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ABSTRACT: Geostatistical simulation has been the most promising and used technique for the analysis of 
uncertainties of soil physical and hydraulic properties, with high spatial heterogeneity. This study carried out 
a stochastic analysis of saturated hydraulic conductivity (Ksat) and soil water retention curve parameters in the 
Donato stream basin, located in the municipality of Pejuçara, in the state of Rio Grande do Sul, Brazil, with 
geographic coordinates between 28º 25’ 34” S and 53º 40’ 30” W, and 28º 24’ 50” S and 53º 41’ 30” W, 590 
m of altitude. Soil samples were collected during the period from August to November of 2012. Sequential 
Gaussian simulation technique was used to generate 100 random fields of each variable. The results showed 
great uncertainties for Ksat and the parameter α of the soil water retention curve. The uncertainties between the 
percentiles 5 and 95% for Ksat indicated values from 24 to 44 cm d-1, and for the parameter α, the uncertainties 
could be estimated from 0.622 to 1.122 cm-1.
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Propriedades físico-hidráulicas do solo na bacia
do arroio Donato, RS, Brasil. Parte 2: Simulação geoestatística

RESUMO: A simulação geoestatística tem sido a técnica mais promissora e utilizada para a análise de incertezas 
de propriedades físico-hidráulicas do solo com grande heterogeneidade espacial. Este estudo realizou uma 
análise estocástica da condutividade hidráulica saturada (Ksat) e dos parâmetros da curva de retenção de água 
no solo na bacia do arroio Donato, localizada no município de Pejuçara, na região Noroeste do estado do Rio 
Grande do Sul, com coordenadas geográficas entre 28º 25’ 34” S e 53º 40’ 30” O, e 28º 24’ 50” S e 53º 41’ 30” 
O, 590 m de altitude. Amostras de solo foram coletadas durante o período de agosto a novembro de 2012. 
Foi empregada a técnica de simulação sequencial Gaussiana para geração de 100 campos aleatórios de cada 
variável. Os resultados revelaram consideráveis incertezas para Ksat e o parâmetro α da curva de retenção de 
água no solo. As incertezas entre os percentis de 5 e 95% para Ksat indicaram valores de 24 a 44 cm d-1, e para 
o parâmetro α, as incertezas foram estimadas de 0,622 a 1,122 cm-1.
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Introduction

Geostatistical techniques have often been used to model 
uncertainties about the unknown value of a variable. One of 
the ways to quantify such uncertainties is through geostatistical 
simulation, which consists of stochastic methods based on 
obtaining several random fields for spatial distribution of a 
variable (Goovaerts, 1997). 

Geostatistical simulation has been the most promising 
technique for the analysis of uncertainties. Simpler estimation 
methods, such as ordinary kriging, are based on formulas with 
weighted averages, and consequently, result in estimates that 
have significant levels of smoothing (Yamamoto, 2008). This 
means that the spatial continuity of the kriged surface is greater 
than that of the observed data.

In this context, the high spatial variability of soil properties 
themselves is a strong justification to admit that the results of 
productivity, water demand for irrigation, evapotranspiration 
rates, etc. will also vary in space, demonstrating the importance 
of stochastic models, such as the geostatistical simulation.

Several studies have used geostatistical methods to evaluate 
the spatial variability of soil physical and hydraulic attributes 
(Yamamoto, 2008; Santos et al., 2012; Furtunato et al., 2013; 
Dec & Dörner, 2014; Melo, 2015; Xu et al., 2017). Hu et al. 
(2007) used the HYDRUS-1D model (Šimůnek et al., 1998) to 
simulate the movement of water through the soil profile, but 
applying it to different random fields generated by sequential 
Gaussian simulation (SGS). Their results justified the use of a 
stochastic approach that takes into account the soil variability, 
as well as the associated uncertainties.

Based on the foregoing, this study aimed to perform a 
stochastic analysis of the saturated hydraulic conductivity (Ksat) 
and the parameters of the soil water retention curve (RC) in 
the Donato stream basin, RS, Brazil, presented and discussed 
in Part 1 (Siqueira et al. 2019). 

Material and Methods

The study area comprises the Donato stream basin, located 
in the municipality of Pejuçara, RS, Brazil, with an area of 
1.10 km2 and geographic coordinates between 28º 25’ 34” S 
and 53º 40’ 30” W, and 28º 24’ 50” S and 53º 41’ 30” W, 590 
m of altitude. 

A regular grid was established covering the whole area 
of this basin. The soil was sampled at the crossing points of 
the grid, with regular spacing of 140 m and the most distant 
samples were collected in a regular spacing of 200 m, making 
a total of 55 points. These samples were used to determine 
the soil water retention curve, and its parameters as given by 
Genuchten (1980), and the saturated hydraulic conductivity. 
For more information about the study area and soil sampling, 
see Part 1 (Siqueira et al., 2019)  of this research.

The analysis of the spatial variability of the saturated 
hydraulic conductivity and the soil water retention curve 
presented in Part 1 (Siqueira et al. 2019)  was done by means 
of geostatistical simulation using the sequential Gaussian 
simulation (SGS) method.

Geostatistical simulation algorithms assume that a value of 
the variable will be randomly extracted from the conditional 

cumulative distribution function (ccdf) at each point in the 
area, obtained from the kriging mean and variance at that point 
(Goovaerts, 1997; Deustsch & Journel, 1998): 

( )( ) ( ) ( )( )F u;z | m Prob Z u z | m= ≤

where:
u 	 - location of the variable Z(u);
z 	 - cut value of the ccdf; and,
m 	 - information conditioned to the simulated values.

Likewise, different simulated maps (random fields) can be 
generated together from the random sampling of the ccdfs at 
all points of the grid:

( )( ) ( ) ( ) ( )( )' ' ' ' '
1 2 N 1 N 1 1,..., N NF u ,u ,..., u ;z ,..., z | m Prob Z u z Z u Z | m= ≤ ≤

where:
N 	 - number of grid nodes; 
u’i 	 - variable location where there is no observed data;
F 	 - conditional cumulative distribution function of the 

variable Z at each point uα, for α = 1, 2, ..., N; and,
Prob - probability of non-exceedance. 

The geostatistical softwares SGeMS (Remy et al., 2009) and 
GSLIB (Deutsch & Journel, 1998) were used, both of public 
domain. 

Initially, all variables were normalized as:

( ) ( )( )Y u Z u= Φ

where:
Z(u) 	- variable of interest; 
Y(u) 	- normalized variable; and,
Φ 	 - normalization function.

Then, the directional variograms of the normalized data of 
each variable were modeled in 8 directions, from 0 to 157.5º, 
varying by 22.5º. The equation for obtaining the experimental 
variogram is given by Goovaerts (1997).

( ) ( ) ( ) ( )
( )N H

2

1

1H z u z u H
2N H α α

α=

γ = − +  ∑

where:
γ(H) - variance function at distance H;
H 	 - distance between pairs of samples;
N(H) - number of pairs of samples separated by the distance 

H; and,
z(uα) and z(uα + H) - samples that compose the pairs 

separated by H. 

Based on the variograms, a block model was generated for 
the entire area and for each variable through the sequential 
Gaussian simulation method. The hydraulic conductivity data 
and the soil water retention curve parameters were initially 
normalized.

(1)

(2)

(3)

(4)
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The geostatistical simulation was carried out for a grid of 
1500 x 1300 m, considering blocks of 30 x 30 m. A hundred 
realizations (random fields) of simulated values were generated 
for each variable in the study area. The simulated values were 
then back transformed from the Gaussian space into the 
original sample space.

The validation of the geostatistical simulation performed for 
each hydraulic variable was conducted respecting the following 
criteria: a) all generated maps (random fields) generated by the 
simulation should honor the values of the variable at m sampled 
locations; b) the histograms of the simulated values should be 
very similar to the histograms of the original data; and c) the 
spatial variability model of the variable (variogram) must also 
be reproduced by the various random fields.

Results and Discussion

Table 1 presents the parameters of the variograms in the 
directions of greatest and least spatial continuity of Ksat and 
the parameters of the RC. For all variograms the best fit was 
obtained by the spherical model.

The variograms of ln (α) and n showed the largest ranges, 
while the lowest range was obtained for the θsat variogram. The 
number of pairs in the experimental variogram is considered 
insufficient to adequately represent spatial variation over long 
distances (longer than 1000 m). Hu et al. (2008) also did not 
find good spatial dependence for α and Ksat in their study for 
steep soils, and this may also be a reason for the difficulty of 
the present study, whose study area is moderately undulating, 
resulting in a hydrographic basin of only 1 km2. In the same 
way, Paleologos & Sarris (2011) did not obtain good fits of the 
experimental variograms of Ksat.

In general, the Ksat ranges found in the literature (Hu et al., 
2008; Santos et al., 2012) are smaller than those presented here 
due to the differences in sample spacing and probably due to 
some scale effect, as discussed by Blöschl & Sivapalan (1995). 
These authors comment that spatial resolutions are poorer than 
when working on time scales, and this is one of the biggest 
obstacles to handling in the field of sampling. However, Deb 
& Shukla (2012) commented that the hydraulic conductivity 
presents great spatial variability, but it can result in both short 
and long spatial ranges.

The parameters of the variograms demonstrate different spatial 
behaviors of the variables, reflected by different ranges and nugget 
effects of the fitted models. In addition, the directional variograms 
of all variables revealed that there is geometric anisotropy of the 
horizontal variation in the study area.

The different soil covers may also have influenced this 
process, since they varied during each sampling. One 
possibility would be to perform samplings throughout the 
area during the permanence of each soil cover and to compare 
them individually. However, this was not possible in practice 
due to the amount of samples collected and the time required 
to obtain the laboratory soil water retention curves. It is 
believed that this new configuration would favor the modeling 
of variograms, since different data populations would be 
individually considered and more correlated in space.

Sampling errors are also common in this type of variables, 
since, for example, the samples collected in cylinders can be 
detached from them and create preferential flow paths, masking 
the actual value of the variable obtained in laboratory tests, as 
in the case of determining Ksat with permeameters. This may 
have been the justification for the high Ksat values obtained.

One map of the 100 random fields of each variable is shown 
in Figure 1, where it is observed that there is no smoothing 
effect of kriging, represented by the abrupt color changes from 
one block to the other.

As the first validation criterion of the simulations performed, 
it is assumed that the generated fields (Figure 1) are in agreement 
with the sampled values and their locations [see Figure 3, Part 
1  (Siqueira et al., 2019)]. In this case, it is noted that the high 
and low values were well represented by the simulation. Figure 2 
shows the histograms of the simulated data already transformed 
into the original sample space of some simulated random fields.

Visually, the shapes of the histograms are very much similar, 
as well as their statistics. Taking these randomly chosen fields 
as examples, it is seen that the simulated data statistics are very 

Figure 1. Maps of some simulations performed by the sequential Gaussian simulation method: random field #84 of ln(Ksat + 1) 
(A), random field #5 of ln(α) (B), random field #57 of n (C) and random field #29 of θsat (D)

(1) In this case, the sum of the nugget effect and the sill should be 1 (total variance) due 
to the data normalization

Table 1. Variogram model parameters of normalized data for 
all variables

A. B. C. D.
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Figure 2. Comparison of observed (left) and simulated (right) data histograms for: ln(Ksat + 1) (A) and random field #84 of 
ln(Ksat + 1) (B), ln(α) (C) and random field #5 of ln(α) (D), n (E) and random field #57 of n (F), θsat (G) and random field 
#29 of θsat (H)

Table 2. Statistics of all random fields for each back transformed variable

similar to those of the original data. This is another strong 
indication that the simulations performed are satisfactory. 
Considering the statistics of all simulations (all random fields), 
the results obtained are presented in Table 2.

These results (illustrated in histograms of Figures 2B, D, F 
and H), when compared with the statistics presented in Figures 
2A, C, E and G, indicate that the statistics of the parameter θsat 
were more accurately reproduced by the 100 simulated random 
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fields, without any smoothing of the mean or change in the 
data variance. Similar behavior was observed for the random 
fields statistics of the parameter n. However, for Ksat and the 
parameter α, significant smoothing of the averages occurred, 
mainly for the first, which may be due to the existence of large 
areas in the grid without samples and also to the difficulties in 
modeling the variograms.

Similar results for Ksat were found by Jang & Liu (2004), whose 
simulations revealed high spatial variability of Ksat due to the wide 
variation of the mean and the variance between the simulations 
obtained. However, geostatistical simulation, on the contrary of 
kriging, does not seek to minimize the error of estimates (local). 
Instead, its objective is to reproduce the characteristics of the 
histograms and the spatial continuity (variogram model), besides 
honoring the sampled data (Goovaerts, 1999). 

The good representativeness of the spatial continuity of the 
simulations can be checked in Figure 3. Only few simulations of 
each variable were chosen to facilitate the visualization of the 
variograms. When compared to the variograms of the original 
data (black line), it can be seen that the spatial continuity is 
maintained.

It is observed that the simulations reproduced well the 
behavior of the average spatial relationship between pairs of 
samples, although in the case of Ksat some simulations have 
underestimated the original data variance, which is in agreement 
with a smaller variance of all the simulations (Table 2).

As discussed by Yamamoto (2008), the Gaussian 
simulation guarantees the reproduction of the histograms 
and semivariograms of the transformed data (normalized 
or even indicators) when compared with the histograms 
and semivariograms of the original data. However, the 
transformation of the simulated data to the original scale will 
not necessarily be reproduced.

With the use of an exhaustively sampled database, Yamamoto 
(2008) has shown that, for data with lognormal distribution 

(as is the case of Ksat), this difference in semivariograms can be 
even more pronounced. Goovaerts (1997) also comments that 
the simulation algorithms reproduce the variographic models 
only on the average of all the realizations (random fields) and 
that the greatest fluctuations are expected when using the 
sequential simulation, as used in this study.

As a final parameter to measure the uncertainties of the 
variables considered here, were chosen the random fields 
related to the percentiles of 5 and 95% of non-exceedance of 
the mean values of all random fields. This choice served to 
represent a more favorable and a more unfavorable scenario 
of available water in the soil and, consequently, to the 
development of the plant. Table 3 presents the fields whose 
averages refer to these percentiles for each variable. The 
transformations performed to facilitate the simulation of Ksat 
and α were removed to determine the percentiles, and thus, 
to obtain the final results of this study.

Among the analyzed variables, Ksat and α present the 
greatest uncertainties, represented by the amplitude between 
the percentiles. This means that if the entire study area could be 
sampled with respect to these parameters, it would be possible 
to find, for example, a situation of Ksat mean values of both 24 
and 44 cm d-1.

These values would represent significant differences of the 
estimates of other hydraulic or hydrological variables which 

Figure 3. Comparison of original data and some simulated random fields variograms of ln(Ksat + 1) (A), ln(α) (B), n (C) and 
θsat (D) 

a The means of each simulation (random field) were calculated and the percentiles of all 
means were obtained

Table 3. Random fields associated with the percentiles of 5 and 
95% of non-exceedance of the means of each variable
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depend on the parameters analyzed here, such as surface 
drainage, groundwater drains design for agricultural drainage, 
availability of water for irrigation, etc. For example, although 
the effect of Ksat on soil water flow is not direct, this variable 
is indispensable to estimate the hydraulic conductivity of the 
unsaturated soil. In addition, Ksat is one of the parameters that are 
usually calibrated in surface hydrological models, since most of 
them present great sensitivity to variations in this soil property.

Conclusions

1. The random fields generated by the stochastic method 
of sequential Gaussian simulation were validated according 
to the criteria related to the good representativeness of the 
sample spatial continuity and the reproducibility of their 
variograms.

2. All simulations performed allowed an evaluation of the 
global uncertainty of the analyzed variables, which proved to 
be significant when evaluated by the amplitude between the 
percentiles, mainly for the saturated hydraulic conductivity 
and for the parameter α.

3. The difficulties of modeling the variograms may be due to 
factors such as sample spacing, different soil covers, sampling 
errors, as well as lower spatial connectivity of some variables. 
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