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ABSTRACT: This study assessed the fitting of mathematical models to the convective drying kinetics of 
osmotically pre-dehydrated papaya cubes. Papaya cubes were subjected to osmotic dehydration in sucrose 
solutions at 40 and 50 ºBrix, at temperatures of 50 and 60 ºC, followed by complementary convective drying 
in forced air circulation oven under three temperatures (50, 60 and 70 °C) and constant air velocity of 1.0 
m s-1. Ten thin-layer drying mathematical models were fitted to the experimental data. The increase in air 
temperature and the decrease in osmotic solution concentration resulted in increased water removal rate. 
Based on the statistical indices, the Two Terms model was the one that best described the drying kinetics of 
the samples for all evaluated conditions. The effective diffusion coefficients increased with the elevation of air 
temperature, ranging from 1.766 x 10-10 to 3.910 x 10-6 m2 s-1, whereas the convective mass transfer coefficients 
ranged from 3.910 x 10-7 to 1.201 x 10-6 m s-1 with Biot number from 0.001 to 12.500.
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Cinética de secagem convectiva de cubos
de mamão pré-tratados osmoticamente

RESUMO: Este estudo avaliou o ajuste de modelos matemáticos na cinética de secagem convectiva de cubos 
de mamão pré-desidratados osmoticamente. Os cubos de mamão foram submetidos à desidratação osmótica 
em soluções de sacarose a 40 e 50 ºBrix, em temperaturas de 50 e 60 ºC, seguida de secagem convectiva 
complementar em estufa com circulação forçada de ar sob três temperaturas (50, 60 e 70 °C) e velocidade do 
ar constante de 1,0 m s-1. Aos dados experimentais foram ajustados dez modelos matemáticos de secagem em 
camada fina. O aumento da temperatura do ar e a diminuição da concentração da solução osmótica resultou 
em aumento da taxa de remoção de água. Com base nos índices estatísticos, o modelo de Dois Termos foi o 
que melhor descreveu a cinética de secagem das amostras para todas as condições avaliadas. Os coeficientes 
de difusão efetivos aumentaram com a elevação da temperatura do ar, variando de 1,766 x 10-10 a 3,910 x 10-6 
m2 s-1, enquanto os coeficientes convectivos de transferência de massa variaram entre 3,910 x 10-7 a 1,201 x 
10-6 m s-1 com número de Biot de 0,001 a 12,500.
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Introduction

Brazil is the second largest producer of papaya in the 
world, having produced a total of 1.42 million tons in 2016 
(FAOSTAT, 2018). Papaya has a fast ripening, which manifests 
itself immediately as a structural softening that, associated with 
its high moisture content and water activity, makes the product 
highly perishable, resulting in post-harvest losses throughout 
its chain (Kandasamy et al., 2012).

Convective drying, for its simplicity and low cost, compared 
to other drying methods such as lyophilization, is one of the 
most used technologies for the conservation of agricultural 
products. However, this method causes alterations in sensory 
and nutritional properties and in the bioactive compounds 
of the dry products (Gava et al., 2008; Orikasa et al., 2014). 
Such alterations can be minimized using combined drying 
methods, as proposed in the osmo-convective drying (Prosapio 
& Norton, 2017; Dermesonlouoglou et al., 2018).

Mathematical modeling of the drying process is fundamental 
for understanding and providing information about the 
behavior of certain parameters that describe heat and mass 
transfer mechanisms (Silva et al., 2014a; Tzempelikos et al., 
2015; Pacheco-Angulo et al., 2016), which can provide a solid 
basis for optimizing the process.

The quality of fit of the models to the experimental data 
can be assessed with different statistical indices; however, 
according to Kucuk et al. (2014), the best model to describe the 
drying curve of the product is the one with highest values of 
correlation coefficient, coefficient of determination, modeling 
efficiency and/or adjusted R2 and the lowest values of chi-
square, mean squared deviation, relative mean percentage 
error, mean polarization error, standard error of estimation, 
residual sum of squares, reduced sum of squared errors and/
or residuals.

In this context, the objective was to assess the mathematical 
modeling of convective drying kinetics, at temperatures of 
50, 60 and 70 °C, of papaya cubes osmotically pre-dehydrated 
in sucrose solutions and to obtain the effective diffusivity 
coefficients and convective mass transfer coefficients.

Material and Methods

To conduct this study, the raw material used was ripe 
papaya fruits (Carica papaya L.) cv. Formosa, 2017 Season, 
purchased at the local market of the city of Campina Grande, 
PB, Brazil. Papaya fruits were washed with neutral detergent 
and subsequently sanitized with sodium hypochlorite solution 
(100 ppm) for 15 min. The peel was removed with a stainless-
steel knife, and the seeds were discarded. The pulp was cut into 
cubes with dimensions of 20 mm, measured with digital caliper 
(Absolute model, Mitutoyo, Brazil) with resolution of 0.01 mm. 
The cubes were osmotically pre-dehydrated in sucrose solution 
(syrup) with 40 and 50 °Brix, in a cubes:syrup proportion of 1:6 
(g:g), at temperatures of 50 and 60 °C. The osmotic dehydration 
(OD) process was carried out in a BOD chamber and lasted 4 
h, considering the maximum rate of water removal from the 
papaya cubes during the OD. The cubes were removed from 

the sucrose solution with plastic sieves and left on the bench 
to drain excess solution from the surface.

About 25 g of the osmotically dehydrated cubes were 
arranged, in a single layer, in stainless-steel rectangular baskets 
(15 x 12 cm) and dried, in triplicate, in a forced air circulation 
oven (320/5 model, Foneman, Brazil) at temperatures of 50, 60, 
70 °C and air velocity of 1.0 m s-1, determined by means of a 
digital anemometer (ITTHAL-300 model, Instrutemp, Brazil). 
Water loss was monitored by weighing on an electronic scale 
(AS5500C model, Marte, Brazil) with a resolution of ± 0.01 g, 
at regular times of 5, 10, 20, 30 and 60 min, until the samples 
reached constant mass. The data of drying kinetics were used 
to calculate the drying rates (Eq. 1) (Özdemira et al., 2017) and 
moisture content ratios (Eq. 2) (Galaz et al., 2017).
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where:
DR  - drying rate, kg kg-1 h-1;
Mt0  - moisture content at previous time, kg kg-1 d.b.;
Mt0 + Δt - moisture content at current time, kg kg-1 d.b.; and,
Δt  - difference between the current time (ti) and previous 

time (t0) of drying, min.
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where:
MR  - moisture content ratio, dimensionless;
M  - moisture content at a specific time, d.b.;
Me  - equilibrium moisture content, d.b.; and,
Mi  - initial moisture content, d.b.

Different mathematical models were fitted to the 
experimental data of drying kinetics (Eqs. 3 to 12), using the 
computer program Statistica®, version 7.0, through non-linear 
regression, by the Quasi-Newton method (Statsoft, 2007).

- Newton - Lewis (1921):

( )MR exp kt= −

- Page - Page (1949):

( )nMR exp kt= −

- Henderson & Pabis - Henderson & Pabis (1961):

( )MR a exp kt= −

- Two-Term Exponential - Sharaf-Eldeen et al. (1980):

( ) ( ) ( )MR a exp kt 1 a exp kat= − + − −

- Thompson - Thompson et al. (1968):

( )0.52MR exp a a 4bt 2b = − +  

(1)

(2)

(3)

(4)

(5)

(6)

(7)
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- Logarithmic - Yagcioglu et al. (1999): N  - number of observations; and,
n  - number of coefficients of the model.

The geometric shape of the samples was assumed to be 
that of a cube (parallelepiped with equal sides), and the 
analytical solution of the second Fick’s law for this geometry, 
considering internal diffusive mass flow equal to the external 
convective flow in the vicinity of the samples (convective 
boundary condition) (Eq. 18) (Silva et al., 2014b), was fitted 
to the experimental data of drying kinetics for determining 
the effective diffusion coefficients (Def) and convective mass 
transfer coefficients (hw), using 16 x 16 x 16 terms of the 
analytical solution referring to the three summations of 
Eq. (18), employing the program Convective Adsorption - 
Desorption, version 3.2 (Silva & Silva, 2018).

( )MR a exp kt c= − +

- Approximation of Diffusion - Sharaf-Elden et al. (1980):

( ) ( ) ( )MR a exp kt 1 a exp kbt= − + − −

- Modified Henderson & Pabis - Karathanos (1999):

( ) ( ) ( )MR a exp kt bexp kt cexp kt= − + − + −

- Two Terms - Henderson (1974):

( ) ( )0 1MR a exp k t bexp k t= − + −

- Midilli - Midilli et al. (2002):

( )nMR a exp kt bt= − +

where:
MR  - moisture content ratio, dimensionless;
a, b, c, k, k0, k1, n - coefficients of the models; and,
t  - drying time, min.

The criteria for the fit of the mathematical models to the 
experimental data were the coefficient of determination (R2) 
(Eq. 13), mean squared deviation (MSD) (Eq. 14), mean relative 
error (P) (Eq. 15), mean estimated error (SE) (Eq. 16) and the 
chi-square (χ2) (Eq. 17) (Costa et al., 2016; Haas et al., 2017; 
Rabha et al., 2017).
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where:
MRexp - experimental moisture content ratio;
MRexp,i - average experimental moisture content ratio;
MRpred - moisture content ratio predicted by the model;
MRpred,i - average moisture content ratio predicted by the 

model;

( ) ( )
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where:
M(t)  - average moisture content at time t, d.b.;
Meq  - equilibrium moisture content, d.b.;
M0  - initial moisture content, d.b.;
µn, µm and µk - roots of the characteristic equation, obtained 

through Eq. 19; 
Bn, Bm and Bk - solution parameters calculated according 

to Eq. 21; 
Def  - effective diffusion coefficient, m2 s-1;
L1, L2 and L3 - length, height and thickness, respectively, 

m; and,
t  - time, s.

j
jcot 

Bi
µ

µ =

With j equal to the indices n, m and k. The parameter Bi is 
the mass transfer Biot number and is given by Eq. 20:

w

ef

h L
Bi

D
=

where:
hw  - convective mass transfer coefficient, m s-1;
L  - characteristics length, m; and,
Def  - effective diffusion coefficient, m2 s-1.

( )2 2

2

j 2
j j

2BiB
Bi Bi

=
µ + +µ

where j is equal to the indices n, m and k.

Results and Discussion

In the drying curves of the osmotically dehydrated papaya 
cubes (Figures 1A to D), it can be observed that, as the 
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concentration and temperature of the solution increase, the 
drying curves (Figures 1C and D) become less distant from one 
another, denoting less relative influence of drying temperature 
on water removal dynamics. Although the increase in 
concentration and temperature of the solution causes a greater 
water removal during the OD process (Germer et al., 2011; 
Souraki et al., 2014), due to the elevation of the concentration 
gradient of soluble solids between the fruit and the solution, it 
also results in the incorporation of solute in the sample (Garcia-
Noguera et al., 2010; Mendes et al., 2013), which could lead to a 
higher resistance to heat and mass transfers during convective 
drying, resulting in lower drying effectiveness. Fernandes et al. 
(2008) demonstrated, in experiments with pineapple, that OD 
in solutions with high concentrations (> 35 °Brix) results in 
high gain of solids by the samples, which may cause a reduction 
in the water removal rate during convective drying.

The drying rates (Figures 2A to D), for the same 
concentration of the solution, in general, were higher in 
samples subjected to solutions at lower temperatures, ranging 
from 0.85 to 1.64 kg kg-1 h-1 for the samples subjected to 
OD pre-treatment of 50 °Brix/60 °C and 50 °Brix/50 °C, 
respectively, dried at 50 °C.

The values of the drying rates changed over time, gradually 
increasing to the maximum value and then decreasing 

rapidly. This occurs because, at the beginning of the drying, 
liquid diffusion is the main mechanism of water transport 
and, as the drying progresses, vapor diffusion becomes the 
dominant mode, so the drying rate increases. However, with 
the continuity of the process, the samples become unsaturated 
with moisture, the vapor diffusion decreases and, consequently, 
the drying rate also decreases (Chen et al., 2017). In addition, 
drying occurred mainly in the falling rate period, and no 
constant rate period was observed (Figures 2A to D), indicating 
that the internal resistance to water movement is greater than 
the rate of removal from the sample surface (Pilatti et al., 2016). 
Similar behavior was observed by Kaushal & Sharma (2016) 
during convective drying at different temperatures (50-70 ºC) 
of osmo-dehydrated jackfruit pulp.

The indices of the models fitted to the experimental 
data of drying kinetics of the samples (Table 1), at different 
temperatures, demonstrate that the Two Terms model had 
the highest values of the coefficients of determination (R2) 
(0.997-0.999) and the lowest mean squared deviations (MSD) 
(0.008-0.014), mean relative error (P) (1.306-6.039%), mean 
estimated error (SE) (0.009-0.017) and chi-square (χ2) (1.0 x 
10-4-3.0 x 10-4), so it better represents the drying process of 
the samples under the studied conditions. However, it should 
be pointed out that the models of Page, Approximation of 

Figure 1. Drying curves of papaya cubes subjected to osmotic dehydration at: (A) 40 °Brix/50 °C; (B) 40 °Brix/60 °C; (C) 
50 °Brix/50 °C; and (D) 50 °Brix/60 °C followed by convective drying at temperatures of 50, 60 and 70 °C
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Figure 2. Drying rates of papaya cubes subjected to osmotic dehydration at: (A) 40 °Brix/50 °C; (B) 40 °Brix/60 °C; (C) 
50 °Brix/50 °C; and (D) 50 °Brix/60 °C followed by convective drying at temperatures of 50, 60 and 70 °C

Table 1. Values of the coefficient of determination (R2), mean squared deviation (MSD), mean relative error (P), mean estimated 
error (SE) and chi-square (χ2) of the models fitted to the experimental drying data of papaya cubes subjected to osmotic 
dehydration (OD)

Continues on the next page
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Continuation of Table 1

Continues on the next page



João P. de L. Ferreira et al.206

R. Bras. Eng. Agríc. Ambiental, v.24, n.3, p.200-208, 2020.

Continuation of Table 1

Diffusion and Midilli, also had high R2 values, above 0.995, 
and low MSD, P, SE and χ2, below 0.021, 8.199%, 0.023 and 5.0 
x 10-4, respectively, indicating their adequacy to represent the 
drying kinetics of osmotically pre-dehydrated papaya cubes.

Table 2 presents the effective diffusion coefficients (Def) 
and convective mass transfer coefficients (hw) obtained for 
the drying of the samples, subjected to the temperatures of 50, 
60 and 70 °C. The increase in convective drying temperature 

(50-70 °C) causes the increment in Def values. In addition, it 
was observed that samples subjected to the solutions with the 
same temperature, but with higher sucrose concentration, in 
particular for the drying temperature of 70 ºC, offer greater 
resistance to external mass transfer, which in turn may be 
related to the reduction of hw. This behavior may be associated 
with increased concentration of soluble solids during the OD, 
on the surface of the sample (Rodríguez et al., 2015; Sangeeta 

Bi - Biot number; χ2 - Chi-square

Table 2. Effective diffusion coefficients (Def) and convective mass transfer coefficients (hw) obtained in convective drying, at 
temperatures (Temp) of 50, 60 and 70 °C, of osmotically pre-dehydrated (OD) papaya cubes
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& Hathan, 2016; Goula et al., 2017), capable of forming, at 
high temperatures (≥ 70 ºC), a dense and poorly permeable 
layer, increasing the resistance to heat transfer to the samples 
and establishing an additional barrier to the water exit from 
its interior (Munhoz et al., 2014; Corrêa et al., 2017). Similar 
results have been reported in strawberry (Garcia-Noguera et 
al., 2010) and plum (Dehghannya et al., 2016).

It is observed that the Biot number (Bi) was within the 
range from 0.001 to 12.500 (Table 2), which, according to 
Kaya et al. (2010), is indicative of the existence of internal 
and external resistances to water transfer, being considered 
the most realistic case in practical applications. It should be 
pointed out that Bi tended to decrease with the elevation in 
the drying temperature, especially at 70 °C, indicating that 
there is a higher resistance to mass flow on the surface of the 
samples (Silva et al., 2013).

The solution of the Fick’s second law equation (Eq. 18), for 
all OD treatments, considering convective boundary condition, 
showed, even in Biot number << 1 (Bi = 0.001; R2 = 0.998; χ2 
= 4.885 x 10-3), adequate fit to the experimental data of drying 
kinetics of the samples (R2 > 0.996 and χ2 < 7.161 x 10-3) (Table 
2), which ensures the physical representativeness of the values 
of Def and hw.

Conclusions

1. Among the fitted mathematical models, the Two Terms 
model was selected as the most adequate for drying kinetics 
of osmo-dehydrated papaya cubes.

2. The effective diffusivity in the samples increased with 
the increase of air temperature, whereas the convective mass 
transfer coefficient showed a less defined trend.
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