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Abstract

Dependencies in DNA sequences are frequently modeled using Markov models. However, Markov chains cannot
account for heterogeneity that may be present in different regions of the same DNA sequence. Hidden Markov
models are more realistic than Markov models since they allow for the identification of heterogeneous regions of a
DNA sequence. In this study we present an application of hidden Markov models to a subsequence of the Xylella
fastidiosa DNA data. We found that a three-state model provides a good description for the data considered.
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Introduction

The rate of sequence data generation in recent years

has provided abundant opportunities not only for the devel-

opment of new approaches to problems in computational

biology but also for the exploration of the already known

techniques on data that have never been analysed before.

The starting point in most data analysis consists of the

use of well established methodology. As the analysis prog-

ress, data particularities may require the development of

specific tools that are more suitable to better describe and

model the data. Creation of new methods requires deep un-

derstanding of the current ones, especially when these

methods are incredibly powerful and are not as known as

they should be due to their mathematical and computational

complexity. We consider that hidden Markov Models

(HMM) exemplify this notion very well since although

these models are not new, we believe that molecular biolo-

gists are not aware of the possibilities that these models

provide.

Our aim in this study is to discuss dependencies and

heterogeneity in DNA data and how they can be appropri-

ately accounted for by the use of HMM. We applied this

sort of model to a subsequence of the Xylella fastidiosa (Xf)

genome as a way to suggest possible analysis for the whole

genome.

According to Lambais et al. (2000), Xylella fastidiosa

is a bacteria associated with diseases that cause tremendous

losses in many economically important plants, including

citrus. Xylella fastidiosa is the causal agent of Citrus Varie-

gated Chlorosis (CVC), a disease that affects all commer-

cial sweet orange varieties and that represents a major

concern to the Brazilian citrus industry. The plant pathogen

attacks citrus fruits resulting in juiceless fruits of no com-

mercial value. Xylella fastidiosa is the first plant pathogen

to have its genome (the total genetic information stored in

the chromosomes of an organism) completely sequenced.

In addition, it is probably the least previously studied of any

organism for which the complete genome sequence is

available.

Data sets generated by sequencing the entire Xylella

fastidiosa genome pose new challenges since now biolo-

gists need quantitative tools and statistical methods to help

them to analyze sequences. Some recent publications about

Xylella fastidiosa signal the need not only for the applica-

tion of current statistical methods available to analyse its

sequenced data but also for statistical research to attack its

particularities. Chen et al. (2000) analysed sequenced data

from 16 strains of Xylella fastidiosa originating from nine

different hosts. They studied aspects such as sequence het-

erogeneity in the classification of X. fastidiosa at the sub-

species level. The studies by Qin et al. (2000) and Mehta et

al. (2001) are concerned with the evaluation of Xylella

fastidiosa genetic diversity isolated from diseased citrus

and coffee in Brazil.

Due to the huge size of the datasets, statistical analy-

ses for the whole genome of many organisms demand the

use of high power state of the art computers. That may rep-

resent a major problem since we do not have enough avail-

able for this purpose.
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In this study we fit hidden Markov models to a dataset

of the bacteria Xylella fastidiosa genome. Model selection

is performed using the Bayesian Information Criterion

(BIC) and Akaike’s Information Criteria (AIC). In section

2 we talk about dependencies in DNA data. In section 3 we

discuss heterogeneity in DNA sequences. Hidden Markov

Models are introduced in section 4. In section 5 we briefly

introduce AIC and BIC for model selection. Phage lambda

and Xylella fastidiosa datasets are analysed in section 6.

Dependencies in DNA Data

An obvious first summary of a DNA sequence is just

the distribution of the four base types. Although it would be

convenient for mathematical modeling if the four bases

were equally frequent, almost all empirical studies show an

unequal distribution. That means that a simple independ-

ence model for DNA sequences have their uses, but only go

a little way.

We need to take into account in a model the fact that

neighboring bases in DNA sequences are not independent.

According to Tavaré and Giddings (1989), associations be-

tween adjacent bases will lead to associations between

more distant bases and an estimate of how far the relations

extend may be found from Markov chain theory.

According to Weir (1996), Markov chain analyses are

of use at the genome level, rather than at the level of an indi-

vidual gene, since the last may involve very short se-

quences that are not sufficient to demonstrate the presence

of higher order chains. The same author observes that it is

unlikely that the same Markov chain can describe the whole

genome, and if a Markov chain has been fitted to a genome,

no biological mechanism is implied, but useful questions

can be answered. For example, the frequency of particular

subsequences (words) can be predicted.

According to the website http://www.

accessexcellence.org/AE/AEC/, in genetic engineering it is

common to use the many enzymes that are able to modify or

join existing DNA molecules, or to aid in the synthesis of

new DNA molecules. For example, the enzyme DNA poly-

merase makes possible the attachment of two or more DNA

molecules to one another. The enzyme DNA ligase breaks

DNA molecules into fragments, while the so called restric-

tion endonuclease enzyme (REE) functions by “scanning”

the length of a DNA molecule. Once the REE encounters its

particular specific recognition sequence (word), it will

bond to the DNA molecule and cut it in a predictable and re-

producible way. It is important to use Markov chains to

help a biologist to estimate the expected number of frag-

ments produced when a specific restriction enzyme is ap-

plied to the genome.

Markov chains might describe DNA sequences in

terms of their nucleotide composition, i.e., as a string of let-

ters from a four-letter alphabet, {A, C, G, T}. Let us denote

each one of the four base types as states. We are going to in-

troduce some terminology and notation useful for Markov

chains.

Generally speaking, for a given subject, let Xt denote

the response on a categorical variable at time t, t = 0, 1, ...,

T. The sequence (X0, X1, X2, ...) is an example of a stochas-

tic process, an indexed family of random variables. In this

paper Xt indicates the nucleotide at position t in the se-

quence.

Without invoking any biological mechanism, a

Markov chain of order r implies that the base present at cer-

tain position in a sequence depends only on the bases pres-

ent at the previous r positions. In more formal grounds, a

stochastic process is a rth-order Markov chain if, for all t,

the conditional distribution of Xt + 1, given X0, ..., Xt, is iden-

tical to the conditional distribution of Xt + 1, given Xt, ...,

Xt - r + 1. Given the states at the previous r times, the future

behavior of the chain is independent of the past behavior

before those r times. For a first-order Markov chain with I

possible states, the conditional probabilities

ηij t t -1
(t) = Pr(X = j X = i) (1)

with i, j = 1, ..., I are called transition probabilities. The ex-

tension for higher orders is immediate. If ηij(t) does not de-

pend on t, the Markov chain is called homogeneous.

Statistical inference for Markov chain uses standard

methods of categorical data analysis, such as log-linear

models. Some useful references are Anderson and Good-

man (1957), Birch (1963), Bishop et al. (1975), McCullagh

and Nelder (1989), Agresti (1990), and Avery et al. (1999).

Heterogeneity in DNA Sequences

Markov chains and log-linear models are important

tools to help us describe local properties of DNA se-

quences. However, Markov chains cannot account for the

heterogeneity that may be present in different regions of the

same DNA sequence. The basic assumption of this kind of

model is that the chain is homogeneous, meaning that the

same transition probability matrix is assumed true for the

whole sequence being analysed. However, biologists know

that coding and non-coding regions of DNA present differ-

ent nucleotide frequencies. Thus a Markov model would

predict some behavior that is not observed in the data.

Therefore, this kind of model may be of little practical use

in a variety of problems.

An example of heterogeneous DNA is presented by

Bernardi and Bernardi (1986). Working with biochemical

aspects of DNA, they explain that the nuclear genome of

warm-blooded vertebrates exhibits a compositional

compartmentalization, in that it consists mainly of a mosaic

of very long DNA segments, the isochores. According to

the authors, isochores are characterized by fairly homoge-

neous regions in C + G content, and distinct isochores pres-

ent distinct proportions of C + G. The authors also state that

genome does not present very many isochores and that het-
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erogeneity within an isochore is very low but is high be-

tween isochores. Heterogeneity may be due to differences

in patterns of base composition and dependence between

neighboring bases, and it might reflect functional and struc-

tural differences between regions.

It is possible to describe those heterogeneous unob-

served regions of the genome of a given organism by using

statistical tools instead of biochemical ones that would then

be used more parsimoniously. The referred tools are statis-

tical models that can account for heterogeneity that is pres-

ent in the sequences. This is the subject of our next

discussion.

A Hidden Markov Model for DNA Sequences

In this section we are going to present some hidden

Markov models developed by Churchill (1989). These

models are still very popular (see Boys et al., 2000). We

will make a brief description restating some aspects of sec-

tion 4 in Churchill (1989). For major details about this issue

the referred paper should be consulted.

While the bases A, C, G, T represent observed out-

comes and for short will be denoted outcomes, the homoge-

nous unobserved regions we are looking for will be called

hidden states and for brevity will be denoted states. Our job

is to estimate how many hidden states there are and to pres-

ent a map describing where they are located. The number of

states is considered to be finite and fixed and corresponds to

the different regions of the DNA. We introduce now some

notation and definitions needed for describing hidden

Markov models for DNA sequences.

Consider a sequence of random variable {Yi: i = 1, ...,

n} with distribution determined by a corresponding se-

quence of unobserved states {si}. Denote the sequence of

observed outcomes and states up to time t by, respectively,

yt = {y1, ..., yt} and st = {s1, ..., st}.

Admitting a fixed number of states and multinomial

outcomes, let yt = (yt,0, ..., yt,m-1) be a

vector whose components are all zero except for one

equal to unity, indicating which of the m possible outcomes

is observed. Each observation is associated with one of r

states indicated by the vector st = (st,0, ..., st,r-1). There is a

vector π0 of initial probabilities associated to s1, such that

Σi π0i = 1. Thus, for the π0i’s there are r - 1 parameters to es-

timate.

The distribution of yt given that the state at time t is k

is multinomial, that is, yt | st,k Multinomial(1, p0,k, ..., pm-1,k).

The parameter pi,k is the probability of observing outcome i

when the current state is k, subject to the constraint

p i,k

i=0

m -1

=∑ 1 (2)

Therefore, for the pij’s there are r x (m-1) parameters

to estimate.

The observation equations, considering independ-

ence between the outcomes are

P(y s pt t,k i,k

y

i 0

m 1
t, i) =

=

−

∏ (3)

It is also possible to allow for Markov dependence be-

tween the observed outcomes. In the case of first-order de-

pendence, the probability of observing outcome j given that

the previous outcome was i and the current state is k is pij,k,

where

p ij,k

j=0

m -1

=∑ 1 (4)

Therefore for the pij,k‘s there are r x m x (m-1) param-

eters to estimate.

The observation equations allowing for first-order

dependence are

P(y y , s pt t -1 t,k ij,k

y y

j 0

m 1

i

m 1
t -1, i t, j)

.=
=

−

=

−

∏∏
0

(5)

The state process is a Markov chain on the r states.

Denote the r x r matrix of state transition probabilities by

Λ = (λij). Thus, for the λij‘s there are r x (r - 1) parameters to

estimate.

The system equations can be written as:

P(s s ( )t t -1 i, j

s s

j 0

r 1

i

r 1
t,1 t -1, j) =

=

−

=

−

∏∏ λ
0

(6)

The observation and system equations are assumed to

be completely specified. The marginal posterior distribu-

tion of the state at time t, Pr(st | yn) is called the smoothed

estimate of st. Graphic displays of the underlying state pro-

cess are produced by plotting the smoothed estimates

against the sequence index t. That represents the mentioned

map that describes where the homogeneous regions of the

genome are located.

A recursive updating algorithm can be applied as fol-

lows to reconstruct the underlying state process. The gen-

eral filtering and smoothing equations needed in the

algorithm are

Filter: to begin, suppose that Pr(st-1 | yt-1) is known. A

prediction of the state at time t (predictive equations) can be

computed using the system equation

P(s y P(s yt, j

t -1

i, j

i

r 1

t -1,i

t -1) )=
=

−

∑ λ
0

(7)

and the filtered densities are:

P(s y
P(y s P(s y

P(y

t, j

t -1 t t, j t, j

t -1

i, j

i

r 1
)

) )
=

=

−

∑ λ
0

t t,i t,i

t -1s P(s y) )

(8)

Smoother: the joint distribution of adjacent states is:
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P(s , s y
P(s y P(s y

P(s
t,i t+1, j

n t+1, j

n

ij t,i

t

t+

)
) )

=
λ

1, j

ty )
(9)

and the smoothed estimates are:

P(s y P(s y
P(s y

P(s y
t,i

n

t,i

t t+1, j

n

i, j

t+1, j

t
i

) )
)

)
=

λ

=

−

∑
0

r 1

(10)

The recursive updating algorithm requires that the pa-

rameters of the observation and system equations be speci-

fied. The parameter vector Θ = {π0, p, Λ} has to be

estimated from the data using the EM-algorithm

(Dempster, Laird and Rubin, 1977) where the missing in-

formation is the state at each time {st, t = 1, ..., n}.

The likelihood of the incomplete data is

P(y ) P(y s y P(s y )n

t t, j

t 1

t, j

t 1

j 1

r

t 1

n

= + −

==
∑∏ , ) (11)

and the likelihood of the complete data is

P(y ,s ) P(y s y (s s )n n

t t

t -1

t

t 1

t 1

n

= −

=
∏ , ) (12)

The closed-form solutions for the likelihood of the

complete data are:

$p =

y s

s

i, j

t,i t, j

t=1

n

t, j

t=1

n

∑

∑
$λ i, j

t -1,i t, j

t=1

n

t -1,i

t=1

n
=

s s

s

∑

∑
(13)

When first order Markov dependence between out-

comes is present

$p =

y y s

y s

ij,k

t -1,i t, j t,k

t=1

n

t -1,i t,k

t=1

n

∑

∑
(14)

The initial probability vector is estimated by

$π 0 = E(s y )1

b (15)

The EM-algorithm is implemented as follows:

1. Start with an initial guess Θ(0) of the parameter vec-

tor;

2. E-step. run the recursive updating algorithm with

current parameter estimate Θ(p). Estimate the states by their

conditional expectations

(E(s y , ) = P(s y , )t

n (p)

t,0

n (p)Θ Θ ,... ,

)P(s y , )t,r -1

n (p)Θ (16)

M-step. treat the estimated states as data, solve the

complete-data likelihood equations to obtain an updated es-

timate Θ(p + 1).

The recursive updating algorithm is then updated in

step (2) above until convergence.

BIC and AIC for Hypothesis Testing

Due to the large size of the Xylella subsequence we

are working with, traditional Chi-square tests for compar-

ing competing models systematically reject simpler models

(the ones with fewer parameters to estimate) in favor of

larger ones. That means we need a different methodology to

perform our tests. Such methodology was developed by

Schwarz (1978) and Sakamato et al. (1986), and applied in

our tests in section 6.

Sakamoto et al. developed Akaike’s Information Cri-

terion (AIC) that has the form of a penalized maximum

likelihood function where the size of the penalty depends

on the number of units required to encode the parameters.

Schwarz (1978) developed the Bayesian Information Crite-

rion (BIC) (also known as Schwarz’s Bayesian Criterion

(SBC)) which is based on Bayesian theory. Raftery (1986),

presents a very good description of the BIC.

Let θ be a vector of parameters, λ be the log-

likelihood function in study, K as the number of parameters

in the model (degrees of freedom), and n be the sample size.

Then

AIC K= − +2 2l ($ )θ (17)

and

BIC K log(n)= − +2l ($ )θ (18)

When comparing fitted objects, the smaller the AIC

(and BIC) the better the fit is. AIC and BIC values have no

intrinsic meaning, except in relation to other models based

upon the same dataset.

Examples: Bacteriophage Lambda and Xylella

In this section we illustrate the application of the hid-

den Markov models discussed above using a subsequence

of the Xylella genome and the data for the entire genome of

the virus Bacteriophage lambda which has been studied by

Churchill (1989). Our codes have been written in

FORTRAN and we used the Bacteriophage lambda data to

illustrate the methodology and also to check whether our

results match Churchill’s.

Bacteriophage lambda. The DNA sequence for the

Bacteriophage lambda has been acquired from the Genbank

website http://www.ncbi.nlm.nih.gov/Genbank/. Accord-

ing to the website http://latin.arizona.edu/~plpweb/lecture/

lect39, bacteriophages are basically viruses that specialise

in the infection of bacteria. Bacteriophage uses the bacteria

Escherichia coli as a host. The bacteriophage lambda ge-
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nome size is 48,514 bases and is by far the most completely

studied bacteriophage known. A total of 46 genes have

been identified on the circular lambda map. The

bacteriophage’s G + C content has been studied by Skalka

et al. (1967). Using chemical analyses, they concluded that

the genome is composed of six segments with different G +

C content. Churchill (1989) found a three-state first-order

dependent model as the one that best fits the data. Follow-

ing Churchill (1989), in Figure 1 we show the smoothed es-

timates of local A + T composition based on a four-state

independent outcome model. Our map is largely in agree-

ment with the one produced by Churchill (1989).

(b) Xylella subsequence. According to information

obtained from the website http://aeg.lbi.ic.unicamp.br/xf/,

the main chromosome of the Xylella fastidiosa (cataloged

by the National Center for Biotechnology Information

(NCBI) by code number AE003849) is composed of 2,838

genes. This chromosome has a total number of 2,679,305

nucleotide bases (A, C, G, T). Among them, 1,411,300

(52.67%) are C or G. The website http://aeg.lbi.ic.

unicamp.br/xf/ makes available the main chromossome

gene map which lists adjacent genes. This gene map has the

advantage of being presented in the form of colored hori-

zontal bars, where each color represents the predominant

gene function. As we mentioned in the introductory sec-

tion, we worked with only a subsequence of the genome of

Xylella fastidiosa. We chose Xylella main chromossome

subsequence composed of genes XF1141 and XF1196, a

total of 38,730 bases. This subsequence is mainly formed

by genes that describe three well-defined and contiguous

regions. Region 1 starts at base 1 and goes as far as approxi-

mately base 7,401. It contains genes related to energy me-

tabolism. Region 2 is located between bases 7,402 and

21,723 and it is basically composed of RNA processing

genes. After a very heterogeneous region including several

small genes, each with a particular major function, we find

region 3 located between bases 26,767 and 32,514. Region

3 is basically composed of macromolecule metabolism

genes. Therefore we are aware of the existence of three

functionally speaking different regions (energy metabo-

lism, RNA processing and macromolecule metabolism).

That may have an impact on the dependence structure be-

tween nearby bases. If that is so, hidden Markov models

can help us to locate them.

We fitted independent or first-order dependent out-

comes and up to four latent states. Table 1 summarizes the

results. BIC and AIC (see Schwarz, 1978 and Sakamoto et

al., 1986) pointed out a three-state independent outcome

model as the one providing the best fit.

Figure 2 shows the smoothed estimates of local C + G

composition based on a three-state independent outcome

model . The local composition was estimated as:

$π t t,1 t,1 t,1

n

i 1

P(y s )P(s y )=
=

∑
3

(19)

In (19) yt,1 implies we are dealing with local propor-

tion of C + G - there are only two outcomes: 1 (for C or G)

or 2 (for A or T).

In Figure 2 we notice that there are four regions. The

first and the last one present comparable C + G smoothed

proportions.

The second region is the largest and presents the larg-

est C + G concentration. Region three is narrow and spiked.

Approximately first region ranges from base 1 to 7,000, the

second region goes up to base 21,000, and the third goes

from base 22,000 to 24,000. Regions one and two are in

very good agreement with our data description, matching

energy metabolism and RNA processing genes. Region

three incorporates, functionally speaking, very heteroge-

neous data, so it is not possible to characterize it in those

Hidden Markov models applied to Xylella fastidiosa genome 531

Table 1 - Summary statistics used for selecting the best HMM model for the Xylella dataset.

Hypothesized number

of hidden states

Order of dependence

of the outcomes

Degrees of freedom Likelihood BIC AIC

2 0 1 + 2 + 2 = 5 -26795.9 53644 53601

3 0 2 + 6 + 3 = 11 -26749.9 53616 53521

4 0 3 + 12 + 4 = 19 -26745.8 53792 53529

2 1 1 + 2 + 4 = 7 -26795.3 53664 53604

3 1 2 + 6 + 6 = 14 -26795.2 53738 53618

4 1 3 + 12 + 8 = 23 -26739.6 53833 53636

Figure 1 - Plot of the local proportions of A+T based on a four-state model

fit by maximum likelihood.



terms. Region four is well defined with a regular low ex-

pression of C + G. It does not contradict the data descrip-

tion in the sense that approximately from bases 26,000 to

32,000 the smoothed proportions show homogeneity which

matches the location of macromolecule metabolism genes.

These results confirm that hidden Markov models are use-

ful tools to reveal homogeneous regions of DNA data.

We notice that there are non negligible differences in

scale of the maps obtained for the studied organisms. We

can observe that the homogeneous regions are separated

more clearly in the case of the phage. This might be due to

the weaker kind of dependencies in the Xylella data we

worked with compared to the phage data. Despite the fact

that the best model was found to be a three state one, model

selection procedures did not support first order dependen-

cies among Xylella outcomes in contrast with the phage

outcomes. Therefore, it is reasonable that the phage map

presents a better discrimination of homogeneous regions

than the Xylella map.

Finally, even though we could tell the major function

of the genes included in the Xylella dataset we used by in-

specting the chromossome map (website http://aeg.lbi.ic.

unicamp.br/xf/), this is no longer feasible when dealing

with the whole genome of the Xylella genome. Thus, com-

putational methods are needed to extract and summarize

major underlying features that help the analyst to under-

stand DNA structure and function. Hidden Markov models

seem to be a good option.

Discussion

Hidden Markov models are useful for describing and

revealing some special features of temporal biological se-

ries. The main advantage over the regular Markov models

is the possibility that HMMs have of accounting for hetero-

geneity that may be present in the data. As a result, more

sensible models and better data descriptions might be avail-

able to the analyst.

In this work we applied HMM methods to a

subsequence of the Xylella fastidiosa genome. In order to

describe possible variations in the expression of C + G, we

worked with the C + G sequence data instead of with the

original DNA sequence. The HMM that better describes the

data was able to correctly discriminate regions in the data

corresponding to distinct biological functions. In the future,

this kind of model may be used in the study of larger subse-

quences or even the whole Xylella genome.

There are other already known uses of HMM in com-

putational biology. Those may be tried on the Xylella data.

For example, HMMs are used for obtaining multiple

aligned sequences and also for gene detection.

According to Hugley and Krogh (1996), HMM are a

highly effective means of modeling a family of unaligned

sequences or a common motif within a set of unaligned se-

quences. HMMs are particularly useful in the study of pro-

tein molecules since they make possible the automatic

discrimination of evolutionarily close proteins. Proteins are

built from an alphabet of twenty smaller molecules known

as amino acids. According to http://www.cse.ucsc.edu/re-

search/compbio/ismb99.handouts/KK185FP.html, when a

cell reproduces, a protein inside the cell is most of the time

exactly duplicated in the daughter cell. However, over long

periods of time, errors occur in the copy process. When this

happens, a protein in the daughter cell is slightly different

from its counterpart in the parent. The three most common

errors are “substitution” of an amino acid in a given posi-

tion, “insertion” of one or more new amino acids, and “de-

letion” of one or more amino acids. As a result of these

errors, proteins which share a common ancestor are not ex-

actly alike. However, they inherit many similarities in pri-

mary structure from their ancestor. This is known as

“conservation” of primary structure in a protein family. In

an HMM for multiple alignment the states are S (substitu-

tion), I (insertion), D (deletion) and M (matching of amino

acids). According to Krogh et al. (1994), an HMM used for

multiple alignment identifies a set of positions that de-

scribes the conserved primary structure in the sequences

from a given family of proteins, i.e., the model identifies

the core elements of homologous proteins. In the case of the

Xylella it may be important to know how evolutionarily

close is this organism to another, since similar methods

used in the combat of the latter could be tried.

HMMs are also a very useful tool in gene prediction.

According to Stormo (2000), the states correspond to

exons, introns, and any other class of sequences desired

(such as 5’ and 3’ UTRs, promoters regions, intergenic re-

gions, repetitive DNA, etc). These genetic entities signal

the points in the DNA where a new gene starts or ends. The

probability of changing from an intron to an exon depends

on the local sequence such that it is high only at plausible

splice junctions. Stormo (2000) explains that the “hidden”

in these HMMs denotes that fact that we see only the DNA

sequence directly, and the state that generated the sequence
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Figure 2 - Plot of the local proportions of C+G based on a three-state

model fit by maximum likelihood.



(exon, intron, etc) is not visible. These methods are impor-

tant because genes can be located using computational biol-

ogy tools.
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