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Crescimento e fisiologia de mudas de mamoeiro ‘Sunrise’
em resposta à salinidade e ácido húmico

Vitor A. Targino2 , Adriano S. Lopes2 , Valéria F. de O. Sousa3* , Juliane M. Henschel2 ,
João H. B. da Silva2 , Lucas S. Rodrigues2 , Wiliana J. F. de Medeiros4 ,

Diego S. Batista5  & Thiago J. Dias5

ABSTRACT: Salinity is one of the major obstacles to agriculture in semi-arid regions, as it affects the physiological 
processes, growth, and yield of numerous crops. Hence, the application of salt stress attenuators is of paramount 
importance, as it enables the use of saline water for agricultural purposes. Among these, humic acid promotes the growth 
as well as water and nutrient uptake of plants. To this end, the present study evaluated the effects of humic acid on the 
growth and physiology of Carica papaya seedlings irrigated with saline water. The experiment followed the randomized 
block design with five levels of electrical conductivity (0.5, 1.15, 2.75, 4.35, and 5.0 dS m-1) and five concentrations of 
humic acid (0.5, 0.94, 2.0, 3.06, and 3.5 mL L-1). Growth, gas exchange, chlorophyll content, and chlorophyll a fluorescence 
were evaluated. Irrigation with 4.9 dS m-1 water and application of 3.05 mL L-1 humic acid promoted the growth of 
papaya seedlings. Irrigation with high-salinity water (4.96 and 3.09 dS m-1) coupled with the application of 3.05 and 2.21 
mL L-1 humic acid increased internal CO2 concentration, transpiration, instantaneous water use efficiency, carboxylation 
efficiency, and chlorophyll b content. Overall, humic acid (3.5 mL L-1) attenuated the deleterious effects of salt stress, 
promoting the growth and improving the performance of papaya seedlings under moderate salinity (4 dS m-1).

Key words: Carica papaya L., moderate salinity, soil conditioner, saline stress, humic substances

RESUMO: A salinidade é um dos grandes entraves na agricultura em regiões semiáridas, pois afeta os processos 
fisiológicos, crescimento e produção de diversas culturas. Assim, o uso de atenuadores do estresse salino é de extrema 
importância, pois permite o uso de águas salinas para fins agrícolas. Dentre estes, destacam-se os ácidos húmicos que 
promovem o crescimento e a absorção de água e nutrientes. Assim, o objetivo deste trabalho foi avaliar o efeito do ácido 
húmico sob o crescimento e a fisiologia de mudas de mamão irrigadas com água salina. O delineamento experimental 
utilizado foi em blocos casualizados com cinco níveis de condutividade elétrica (0,5; 1,15; 2,75; 4,35 e 5,0 dS m-1), e 
cinco concentrações de ácido húmico (0,5; 0,94; 2,0; 3,06 e 3,5 mL L-1). Foram avaliados o crescimento, trocas gasosas, 
índice de clorofilas e fluorescência da clorofila a. A irrigação com água de 4,9 dS m-1 e aplicação de 3,05 mL L-1 de 
ácido húmico proporcionou maior crescimento das mudas de mamoeiro. A irrigação de mudas de mamoeiro com 
alta salinidade (4,96 e 3,09 dS m-1) aliada à aplicação de 3,05 e 2,21 mL L-1 de ácido húmico proporcionou aumento da 
concentração interna de CO2, taxa de transpiração, eficiência instantânea do uso da água, eficiência de carboxilação e 
teor de clorofila b. O ácido húmico (3,5 mL L-1) atenua os efeitos deletérios da salinidade no mamoeiro, sendo capaz 
de aumentar o crescimento e melhorar o desempenho das mudas de mamão em salinidade moderada (4 dS m-1).

Palavras-chave: Carica papaya L., condicionador de solo, estresse salino, salinidade moderada, substâncias húmicas

HIGHLIGHTS:
Humic acid treatment at 3.50 mL L-1 alleviated the deleterious effects of salt stress on the growth of papaya seedlings.
Humic acid increased stomatal conductance, net photosynthesis, and transpiration in papaya seedlings.
Application of humic acid at >2 mL L-1 increased the chlorophyll content of papaya.
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Introduction

Papaya (Carica papaya L.) is of great economic importance 
for social development in Brazil. Papaya fruit production reached 
1,256,706 tons in 2021, with the Northeast Region accounting for 
56% of the total yield. In particular, Paraíba state is the fourth-
largest producer of papaya seedlings (IBGE, 2021). However, 
unavailability of natural resources owing to rainfall variability 
coupled with high evaporative demand necessitates the use of 
saline water for irrigation (Silva et al., 2020).

Salinity affects the germination and growth of papaya 
seedlings, compromising orchards in the future (Lima-Neto et 
al., 2016). This is a result of water absorption restriction (osmotic 
effect) and changes in metabolism, nutrient absorption, and 
ionic balance (ionic effect) (Zhang et al., 2019), which promote 
the generation of reactive oxygen species, thereby damaging the 
cellular components and photosynthetic pigments (Ibrahim et 
al., 2018; Dias et al., 2020).

Application of humic substances can serve as an alternative 
in areas where only brackish water is available for irrigation 
(Guo et al., 2019; Pham et al., 2021). As such, humic compounds 
enhance microbial activity, promote nutrient absorption, 
increase soil permeability, and stimulate plant growth (Liu et al., 
2019). Furthermore, humic acid can improve the photosynthetic 
efficiency of plants by regulating various metabolic, hormonal, 
biochemical, molecular, and physiological activities (Shah et al., 
2018). Dias et al. (2020) obtained promising results with humic 
application for the production of ‘Hawaii’ papaya; however, 
further studies are warranted on other cultivars and under 
various soil and climatic conditions. To this end, the present 
study evaluated the effects of humic acid on the growth and 
physiology of papaya seedlings irrigated with saline water.

Material and Methods

The experiment was conducted during November-December 
2021 in an uncontrolled greenhouse with a transparent plastic 
cover at the Center for Human, Social and Agrarian Sciences, 
Federal University of Paraíba, Bananeiras, State of Paraíba, 
Brazil (6° 45’ 27.78” S 35° 38’ 46.40”W; 617 m a.s.l.). According 
to Köppen’s classification, the local climate is of type “As,” with 
a dry and hot summer and rainy winter (Alvares et al., 2013).

The treatments were arranged in randomized blocks using 
the matrix of central composite box (Tekindal et al., 2014), 
combining different electrical conductivities of irrigation 
water (ECw) with concentrations of humic acid (HA). The 
minimum (-α) and maximum (α) values of ECw and HA ranged 
respectively from 0.5 to 5.0 dS m-1 and 0.5 to 3.5 mL L-1, totaling 
nine treatments (Table 1); four replicates were set per treatment, 
divided into three blocks, with one plant per plot. ECw and HA 
values were based on the study by Dias et al. (2020) on ‘Hawaii’ 
papaya.

Diamond GrowTM liquid, containing 14% humic acid, was 
applied manually at the indicated concentrations using a 10 mL 
graduated pipette, divided into three applications (10, 20, and 30 
days after the start of saline water irrigation); the concentration 
of humic acid present in the product was calculated in mL L-1 
for application corresponding each treatment. All humic acid 

treatments were applied in the late afternoon. No fertilization 
other than humic acid was applied.

As the substrate, red-yellow Latosol (Oxisol - American 
Classification of Soil Taxonomy), tanned bovine manure, and 
washed sand were mixed at the ratio of 3:1:1 and placed in 5 dm3 
polyethylene pots. Soil chemical analysis revealed the following 
characteristics: pH = 5.52; organic matter = 28.72 g kg-1; P = 
18.72 mg kg-3; Ca2+ = 4.80 cmolc dm-3; Mg2+ = 1.20 cmolc dm-3; 
Na+ = 0.04 cmolc dm-3; base saturation = 6.13 cmolc dm-3; H+ + 
Al3+ = 1.16 cmolc dm-3; Al3+ = 0.0 cmolc dm-3; cation exchange 
capacity = 7.29 cmolc dm-3; V = 84.15%; K+ = 0.09 cmolc dm-3; 
organic carbon = 16.6 g kg-1; fulvic acid fraction = 2.85 g kg-1; 
humic acid fraction = 3.31 g kg-1; humin fraction = 8.33 g kg-1; 
and EC from the saturation extract (dS m-1) = 0.41.

Papaya seeds (Carica papaya L. ‘Sunrise’; Feltrin®) were used. 
Seedlings were produced by sowing two seeds in a container with 
a volumetric capacity of 150 mL and depth of approximately 
3 cm. Thinning was performed 10 days after sowing (DAS), 
retaining one (most vigorous) seedling per container. At 14 
DAS, seedlings were selected and standardized, and those 
approximately 10 cm tall were transplanted into polyethylene 
bags with a volumetric capacity of 3.5 dm3. The bags were 
arranged with a spacing of 0.3 × 0.3 m. 

Saline water of the required electrical conductivity was 
prepared by adding sodium chloride to the supply water 
(ECw = 0.5 dS m-1); ECw values were confirmed using a portable 
conductivity meter (CD-860 microprocessor; Instrutherm®). 
Irrigation with saline water was initiated at 15 DAS, performed 
manually according to the water requirement of the plants; soil 
moisture was maintained close to 100% of the field capacity, as 
ascertained using drainage lysimetry (Bernardo et al., 2019).

Plant height, stem diameter, leaf number, and leaf area were 
evaluated at 30 DAS. Plant height (expressed in cm) was obtained 
by measuring the distance between the soil surface and the 
highest part of the plant using a graduated ruler. Stem diameter 
(expressed in mm) was measured using a digital caliper. Leaf 
number was determined by counting all leaves. Leaf area was 
determined according to Eq. 1 (Campostrini & Yamanishi, 2001):

Table 1. Combinations of treatments generated through the 
matrix of central composite box

ECw - electrical conductivity of irrigation water; HA - humic acid

LA L W N f= × × ×

where:
LA  - leaf area (cm2);
L  - length of the third leaf from the apex (cm);
W  - width of the third leaf the from apex (cm);

(1)
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N  - number of leaves per plant; and,
f  - correction factor for papaya (0.89).

Gas exchange, chlorophyll a, chlorophyll b, chlorophyll total, 
and chlorophyll a fluorescence were evaluated at 31 DAS. Gas 
exchange was ascertained using an infrared gas analyzer (IRGA; 
LCpro-SD Portable Photosynthesis System, ADC BioScientific, 
Hoddesdon, England). Measurements were performed between 
8:00 and 11:00 a.m. using artificial light (1,200 μmol m-2 s-1) 
at the reference ambient CO2 concentration of 385 μmol CO2 
mol-1 of air and ambient temperature. In addition, stomatal 
conductance (gs, mol H2O m-2 s-1), net photosynthesis (A, μmol 
CO2 m

-2 s-1), transpiration rate (E, mmol H2O m-2 s-1), internal 
carbon concentration (Ci, μmol CO2 mol air-1), water use 
efficiency (WUE, A/E), and intrinsic carboxylation efficiency 
(iCE, A/Ci) were evaluated. Chlorophyll a, chlorophyll b, and 
chlorophyll total contents were measured on the third leaf from 
the apex of each plant using a digital chlorophyll meter (CFL 
1030; ClorofiLOG®, Falker, Porto Alegre, Brazil). 

At the end of the experiment (at 32 DAS), leaves and stems 
were harvested, and fresh mass was ascertained using a balance 
with 0.001 g resolution. The plant parts were then deposited in 
Kraft paper bags and placed in an oven with forced air circulation 
at 65 ºC until a constant weight was obtained. Plant dry mass 
was measured using a balance (0.001 g).

The obtained data were submitted to analysis of variance 
with F-test (p < 0.01 ≤ 0.05). When significant results were 
obtained, regression analysis was performed on the quantitative 
factors (humic acid concentration and electrical conductivity 
level). All analyses were performed using R version 4.1.2. (R 
Core Team, 2021).

Results and Discussion

Application of humic acid mitigated the harmful effects of 
salinity on the growth of C. papaya seedlings (Figure 1), with 
significant increments attaining the height of 28.58 cm under 
ECw of 4.99 dS m-1 and HA concentration of 3.05 mL L-1 (Figure 
1A). Despite significant effect of the interaction of factors, 
adequate adjustment for leaf number was not possible (z = 
7.905653 - 0.411836x - 0.675634y + 0.257960xy - 0.009364x2 
+ 0.015094y2; R2 = 0.53; CV = 18.04%). Likewise, the highest 
values of stem diameter and stem dry mass were 4.7 mm 
and 1.57 g, respectively, obtained at the ECw of 4.99 and 
4.89 dS m-1 and HA concentrations of 3.03 and 3 .05 mL L-1 
(Figures 1B and C).

Salinity stimulated the shoot growth of papaya plants. In 
general, saline conditions reduce growth, gas exchange, and 
biomass in papaya plants (Diniz et al., 2018; Sousa et al., 2019; 
Dias et al., 2020). This reduction can be attributed to difficulty 
in absorbing water from the soil with reduced water potential 
owing to high salt concentration, which leads to the closure 
of stomata and suppression of photosynthesis (Oliveira et al., 
2017). In addition, salinity increases the absorption of Na+ and 
Cl- and reduces the absorption of K+, Ca2+, and NO3

-, leading 
to nutritional imbalance and plant growth suppression due to 
nutrient deficiency (Sá et al., 2013; Coelho et al., 2015; Oliveira et 
al., 2015; Silva et al., 2017). In the present study, however, salinity 

* p < 0.05 or ** p < 0.01, according to F-test

Figure 1. Plant height (A), stem diameter (B), and stem dry 
mass (C) of Carica papaya seedlings subjected to different levels 
of irrigation water salinity (ECw) and concentrations of humic 
acid (32 days after sowing)
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of up to 5 dS m-1 was not deleterious to seedling growth, due 
perhaps to the moderate tolerance of papaya seedlings to salinity 
(Diniz et al., 2018) or the short period of exposure to salt stress.

Application of humic acid, particularly at high concentrations, 
stimulated plant growth. The effect of humic acid as a growth 
promoter has been demonstrated in papaya due to increased 
water content in the root zone and the ion exchangeable ability 
of the soil solution (Guo et al., 2019; Al-Abadi & Al-hayany, 
2021). This effect may be related to changes in the expression of 
genes linked to the assimilation of nutrients or the synthesis and 
transport of phytohormones, which affects the photosynthetic 
processes and stimulates plant growth (Barone et al., 2019). 
In addition, humic acid can improve cell membrane stability, 
reduce Na+ accumulation, and increase K+ accumulation, thereby 
mitigating salinity-induced lipid peroxidation and leaf necrosis 
(Saidimoradi et al., 2019).

Humic acid increased gs and E. At the ECw of 4.96 and 
5.0 dS m-1 and HA concentration of 3.05 and 3.5 mL L-1, the 
estimated values of gs and E were 0.44 and 3.5 mmol H2O m-2 s-1, 
respectively (Figures 2A and B). 

Furthermore, the different concentrations of humic acid 
and levels of electrical conductivity affected A and Ci; however, 
the data could not be adjusted satisfactorily (A: z = 11.804062 + 
1.414767x + 2.254550y + 0.078616xy - 0.256850x2 - 0.563171y2; 
R2 = 0.58; CV = 16.71%; Ci: z = 276.48987 - 18.01648  - 
17.77253y + 5.11006xy + 1.46737x2 + 0.53046y2; R2 = 0.56; 
CV = 13.31%).

Similarly, WUE was higher in plants treated with humic 
acid and exposed to salt stress, reaching high values [(7.24 μmol 
CO2 (mmol H2O m-2 s-1)-1] at the ECw of 4.50 dS m-1 and HA 
concentration of 3.05 mL L-1 (Figures 2C).

Humic acid improved soil fertility by increasing porosity and 
amphipathic particles that favor water and nutrient retention 
(Guo et al., 2019). In fact, we observed an increase in the gs, E, 
and WUE of plants that were treated with high concentrations 
of humic acid, suggesting that humic acid increased the water-
holding capacity of soil. Interestingly, this effect was potentiated 
by the combination of high concentration of humic acid and 
salinity of the irrigation water, suggesting that although salinity 
increased transpiration, the water content of soil was sufficient to 
maintain the stomata open without dehydration. Similar results 
have been observed in a previous study on potato plants under 
water deficit, in which the application of humic acid increased 
gs and net CO2 assimilation, even in dry soils (Man-Hong et al., 
2020). As such, the net assimilation of CO2 was higher when the 
plants were exposed to the combination of moderate salinity and 
humic acid. These results suggest that although water relations 
did not act as a limiting factor for photosynthesis, salinity may 
have induced metabolic damage owing to ionic toxicity and 
oxidative stress, ultimately suppressing the net photosynthesis. 
Meanwhile, the application of humic acid likely mitigated the 
ionic toxicity caused by salinity. This speculation is supported 
by the fact that the application of humic acid is related to the 
enhancement of antioxidant capacity as well as increase in the 
retention of toxic ions (Na+ and Cl-) in the soil but decrease in 
their absorption (Guo et al., 2019; Saidimoradi et al., 2019).

The chlorophyll indices of papaya seedlings were affected by 
the factors studied separately. As such, the application of humic 

* p < 0.05 according to F-test

Figure 2. (A) Stomatal conductance (gs), (B) transpiration, and 
(C) water use efficiency (WUE) of Carica papaya seedlings 
subjected to different levels of irrigation water salinity (ECw) 
and concentrations of humic acid (32 days after sowing)
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acid reduced chlorophyll a, chlorophyll b, and chlorophyll total 
contents at concentrations up to 2 mL L-1, followed by successive 
increment; the maximum values (37.7, 12.92, and 50.6 Falker 
Chlorophyll Index [FCI], respectively) were recorded at the HA 
concentration of 3.5 mL L-1 (Figures 3A, B, and C). This small 
reduction and successive increment can be explained by the 
fact that at concentrations below 2 mL L-1, humic acid induced 
chlorophyll degradation, while higher concentrations did not 
produce this deleterious effect. Humic substances derived 

from lignin decomposition have been reported to increase 
chlorophyll content, although the beneficial effect depends on 
the application dose (Saidimoradi et al., 2019), which explains 
the trends observed in the present study.

Furthermore, the salinity of irrigation water significantly 
affected the contents of chlorophyll b and chlorophyll total, 
showing linear increment as a function of salt addition to 
irrigation water; specifically, between the lowest and highest 
ECw, increases of respectively 5.32% (Figure 3D) and 3.08% 

* p < 0.05 or ** p < 0.01 according to F-test

Figure 3. Chlorophyll a (A), chlorophyll b (B and D), and chlorophyll total (C and E) content of Carica papaya seedlings subjected 
to different levels of irrigation water salinity (ECw) and concentrations of humic acid (32 days after sowing)
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(Figure 3E) were noted. No significant effect was noted on 
chlorophyll a fluorescence.

Salinity promotes the activity of chlorophyllase, the enzyme 
responsible for chlorophyll degradation, due perhaps to the 
greater translocation of chloride instead of nitrate mediated by 
the high concentration of salts in the plant, ultimately reducing 
the chlorophyll content (Ibrahim et al., 2018). Nevertheless, 
our results demonstrated higher chlorophyll b and chlorophyll 
total contents at the highest salt concentrations tested. This 
may be related to the intrinsic tolerance of papaya plants to 
salinity, since chlorophyll b is an accessory pigment present 
in the antenna complexes that is accumulated under stress to 
protect the photosystems (Lokstein et al., 2021). The increase in 
chlorophyll content with the application of humic acid, in turn, 
may be connected to its action of stimulating the synthesis and 
attenuating the degradation of chlorophyll, thereby contributing 
to the dissipation of excess excitation energy in photosystem 
II and protection of the photosystems under saline conditions 
(Ozfidan-Konakci et al., 2018).

In summary, the application of humic acid appears to be a 
viable alternative for the production of papaya seedlings using 
brackish water for irrigation, provided that the increases in 
growth and gas exchange are directly linked to plant productivity 
(Ramos et al., 2021; Kumar et al., 2022). These findings 
contribute to broadening our knowledge of the physiological 
aspects of C. papaya growth with saline water irrigation as well 
as the practical application of humic acid to improve papaya 
seedling production under salt stress.

Conclusions

The application of humic acid (3.5 mL L-1) coupled with 
moderate salinity of irrigation water (4 dS m-1) stimulates the 
growth and gas exchange of Carica papaya seedlings. Humic 
acid not only attenuates saline stress but also promotes the 
development of papaya seedlings irrigated with saline water.
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