation 61,62

COMT rs4680 Dopamine 
metabolizing enzymes Met (A)

Decreased risk of being a smoker, later smoking 
initiation, lower degree of nicotine dependence, more 

effectiveness in NRT

60,63-69

MAOA VNTR Dopamine 
metabolizing enzymes 4-repeat Greater quantity of cigarettes consumed, greater 

degree of nicotine dependence
70,71

MAOA rs1137070 Dopamine 
metabolizing enzymes T decreased risk of being a smoker 60,72

MAOB rs1799836 Dopamine 
metabolizing enzymes G Decreased risk of being a smoker, later smoking 

initiation
70,73
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to maintain satisfactory levels of nicotine in the blood18. Other polymorphic variants of the 
CYP2A6 gene, such as the CYP2A6*9 and CYP2A6*12, have smaller enzymatic activity, and the 
CYP2A6*2 and CYP2A6*4 variants are associated with a total loss of activity. So, depending 
on the gene variant carried, an individual is categorized as a normal, intermediate, or slow 
metabolizer, with 100%, less than 75%, or less than 50% enzymatic efficiency, respectively16,18.

Wassenaar et al.18 observed a higher quantity of cigarettes consumed per day by individuals 
possessing normal metabolizer genes in comparison with those having slow metabolizers. 
Although other studies have not reported the same association74 or even divergent results75,76, 
several works have shown a direct association between the CYP2A6 genotype of lower enzyme 
activity and the lower risk of becoming a smoker, less nicotine dependence, fewer cigarettes 
consumed and greater success in cessation17-21.

CHRN gene polymorphisms
The binding of nicotine to nicotinic acetylcholine receptors (nAChR) increases the 

concentration of dopamine and  other neurotransmitters, promoting the activation of reward 
mechanisms, which is crucial for smoking behavior. Some variations found in the clusters of 
genes encoding nAChR in dopaminergic neurons are involved in the development of addiction. 
Special attention has been given to polymorphisms in the CHRNA4/CHRNB2, CHRNB3/CHRNA6, 
and CHRNA5/CHRNA3/CHRNB4 gene clusters22,23.

In 2007, an analysis of 3713 Single Nucleotides Polymorphisms (SNP) polymorphisms was 
published, highlighting the association of SNPs CHRNA3 (rs578776 C>T; rs1051730 C>T) and 
CHRNA5 (rs16969968 G>A) with smoking21. Based on this, several other studies have reported 
the association of gene variants of nicotinic acetylcholine receptors with nicotinic dependence 
in different groups, though very few have focused on the Brazilian population 24,77.

Several authors have found associations between the variant alleles of rs578776, 
rs1051730, and rs16969968 with characteristics of smoking behavior, such as the risk for 
smoking, the number of cigarettes consumed, and the degree of dependence17,22,24-28,30,31. These 
SNPs have also been associated with smoking cessation, but with inconsistent results. In general, 
studies have shown a significant association between the T allele of rs1051730 and the A 
allele of rs16969968 with a lower probability of cessation and, inversely, between the T allele 
of rs57877rs and a greater chance of cessation29,32-34. But there are contradictory findings19,77,78. 
Genetic variations in CHRNB2 and CHRNA4 also seem to interfere with individuals’ responses 
to drug treatments for smoking cessation. An example is the lower incidence of abstinence 
symptoms related to polymorphisms in CHRNB2 and CHRNA4 in individuals using the drug 
varenicline, which acts on neuronal nicotinic cholinergic receptors by stimulating the release 
of dopamine35,40. A recent study highlights the contribution of CHRNA4 (rs1044396 C> T) 
polymorphism in the choice of the best drug for anti-smoking treatment. According to this 
study, the effectiveness of varenicline is higher for patients with a CT or TT genotype than for 
those with CC36.

Swan et al.40 showed an association of variant A of the CHRNB2 polymorphism 
(rs2072661 G> A) with nausea, an important adverse effect when discontinuing the use of 
varenicline40. Additional studies have reinforced the association of the variant T allele of 
rs1044396 (CHRNA4) and the wild G allele of rs2072661 (CHRNB2) with a greater possibility of 
quitting, lower risk of becoming a smoker, less dependence, and lower cotinine levels19,35,37-42.

GENE VARIABILITY OF THE DOPAMINERGIC PATHWAY

Polymorphisms of the DRD2 and DRD4 genes
Some functional variations have been found in the genes encoding dopamine receptors 

(DRDs) related to smoking. However, the most studied, for their association with smoking, are 
the polymorphs DRD2 rs1800497 and DRD4-VNTR50,79. Historically referred to as DRD2 Taq1A, the 
polymorph Taq1A (rs1800497 C> T) is a variation of the ANKK1 gene (Ankyrin Repeat And Kinase 
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Domain Containing 1), where the presence of the A1 (T) allele is related to lower expression 
of the DRD2 dopamine receptor, which may interfere with the synaptic concentrations of the 
neurotransmitter. So, individuals with the A1 allele of this gene have a higher risk of being a 
smoker80, starting smoking at a lower age, have a higher degree of dependence, smoke more 
cigarettes, have shorter periods of abstinence, and make fewer attempts to quit smoking30,43,44. 
However, no association has been found in other studies81,82. Additionally, the A2 (C) allele may 
represent a risk in relation to the characteristics of smoking behavior59,79.

The SNP can also interfere with the response to pharmacological therapies for cessation. 
David et al.45 found that the drug bupropion was effective only in smokers with the A2/A2 (CC) 
genotype45. Swan et al.46 also observed that A2/A2 women were less likely to stop treatment 
with bupropion; however, the same associations were not observed in men46. An identical effect 
was also observed in the females for Nicotine Replacement Therapy (NRT)47. Other studies have 
reported an association between the A2 allele and a higher chance of abstinence and success 
in cessation45,48,49. However, this is not a unanimous result59.

A polymorphism of variable numerical repetition (VNTR) in the gene encoding the 
D4 receptor, DRD4, has also been investigated as a candidate for susceptibility to smoking 
addiction. Most studies have grouped the alleles into “long” (7 or more repetitions) or “short” (6 or 
less)83. Long alleles have been associated with lower expression of the gene in comparison with 
the short alleles84. The long allele of this polymorphism has been associated with an increased 
risk of smoking, greater cigarette consumption, a greater risk of initiation, and a greater 
degree of dependence50-53. The relationship between smoking cessation and these groups 
has also been studied by several authors, but with divergent results. Leventhal et al.83 found 
that European individuals with the long allele group treated with bupropion have a greater 
chance of abstinence compared with a placebo group83. However, this result was not confirmed 
in other studies85. The influence of polymorphism was also studied for Nicotine Replacement 
Therapy (NRT) in individuals with European ancestors; this study showed that those possessing 
long alleles had a reduced probability of cessation51. Other studies have not confirmed the 
association between DRD4 VNTR and smoking behavior86,87. These differences in findings 
reinforce the complexity of nicotine addiction and the need for future studies.

Polymorphism of the SLC6A3 gene
The dopamine transporter (DAT), which is encoded by the SLC6A3 gene, mediates the 

active reuptake of dopamine from the synapse. Polymorphism of the SLC6A3 gene is linked to 
dopamine transport in the synaptic cleft. It is formed by the repetition of a 40-base pair sequence, 
which can interfere with the expression of the SLC6A3 gene that encodes the dopamine transport 
protein (D28). Alleles containing 10 and 9 repeats are the most frequent. The 10-repeats allele 
is associated with a higher rate of gene transcription and, therefore, with higher levels of the 
carrier protein88. Studies have shown that individuals with the 9-repeats allele are less likely to 
start smoking before the age of 16, have a shorter smoking time, longer periods of abstinence, 
and are more likely to quit smoking54-58. However, controversial results89 and a lack of significant 
association90 demonstrate the need for further studies on this subject.

A meta-analysis study showed that, although the genetic variations of SLC6A3 are related 
to dopamine regulation, there is a lack of evidence on their influence on smoking cessation, 
given the multifactorial nature of smoking88. However, this study reinforced the importance 
of gene interaction in susceptibility to smoking and showed that the interaction between the 
DRD2 Taq1A and SLC6A3 genes prolongs abstinence time and influences smoking cessation with 
the use of bupropion55. The results showed the role of gene-gene interaction in the probability 
of relapse: smokers possessing the A2 allele of DRD2 Taq1A and SLC6A3-9 had significantly 
higher rates of abstinence at the end of treatment and a longer latency period for relapse55.

Polymorphisms of the DBH gene
The DBH gene encodes the enzyme of the same name, which converts dopamine to 

norepinephrine; this means that lower levels of transcription or activity may result in higher 
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concentrations of dopamine51. Several studies have reported functional polymorphisms in this 
gene related to smoking behavior91,92. The literature shows an association between rs77905 (A> 
G) polymorphism and nicotine dependence59,60,92. Johnstone et al.59 reported an association 
between individuals with the GG genotype, in interaction with the A2/A2 genotype of the 
DRD2 Taq1A polymorphism, and greater persistence of smoking, as well as less effectiveness of 
cessation due to transdermal nicotine replacement59. However, McKinney et al.92 observed that 
homozygous smokers of the G allele smoked fewer cigarettes than smokers with the A allele92. 
Some studies found no significant association between this SNP and smoking93. For instance, 
according to some authors, the SNP rs3025343 (G> A) is associated with smoking behavior, 
especially the G allele, which is related to smoking cessation61,62, but this is still controversial 
because other studies haven’t confirmed this association94.

Polymorphism of the COMT gene
Some functional polymorphisms of the COMT gene involved in dopamine degradation 

linked to smoking have already been identified63. The rs4680 G>A variation (Val158/108Met) 
resulted in less enzyme activity. Therefore, the Val allele carriers showed a low level of the 
neurotransmitter dopamine and increased COMT activity in comparison with the Met allele64.

Several studies have shown an association between the Val allele and characteristics of 
smoking dependence, such as the risk of smoking initiation, a greater degree of dependence, 
and persistence65,66. Enoch et al.63, analyzing a sample of 342 individuals, observed this 
association in female smokers63. A similar result was found by Nedic et al.64 in a study with 
657 Caucasian men64. Additionally, an association between the Met/Met genotype and greater 
success in cessation has been reported67. A survey by Colilla et al.95, with a sample of 290 women, 
reported the success of NRT in smokers of Caucasian ethnicity with the homozygous genotype 
Met/Met in comparison with those with the Val/Val genotype. Another study of 749 Caucasians 
found that the Met/Met genotype is associated with higher abstinence rates69. However, some 
authors have reported different results95-99.

Polymorphisms of the MAOA and MAOB genes
Relevant variations for smoking in both monoamine oxidase genes, MAOA and MAOB, 

have been reported, since both are involved in the degradation of some neurotransmitters, 
such as dopamine100,101. As for the variability of the MAOA gene, research has focused on 
polymorphisms that affect smoking. One repetition polymorphism, the MAOA VNTR of the 
promoter region of the gene, which consists of 2 to 5 repetitions of a sequence of 30 base pairs, 
is related to smoking. Two alleles containing 3 and 4-repeats are most common60,66,70,71,93,102,103. 
The 4-repeats allele has been associated with a greater number of cigarettes consumed, 
compared to the 3-repeats allele, in Caucasian men with alcohol and tobacco dependence71. 
Similarly, the 4-repeats allele has been associated with higher FTND scores and a higher degree 
of dependence in women70. However, the data are not conclusive, since these findings have 
not been confirmed by other studies66,93,103.

Another polymorphism in the MAOA gene, called EcoRV rs1137070 1460C> T, is capable 
of altering the transcriptional activity of this gene82,104. In this case, the presence of the T variant 
reduces the risk of smoking, especially in Caucasians72, and in women60. However, some studies 
have found otherwise66,102.

Regarding variations in the MAOB gene, the A allele of the MAOB rs1799836 polymorphism 
(A> G) is associated with a lower risk of heavy smoking in men72. However, this association is 
contradicted by other studies66,105. Interactions between this SNP with other polymorphisms 
seem to interfere with the risk of smoking70,73. The association of the A allele with smoking risk 
was found only in association with the B12 genotype of a polymorphism known as the TaqIB 
of the DRD2 gene73. Other studies have shown that Japanese men with a combination of the 
MAOB rs1799836 G allele and the 3-repeats genotype of the VNTR MAOA started smoking later 
than those with other genotypic combinations70.
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CONCLUSION
There are many genes involved in the neurobiology of smoking. Several are polymorphic 

and, admittedly, some of these variations can affect smoking behavior.
The majority of studies have focused on genes related to the activation of the 

dopaminergic reward system by nicotine present in cigarettes as candidates for susceptibility 
to addiction. Due to their association with a higher risk of smoking, the polymorphisms found 
in the genes CYP2A6, CHRNA3, CHRNA5, CHRNA4, CHRNB2, DRD2, DRD4, SLC6A3, DBH, COMT, 
MAOA, and MAOB were addressed. Among these, the SNPs CYP2A6 *1, CHRNA3 rs578776, 
CHRNA5 rs16969968, CHRNA4 rs1044396, CHRNB2 rs2072661, and DRD2 Taq1A seem to most 
influence the development of addiction and the worsening of specific characteristics of smoking 
behavior, such as the number of cigarettes consumed, the age of initiation, the efficiency of 
drug therapy and cessation.

The relevance of genotypic combinations between different polymorphisms reinforces 
that interactions between genes can determine a genetic profile of predisposition to addiction. 
In addition, the sex and ethnicity of the studied populations proved to be important factors 
in the investigations, especially in the context of a diverse and mixed population. The effects 
of genetic variability on smoking have received great attention. Advances in the field of 
pharmacogenetics have enabled a greater understanding of individuality in responses to drug 
therapies, both in terms of efficacy and adverse effects. Knowledge of the genetic variability 
of the neurobiology of smoking can help elucidate the issues inherent to smoking addiction 
and contribute to the development of more personalized and effective forms of treatment. 
However, the great variability of obtained results shows that this task is not simple. Apparently, it 
involves several factors. Therefore, more research is needed on this topic, especially considering 
population differences, the interference of environmental factors, and interactions between 
different polymorphisms.
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