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Abstract

The endogenous time-keeping mechanism is responsible for organizing plant physiology and metabolism according
to periodic environmental changes, such as diurnal cycles of light and dark and seasonal progression throughout the
year. In plants, circadian rhythms control gene expression, stomatal opening, and the timing component of the
photoperiodic responses, leading to enhanced fitness due to increased photosynthetic rates and biomass produc-
tion. We have investigated the citrus genome databases of expressed sequence tags (EST) in order to identify genes
coding for functionally characterized proteins involved in the endogenous time-keeping mechanism in Arabidopsis
thaliana. Approximately 180,000 EST sequences from 53 libraries were investigated and 81 orthologs of clock com-
ponents were identified. We found that the vast majority of Arabidopsis circadian clock genes are present in citrus
species, although some important components are absent such as SRR1 and PRR5. Based on the identified tran-
scripts, a model for the endogenous oscillatory mechanism of citrus is proposed. These results demonstrate the
power of comparative genomics between model systems and economically important crop species to elucidate sev-
eral aspects of plant physiology and metabolism.
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Introduction

The rotation of the earth on its axis causes alternating

cycles of light and dark at a period of approximately 24 h.

The physiology, metabolism and behavior of most organ-

isms are drastically affected by these daily environmental

changes that lead to apparent biological oscillations known

as diurnal rhythms. The conceptual model of circadian

clocks consists of an entrainment or input pathway that syn-

chronizes the pacemaker with its environmental surround-

ings, a central oscillator that generates and sustains

rhythmicity, and multiple output pathways that link the os-

cillator to the organism’s physiology and metabolism

(Bell-Pedersen et al., 2005).

In plants, the entraining stimulus is mainly light, with

a smaller contribution from temperature (Salomé and

McClung, 2005; Edwards et al., 2006). Accordingly, the in-

put pathway to the plant clock consists mostly of photo-

receptor families (Millar, 2004), ubiquitously found in

plants, including economically important species (Santelli

and Sivieiro, 2001; Hecht et al., 2005).

The central oscillatory mechanism of all known circa-

dian clocks is dependent on autoregulatory feedback loops

(Bell-Pedersen et al., 2005). In plants, the Arabidopsis cir-

cadian clock mechanism has been partially elucidated.

However, circadian control of metabolism and physiology

is evident in most plant species, including citrus, where

several economically important features are circadianly

regulated, such as flavonoid and terpenoid metabolism reg-

ulation and essential oil composition (Lee and Castle, 2001;

Lin et al., 2002; Frizzo et al., 2004). Moreover, gene ex-

pression and developmental processes in citrus have also

been demonstrated to be under control of an endogenous

time-keeping mechanism (Smith and Wareing, 1972;

Abied and Holland, 1994).

The negative limb of the Arabidopsis clock consists

of two highly similar single MYB-domain factors CCA1

(CIRCADIAN AND CLOCK ASSOCIATED1) and LHY

(LATE ELONGATED HYPOCOTYL) (Wang and Tobin,

1998). The positive limb is the pseudo-response regulator

TOC1 (TIMING OF CAB 1), also called PRR1

(Arabidopsis thaliana PSEUDO-RESPONSE REGULA-

TOR 1), its orthologs PRR5, PRR7 and PRR9 (Makino et

al., 2000; Strayer et al., 2000; Alabadí et al., 2001; Mizo-

guchi et al., 2002), the MYB transcription factor LUX

ARRHYTHMO (LUX)/PHYTOCLOCK 1 (PCL1) (Hazen

et al., 2005, Onai and Ishiura, 2005) and the novel protein

ELF4 (EARLY FLOWERING 4) (Kikis et al., 2005).
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The oscillatory mechanism depends on CCA1- and

LHY-binding to the evening element (EE, AAATATCT) in

the TOC1 promoter, which represses transcription of the re-

sponse regulator-like gene (Alabadí et al., 2001). During

the day, the levels of CCA1 and LHY decrease, releasing

their repression on TOC1 that peaks at dusk when the levels

of CCA1 and LHY are at their trough. Subsequently, the in-

creasing levels of TOC1 during the evening induce its func-

tion as a positive regulator of CCA1 and LHY expression

through an as yet uncharacterized mechanism (Alabadí et

al., 2001, Matsushika et al., 2002; Mizoguchi et al., 2002;

Harmer and Kay, 2005; Hazen et al., 2005). Several other

gene products are required for CCA1 and LHY expression,

including GIGANTEA (GI), ELF3, ELF4, and LUX (Park

et al., 1999; Doyle et al., 2002; Mizoguchi et al., 2002;

Hazen et al., 2005); thus, generating the interlocked feed-

back loops. The second proposed loop consists of TOC1

transcriptional activation by GI, which in turn, is repressed

by TOC1 (Locke et al., 2005). A third autoregulatory loop

is hypothesized to consist of CCA1 and LHY as positive

regulators of TOC1-family members PRR5, PRR7, and

PRR9 (Farré et al., 2005; Harmer and Kay, 2005). Cur-

rently, distinct lines of evidence support the idea that

PRR5/7/9 are negative regulators of CCA1/LHY: (i) CCA1

and LHY transcripts accumulate in prr7 and prr7 prr9 mu-

tants (Farré et al., 2005) and, (ii) CCA1 is constitutively

transcribed in the arrhythmic prr5 prr7 prr9 triple mutant

(Nakamichi et al., 2005b). Moreover, PRR5/7/9 and TOC1

are thought to be mutually repressive and partially redun-

dant (Farré et al., 2005; Nakamichi et al., 2005a; Salomé

and McClung, 2005).

Post-transcriptional regulation is involved in several

processes of circadian timing in plants. CCA1 and LHY are

phosphorylated by casein kinase II (CK2) in a manner simi-

lar to the pace-control mechanism of the mammalian circa-

dian clock (Sugano et al., 1998, Sugano et al., 1999). The

robustness of LHY oscillations has been attributed to post-

translational modifications and proteasome-mediated deg-

radation (Kim et al., 2003; Song and Carré, 2005). A

second type of posttranslational modification, implied in

clock function, is protein acetylation; mutants lacking the

N-acetylglucosamine transferase activity of SPINDLY

(SPY) exhibit altered leaf movement rhythms (Tseng et al.,

2004). Recent evidence has demonstrated the crucial role of

light- and clock-controlled proteolysis for the plant endog-

enous clock. The novel family of putative photoreceptors

ZEITLUPE (ZTL), LOV KELCH PROTEIN 2 (LKP2) and

FLAVIN-BINDING KELCH REPEAT F-BOX 1 (FKF1)

provides a direct link between the central oscillator and

ubiquitin-mediated protein degradation (Nelson et al.,

2000; Somers et al., 2000; Schultz et al., 2001). ZTL is a

component of the Skp1-Cullin-F-box (SCF) complex that

recruits TOC1 for proteasomal degradation (Somers et al.,

2000; Más et al., 2003b; Han et al., 2004).

Day length is measured by the integration of circadian

clock and light perception information at the level of

CONSTANS (CO) protein expression and activity (Suá-

rez-López, 2001; Yanovsky and Kay, 2002; Imaizumi et

al., 2003; Valverde et al., 2004; Imaizumi et al., 2005). CO

directly regulates the expression of FLOWERING LOCUS

T (FT) in Arabidopsis and of its homolog HEADING DATE

3a (HD3a) in rice (Putterill et al., 1995; Kobayashi et al.,

1999; Samach et al., 2000; Onouchi et al., 2000; Izawa et

al., 2002; Kojima et al., 2002), which promotes the expres-

sion of meristem-identity genes triggering the transition

from vegetative to reproductive development at the shoot

apical meristem. The expression and activity of CO is regu-

lated by the internal circadian clock of the plant, so that CO

mRNA transcription is restricted to 12 h after dawn until

around dawn of the following day (Suárez-Lopez et al.,

2001; Valverde et al., 2004). Under long day conditions,

CO mRNA is therefore present during the day, and when

the CO protein is translated it is stabilized in the nucleus of

the cell and will activate the expression of other genes (An

et al., 2004; Valverde et al., 2004). Under short day condi-

tions, CO mRNA is only transcribed during the night be-

cause the days are shorter than 12-h long, and the dark

translated CO protein is rapidly broken down, and unable to

activate gene expression (Valverde et al., 2004). Thus,

early flowering of Arabidopsis occurs in the long days of

spring and early summer through the coincidence of circa-

dian clock control of CO mRNA expression and direct ex-

posure of the plant to light (Yanovsky and Kay, 2002;

Valverde et al., 2004). In rice, CO gene homolog, called

HEADING DATE 1 (HD1) also has a key role in flower tim-

ing control. However, the function of HD1 in rice is re-

versed, thus, promoting flowering on short days. The rice

CO homolog protein is activated at the end of a long day;

but instead of activating other genes as it does in

Arabidopsis, HD1 represses gene activity and flowering

under longer photoperiods (Yano et al., 2001; Izawa et al.,

2002). In contrast, under short day conditions HD1 repres-

sion is absent, allowing HD3a to promote flowering

(Onouchi et al., 2000; Izawa et al., 2002; Kojima et al.,

2002). In temperate forest trees, the CO/FT regulatory

module has been demonstrated to control of flowering time

in response to variations in daylength; and, unexpectedly, it

also controls the short-day-induced growth cessation and

bud set occurring in the fall (Böhlenius et al., 2006). Thus,

annual species and trees appear to have a common time

keeping mechanism to control development during the pro-

gression of the seasons. The conserved functionality of key

meristem identity genes between Arabidopsis and citrus

has been demonstrated (Endo et al., 2005; Pillitteri et al.,

2004; Pena et al., 2001). However, the regulatory mecha-

nisms of their induction, including light quality and

photoperception, temperature and day length changes re-

main elusive.
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Recent evidence has demonstrated that photoperiodic

induction of synchronous vegetative bud break or flower-

ing is also common in tropical plants (Borchert et al.,

2005). At tropical latitudes, changes in day length that are

large enough to affect plant development occur around the

equinoxes. Therefore, a single annual period of synchro-

nous flowering after the autumn equinox indicates the in-

duction of flowering in `short-day plants’ in response to

declining day length; whereas, `long-day plants’ flowering

and vegetative bud break is induced by an increasing day

length that occurs after the spring equinox (Borchert et al.,

2005). The molecular mechanism leading to day length

measuring in the tropics has been hypothesized to involve

the integration of photoperception and the endogenous

clock as observed in temperate species (Borchert et al.,

2005).

The present work was designed to investigate the cir-

cadian temporal programming and its integrative pathways

to physiology and metabolism in citrus, employing com-

bined in silico EST profiling and domain structural data

analysis. The results presented here demonstrate that the

vast majority of the gene products involved in circadian

timing in Arabidopsis are present in citrus species. More-

over, genetic distance and domain structure analyses have

uncovered extensive amino acid sequence conservation,

providing indications of functional equivalence of

Arabidopsis and citrus transcripts. Taken together, the re-

sults have demonstrated the feasibility of incorporating in

silico analyses for gene discovery in non-model species.

Material and Methods

Database searches and alignments

Homologs of the Arabidopsis thaliana circadian

clock were identified in BLAST searches (Altschul et al.,

1997) against citrus EST databases (CitEST), which consist

of approximately 180,000 ESTs obtained from the se-

quencing of 53 specific libraries. Data validation was per-

formed by tBLASTx and tBLASTn searches of the

retrieved sequence against the locally built GenBank data-

base at CitEST. Sequences failing to retrieve the original

sequence used to query the database were eliminated from

the projects. The resulting alignments were filtered by a

threshold e-value of 1e-15 and the hits were further ana-

lyzed according to functional domain description. Vali-

dated sequences were translated and protein (deduced

amino acid) alignments were performed using ClustalX

(Thompson et al., 1997). When necessary, alignments were

manually adjusted using Lasergene MegAlign

(DNASTAR, Madison, WI, USA).

Motif analysis and in silico characterization

The identified homologs were further investigated for

the presence and sequence conservation of recognizable

functional domains described in several protein analysis

and gene function databases (European Bioinformatics In-

stitute-European Molecular Biology Laboratory - EMBL-

EBI; Expert Protein Analysis System - ExPaSy from Swiss

Institute of Bioinformatics - SIB; Gene Ontology database -

GO; Protein Families database - Pfam).

Phylogenetic analysis

The functionality of citrus genes in comparison to

their Arabidopsis counterparts was assessed by genetic dis-

tance and phylogenetic studies. Phylogenetic analyses were

performed using distance and parsimony methods in the

software PAUP* 4.0b10, using the software default param-

eters. Resampling bootstrap trees containing 1000 random

samples were constructed using PSIGNFIT software. Mod-

ular functional domains were employed for genetic dis-

tance studies for genes previously characterized as having

divergent regions and conserved blocks.

In silico gene expression analysis

Qualitative gene expression profiling was performed

by in silico analyses of the afore mentioned citrus EST da-

tabases using virtual northern blot analyses. The gene of in-

terest was used in queries against reference sequence data-

bases, generating an alignment of the input gene to its

paralogs. The resulting alignment was then used to find se-

quences in the entire mRNA input that are specific to the

gene (probe). The resulting alignments were collectively

used to query the EST database again using BLAST. This

heuristic attempts to avoid false-positives, or ESTs from a

paralog of the input gene rather than the gene itself. The

identity numbers of the ESTs matching the probes were re-

covered and CitEST was used to find the names of the li-

braries from which those ESTs were derived. The fre-

quency of reads of each EST contig in a given library was

calculated and normalized according to the total number of

reads from the investigated library and the total number of

reads in all libraries. A correlation matrix between EST

contigs and libraries was then generated and gene expres-

sion patterns among ESTs and libraries were obtained by

hierarchical clustering based on a Spearman Rank correla-

tion matrix using Cluster v.2.11 software (Eisen et al.,

1998), by substituting the clusters by their average expres-

sion pattern. Graphic outputs were generated using Tree

View v.1.6 software and presented in grayscale.

Results and Discussion

The essential components of the circadian clock input

pathway, gating mechanism, central oscillator, the output

and photoperiod integrative pathways from Arabidopsis

thaliana, and to a lesser extent Oryza sativa, were compiled

and the protein sequences of the main components were

employed to search citrus EST databases. The identified

hits were ranked according to the deduced amino acid se-

quence identity to the functionally characterized protein

used as bait and further analyzed for their functionality.
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This way, 81 citrus ESTs and EST contigs that are

similar to components of the endogenous time-keeping

mechanism and its ancillary regulation loops were identi-

fied and functionally assigned to gene ontology classes

(Figure 1). From this total, 20 transcripts correspond to in-

put pathway photoreceptors, proteins involved in the gating

mechanism and in ancillary entrainment loops in plants

(Table 1). Twenty-nine citrus sequences showed extensive

sequence conservation to components of the central oscilla-

tor mechanism (Table 2) and 32 resemble proteins involved

in the integration between the pacemaker and plant metabo-

lism and physiology (Table 3). Interestingly, some impor-

tant components of the time keeping-mechanism from

Arabidopsis are absent from citrus sequence databases,

such as the input gene SRR1 (AT5G59560; Staiger et al.,

2003) and the TOC1/PRR1-quintet member PRR5

(AT5G24470, Nakamichi et al., 2005a). Moreover, citrus

and Arabidopsis gene families, including the DOF tran-

scription factor CDF1 and MADS-box CONSTANS, appear

to have undergone differential expansion events.

Input pathway

Light entrainment pathway

Four of the five Arabidopsis phytochromes (PHYA,

PHYB, PHYD and PHYE) function in an additive manner

in the red-light (R) input to the clock (Devlin and Kay,

2000). CRYPTOCHROME 1 (CRY1) acts as the main

clock input photoreceptor under high and low fluences of

blue light (B) whereas both CRY1 and CRY2 redundantly

function at intermediate fluences of B (Devlin and Kay,

2000; Somers et al., 1998). Surprisingly, clock entrainment

under white light seems to be dependent on the physical in-

teraction of CRY2 and PHYB and their localization in nu-

clear speckles (Más et al., 2000). Moreover, cry1 mutant

plants also show altered entrainment under red light sug-

gesting that CRY1 is required for PHYA signaling to the

clock in both R and B (Devlin and Kay, 2000). Quadruple

Arabidopsis mutants lacking phyA, phyB, cry1 and cry2 are

able to maintain circadian rhythmicity (Yanovsky et al.,

2000), suggesting that additional components participate in

the light input pathway to reset the clock. The rhythmic ex-

pression of PHY and CRY genes (Tóth et al., 2001) has been

hypothesized to contribute to the gating mechanism on the

input to the clock, although the bulk PHY protein levels do

not oscillate (Sharrock and Clack, 2002).

Loss-of-function ztl mutants show fluence-rate de-

pendent period alteration, indicating that ZTL has a role in

the light input pathway (Somers et al., 2000). ZTL mRNA

abundance is not clock regulated, but its protein levels peak

around dusk and reach trough levels around dawn (Kim et

al., 2003). The rate of proteasome-mediated degradation of

ZTL varies during the course of the day: ZTL is more stable

at dusk, close to its peak value, and is more rapidly de-

graded at dawn when it reaches its trough. F-box proteins

provide specificity to proteasomal degradation pathways

by interaction and polyubiquitination-mediated degrada-

tion of determined targets. ZTL has been demonstrated to

recruit the oscillator component TOC1 for degradation

(Somers et al., 2000; Más et al., 2003b; Han et al., 2004). In

ztl mutants, TOC1 levels are elevated and only weakly

rhythmic, demonstrating that ZTL is critical for TOC1 pro-

teolysis and rhythmicity. Correspondingly, ZTL over-

expression induces a dosage-dependent period shortening

(Han et al., 2004). Citrus photoreceptor families and the

components of their proteolytic degradation pathway have

been extensively discussed in the accompanying paper on

photoperception and light signal transduction.

Gating mechanism

In Arabidopsis, light-conditional arrhythmic behav-

ior is observed in the absence of ELF3 (EARLY

FLOWERING 3) and TIC (TIME FOR COFFEE) proteins

(Hicks et al., 1996; Hicks et al., 2001; McWatters et al.,

2000; Covington et al., 2001; Liu et al., 2001; Hall et al.,

2003). Interestingly, elf3 null mutants are arrhythmic at dif-

ferent phases of the oscillation when compared to tic mu-

tants and double elf3 tic mutants lack rhythmicity under

light and dark conditions (Hall et al., 2003). Thus, these

Quecini 797
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endogenous time-keeping mechanism using gene ontology. A. molecular

function; B. cellular component; C. biological process. Assignments are

based on the data available at the TIGR Arabidopsis thaliana Gene Index

version 13.0.



proteins are likely to be responsible for the gating mecha-

nism at different times of the day and are termed

Zeitnehmer (from German, time taker). The ELF3 protein

contains no recognizable domains and the TIC gene re-

mains to be identified (Liu et al., 2001; Hall et al., 2003). In

citrus transcriptome, two EST contigs from Citrus sinensis

and C. reticulata, one from C. aurantium and one from

Poncirus trifoliata, sharing moderate sequence similarity

to ELF3, were identified (Table 2). The lack of functionally

characterized domains in Arabidopsis ELF3 prevents fur-

ther considerations about the role of the citrus homologs.

Temperature entrainment pathway

Temperature signaling to the clock is much less well

defined; however, gene expression and cotyledon move-

ment have been demonstrated to be effectively entrained by

temperature cycles in Arabidopsis (Michael and McClung,

2002; Salomé et al., 2002; Salomé and McClung, 2005).

The pseudo-response regulators PRR7 and PRR9 are es-

sential for temperature-mediated clock synchronization, as

prr7 prr9 double mutants fail to entrain to temperature cy-

cles that are effective to entrain wild type plants (Salomé

and McClung, 2005). Citrus genome has three cDNAs sim-

ilar to PRR7, two from C. sinensis and one from P. trifoli-

ata, and two EST contigs highly similar to PRR9 (Table 3).

In Arabidopsis and rice, these proteins participate in the

central oscillator mechanism as well (Farré et al., 2005;

Murakami et al., 2005; Nakamichi et al., 2005b). The citrus

PRR homologs are discussed in-depth in the following sec-

tion. Interestingly, the photoperiodic transcriptional activa-

tor, GIGANTEA (GI) and the MADS-box protein FLC

have been assigned to a quantitative trait locus (QTL) re-

sponsible for a substantial portion of natural variation in

temperature-mediated circadian clock entrainment (Ed-
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Table 1 - Citrus ESTs with homology to genes involved in the input pathway to the circadian clock in Arabidopsis thaliana.

Arabidopsis thaliana CitEST Protein motifsd

and biological process

References

Namea Gene EST (n. reads)b %c e value

Entrainment photoreceptors

CRY1 AT4G08920 C10-CR (2)

S1-CS

23.3 (P: 48%)

74.6 (FL)

3e-91

1e-106

FAD binding domain, DNA photo-

lyase, B photoreceptor, circadian

clock entrainment

Cashmore et al., 1999

PHYA AT1G09570 S2-CS

S3 - CS

58.3 (FL)

34.7 (FL)

6e-86

4e-81

PAS1, PAS2, chromophore binding

domain, HKL domain, R/FR photo-

receptor

Sharrock and

Quail, 1989

PHYB AT2G18790 S4-CR

S5-CS

15.3 (FL)

8.1 (P: 72%)

3e-75

3e-55

PHY family Boylan et al., 1994

FKF1 AT1G68050 C5-CS (2)

C6-CR/CS (3)

76.3 (FL)

19.3 (FL)

1e-142

1e-46

Kelch repeats, F-box domain, LOV

domain, putative

photoreceptor, photoperiodic flow-

ering control, circadian clock

Nelson et al., 2000;

Imaizumi et al., 2005

LKP2 AT2G18915 S6-CS 22.0 (FL) 1e-76 ZTL/FKF1/LKP2 family Schultz et al., 2001

ZTL AT5G57360 C5-CS (2) 29.7 (FL) 8e-71 ZTL/FKF1/LKP2 family Somers et al., 2000

Ancillary factors

ELF3 AT2G25930 C1-CS/CR (2)

C2- CR (2)

S7-CA

S8-PT

9.8 (FL)

10.6 (FL)

19.4 (FL)

7.5 (FL)

6e-24

1e-18

2e-20

1e-15

novel nuclear protein, hydro-

xyproline-rich glycoprotein family

protein, zeitnehmer,

rhythmic input to the clock

Carré, 2002

GI AT1G22770 C1-CS (6)

C2-CS/CR (2)

C3-CG/CR/CS

(4)

S9-CS

S10-CR

31.2 (FL)

25.4 (P: 73%)

25.4 (FL)

15.3 (P: 76%)

18.8 (P:73%)

5e-144

2e-45

1e131

2e-56

5e-55

putative membrane spanning do-

mains, nuclear localization, phyB

signal transduction, photoperiodic

control of flowering time

Fowler et al., 1999

PIF3 AT1G09530 C6-CG/LT (2) 25.5 (FL) 4e-27 transcriptional regulator, bHLH do-

main, photomorphogenesis

Ni et al., 1999

aGene name abbreviations: CRY: cryptochrome; DASH: Drosophila, Arabidopsis, Synechocistis, human; ELF: early flowering; FKF1: F-box, Kelch re-

peat, Flavin-binding protein1; GI: GIGANTEA; LKP2: LOV domain, Kelch repeat protein2; PCL: phytoclock; PHY: phytochrome; PIF: phytochrome

interacting factor; ZTL: Zeitlupe.
bC : contig (number); S: singlet (number); CA: Citrus aurantium; CG: Citrus aurantifolia; CR: Citrus reticulata; CS: Citrus sinensis; LT: Citrus latifolia;

PT: Poncirus trifoliata.
cIdentity percentage at the amino acid level; (FL), full-length cDNA; (P), partial cDNA: percentage of Arabidopsis cDNA.
dFunctional domain abbreviations: FAD: flavina adenosine dinucleotide; LOV: light, oxygen, voltage subtype PAS domain; PAS: Per, ARNT, Sym do-

main; HKL: histidine kinase-like.



wards et al., 2005). Five citrus transcripts, whose deduced

amino acid sequences share significant homology to GI and

GI-like proteins, and three FLC homologs were identified

(Table 2 and Table 3, respectively). Thus, the Arabidopsis

components of the temperature-mediated clock entrain-

ment pathway are present in citrus transcriptome databases.

Central oscillator

The simplified model for the transcriptional/trans-

lational negative-feedback loop of the Arabidopsis circa-

dian clock consists of the reciprocal regulation between the

highly similar MYB-type transcription factors CCA1/LHY

in the negative limb and TOC1 and the novel protein ELF4
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Table 2 - Citrus ESTs with homology to genes involved in the central oscillator of the circadian clock in Arabidopsis thaliana.

Arabidopsis thaliana CitEST Protein motifsd

and biological process

References

Namea Gene EST (n. reads)b %c e value

CCA1 AT2G46830 C3-CS (2)

C7-CS/PT (8)

C16-PT (4)

C18-CS/CR (4)

S11-CR

23.3 (FL)

24.6 (FL)

65.2 (FL)

23.4 (FL)

64.5 (FL)

9e-46

4e-35

2e-51

2e-26

2e-36

MYB-related transcription factor,

circadian rhythms, central oscillator

component, negative feedback loop

Green and Tobin, 1999;

Wang and Tobin, 1998

CK2 AT3G60250 C2-CR/CS (6)

S12-CG

S13-CR

S14-CS

26.2 (FL)

64.9 (FL)

16.9 (FL)

16.4 (FL)

1e-34

6e-43

3e-30

1e-32

regulatory (β) subunit of the protein

kinase CK2, circadian rhythms reg-

ulator, transcription factor binding

and phosphorylation

Sugano et al., 1998;

Sugano et al., 1999

DET1/

FUS2

AT4G10180 S15-CS

S16-LT

14.3 (FL)

12.5 (P: 87%)

3e-55

2e-57

nuclear localized

photomorphogenesis repressor

Chory and Peto, 1990

ELF4 AT2G40080 S17-CR

S18-CS

S19-PT

40.9 (FL)

11.4 (FL)

11.4 (FL)

2e-32

3e-28

1e-27

no recognizable domain, circadian

clock central oscillator ancillary

loop, photomorphogenesis

Doyle et al., 2004;

Kikis et al., 2005

LHY AT1G01060 C11-CS/CR

(22)

C14-PT (2)

S20-PT

S21-CR

26.5 (FL)

16.9 (FL)

20.1 (FL)

16.8 (FL)

1e-55

6e-40

3e-36

5e-32

MYB-related transcription factor,

circadian rhythms, central oscillator

component, negative feedback loop

Schaffer et al., 1998;

Green and Tobin, 1999

LUX

/PCL1

familye

AT3G46640 C1-CS (6)

(LUX3)

C2- CS/PT (3)

(LUX/PCL)

S22-CR

(LUX5)

S23-CR

(LUX5)

12.9 (FL)

11.5 (FL)

14.2 (P: 45%)

30.7 (P: 75%)

4e-72

6e-54

8e-52

1e-54

single MYB DNA-binding domain

(type SHAQKYF), putative activa-

tor of CCA1/LHY expression, re-

pressed by CCA1/LHY

Hazen et al., 2005;

Onai and Ishiura, 2005

PRR1/

TOC1

AT5G61380 S24-CS 68.0 (P: 85%) 5e-66 pseudo-response regulator, response

regulator receiver domain, circadian

rhythm, photomorphogenesis

Alabadi et al. 2001

PRR3 AT5G60100 C3-CS/CR/LT

(8)

S25-CS

S26-CS

72.0 (FL)

70.7 (FL)

64.5 (FL)

2e-37

1e-21

2e-22

PRR family Matsushita et al., 2002;

Murakami et al., 2004

PRR7 AT5G02810 S27-CS

S28-CS

S29-PT

68.1 (P: 73%)

59.2 (FL)

56.5 (FL)

3e-31

9e-22

6e-25

PRR family Nakamichi et al., 2005

PRR9 AT2G46790 C1-CS (2)

C2-CS/CR (3)

80.0 (FL)

77.6 (FL)

2e-39

6e-29

PRR family Nakamichi et al., 2005

SPY AT3G11540 C1-CS/CR (7)

S30-CR

S31-CS

27.4 (P: 91%)

25.0 (P: 75%)

15.5 (P: 77%)

2e-65

4e-43

3e-28

N-acetyl glucosamine transferase Tseng et al., 2004

aGene name abbreviations: PRR: Arabidopsis pseudo response regulator; CCA: circadian and clock associated; CK: casein kinase II regulatory subunit;

ELF: early flowering; LHY: long hypocotyl; SPY: spindly; TOC: timing of CAB.
bC: contig (number); S: singlet (number); CA: Citrus aurantium; CG: Citrus aurantifolia; CR: Citrus reticulata; CS: Citrus sinensis; LT: Citrus latifolia;

PT: Poncirus trifoliata.
cIdentity percentage at the amino acid level.
dFunctional domain abbreviations: FAD: flavina adenosine dinucleotide; LOV: light, oxygen, voltage subtype PAS domain; PAS: Per, ARNT, Sym do-

main; HKL: histidine kinase-like.
eLUX/PCL1 family members in Arabidopsis thaliana: AT5G59570, AT5G05090, AT3G10760, AT2G40970.



in the positive limb (Strayer et al., 2000; Kikis et al., 2005;

McClung, 2006). In citrus transcriptome databases, nine

homologs to the TOC1/PRR1 family of pseudo-response

regulators, nine cDNAs whose deduced amino acid se-

quences are similar to the MYB-type transcription factors

CCA1 and LHY, and three similar to ELF4 were present

(Table 3). Moreover, in silico analyses have identified four

homologs of the LUX/PCL1 family, which are hypothe-

sized to function on an interlocked loop to activate CCA1

and LHY transcription (Hazen et al., 2005; Onai and

Ishiura, 2005), four homologs of CK2, a casein kinase re-

sponsible for CCA1 phosphorylation (Daniel et al., 2004)

800 Citrus circadian clock

Figure 2 - MYB-type transcription factors involved in the circadian clock in citrus and A. thaliana. A. Schematic representation of CCA1/LHY and LUX

protein domains and MYB domain alignment in citrus and A. thaliana. B. Phylogenic analysis of citrus and Arabidopsis CCA1/LHY and LUX protein

families. Neighbor-joining tree for citrus deduced amino acid and Arabidopsis full length sequences were aligned with ClustalX. Bootstrap values are in-

dicated above each branch. At, Arabidopsis thaliana; C Number, contig number; CS, Citrus sinensis; CR, Citrus reticulata; PT, Poncirus trifoliata.



Quecini 801

Table 3 - Citrus ESTs with homology to genes involved in the integration of the circadian clock mechanism and the generation of output responses in

Arabidopsis thaliana.

Arabidopsis thaliana CitEST Protein motifsd

and biological process

References

Namea Gene EST (n. reads)b %c e value

CDF1 and

CDF familye

AT5G62430 C4-CS/PT (3)

C10- CA/CR (2)

S1-CS

S2-PT

S3-PT

S4-PT

33.3 (FL)

36.9 (FL)

43.2 (FL)

33.3 (FL)

16.7 (FL)

16.7 (FL)

3e-37

4e-46

3e-56

2e-45

6e-31

5e-46

DOF-type zinc finger, H-protein promo-

ter binding factor-2a, interacts with LKP2

and FKF1, repressor of CONSTANS

Imaizumi et al., 2005

CO AT5G15840 C5-CG/CS (4) 54.7 (FL) 3e-58 Zn finger C2HC5 B-box DNA binding

motif, CCT motif

Putterill et al., 1995,

Suárez-López et al.,

2001

COL1 and

COL familyf

AT5G15850 C4-CS/CR (24)

(COL2)

C1-CS (2)

(COL7)

C7-CR (2)

(COL16)

C13-PT(2)

(COL5)

C14-CR/CA (3)

(COL15)

C15-LT (2)

(COL7)

S1-CS (COL1)

S2-CS (COL7)

S3-PT (COL1)

S4-CR (COL13)

S5-CL (COL4)

S6-CS (COL4)

S7-CS (COL2)

S8-PT (COL7)

62.9 (FL)

40.0 (FL)

38.4 (FL)

29.3 (FL)

35.1 (FL)

29.4 (FL)

57.0 (FL)

50.7 (FL)

48.4 (P: 87%)

42.6 (FL)

37.5 (FL)

31.6 (P: 77%)

29.3 (FL)

27.8 (FL)

7e-83

1e-39

8e-39

1e-25

9e-28

2e-26

5e-79

3e-70

2e-67

6e-64

2e-31

4e-30

1e-25

7e-24

CONSTANS family Robson et al., 2001,

Griffiths et al., 2003

ELF7 AT1G79730 C1-CR/LT (3) 19.7 (FL) 1e-26 PAF1 homolog (yeast complex associated

to RNA pol II, FLC and FLM regulator

He et al., 2004

ELF8 AT2G06210 C1-CS (4) 34.4 (FL) 1e-43 CTR9 homolog (yeast PAF1 com-

plex), FLC expression induction

He et al., 2004

FD AT4G35900 S1-CG 17.8 (FL) 5e-16 bZIP transcription factor, flowering pro-

moter, interacts with FT

Abe et al., 2005; Wigge

et al., 2005

FLC AT5G10140 C1-CS (4)

S1-CS

S2-CS

40.8 (FL)

37.8 (FL)

39.3 (P: 83%)

7e-33

7e-25

8e-23

MADS-box protein, K-box transcription

factor, floral transition repressor, temper-

ature integration to circadian clock

Edwards et al., 2006

FT/

TSF

AT1G65480

AT4G20370

S1-CS 23.5 (FL)

21.7 (FL)

2e-51

2e-51

phosphatidylethanolamine-binding pro-

tein motif, induced by long days in

Arabidopsis, flowering promoter, target

of CO and acts upstream of SOC1

Izawa et al., 2002,

Halliday et al., 2003

PFT1 AT1G25540 C2-CS/CR (6) 68.6 (P: 53%) 1e-148 von Willebrand factor type

A, glutamine-rich C-terminal

Cerdán and Chory, 2003

SOC1 AT2G45660 S1-PT

S2-PT

22.4 (P: 75%)

22.5 (P: 77%)

1e-51

1e-51

K-box region, SRF-type transcription

factor, bZIP DNA binding motif, plant

DUF1319

Onouchi et al., 2000

aGene name abbreviations: CDF: cycling DOF factor; CO: CONSTANS; COL: CONSTANS-like, ELF: early flowering; FD: flowering locus D; FLC:

flowering locus C; FT: flowering locus T; PFT: phytochrome and flowering time; SOC: suppressor of CONSTANS; TSF: twin sister of FT.
bC : contig (number); S: singlet (number); CA: Citrus aurantium; CG: Citrus aurantifolia; CR: Citrus reticulata; CS: Citrus sinensis; LT: Citrus latifolia;

PT: Poncirus trifoliata.
cIdentity percentage at the amino acid level; (FL), full-length cDNA; (P), partial cDNA: percentage of Arabidopsis cDNA.
dFunctional domains abbreviations: bZIP: basic leucine zipper; CCT: CONSTANS, CONSTANS-like and TOC1; CTR: calcitonin receptor, DOF: DNA

binding with one finger, DUF: domain of function unknown; MADS:, MCM1, AGAMOUS, DEFICIENS and SRF; PAF: platelet-activating factor; SRF:

serum response factor; Zn finger: zinc finger DNA binding domain.
eCDF1 family members in Arabidopsis thaliana: AT3G47500, AT5G39660.
fCOL family members in Arabidopsis thaliana: AT5G15850 , AT3G02380 , AT1G04500 , AT3G07650 , AT1G07050 , AT1G49130 , AT2G24790,

AT2G33350, AT3G12890, AT3G21150, AT3G21890, AT4G15248 , AT5G24930 , AT5G48250, AT5G53420, AT1G06040.



and two SPY-like sequences (Table 3). Thus, at least two

interlocked feedback regulatory transcription/ translation

loops of the Arabidopsis central oscillator and two

post-translational modification systems are present and

likely to be functional in a citrus endogenous time-keeping

mechanism.

Citrus transcriptome analyses revealed the presence

of 13 cDNAs corresponding to Arabidopsis MYB-type of

transcriptional regulators involved in the circadian clock

central oscillator mechanism; namely, CCA1, LHY and the

LUX/PCL1 family (Table 3, Figure 2). CCA1/LHY-like

sequences are highly similar in C. sinensis, C. reticulata

and P. trifoliata, sharing up to 62.2% of sequence identity

(Figure 2A). Moreover, the sequences are highly similar to

their Arabidopsis counterparts (Table 2, Figure 2A). Inter-

estingly, the single-MYB LUX/PCL1 family in citrus is

more divergent and appears to have undergone a differen-

tial expansion process (Figure 2B), as the highest sequence

identity to Arabidopsis LUX proteins was of 30.7% and

only four members were found, in contrast to the five mem-

bers identified in Arabidopsis (Hazen et al., 2005). In silico

transcriptional analysis of citrus MYB-like genes with sim-

ilarities to clock components demonstrated a high fre-

quency of CCA1/LHY and LUX homologs in developing

fruits and a similar expression pattern (Figure 2). However,

the normalized levels of LUX transcripts were approxi-

mately 1.5 times smaller than the levels observed for

CCA1/LHY (Figure 3).

The Arabidopsis PRR family consists of

TOC1/PRR1 and four other members (PRR3, PRR5,

PRR7 and PRR9) whose structural designs are very simi-

lar (Matsushika et al., 2000) and include a receiver-like

(or pseudo-receiver) domain at their N-terminus followed

by a long specific intervening sequence, followed by an-

other motif of about 50 amino acids at the very C-terminal

end that is shared by the PRR family, termed the CCT mo-

tif (CONSTANS, CONSTANS-like and TOC1) (Figure

4A) (Mizuno and Nakamichi, 2005). In citrus, eight tran-

scripts sharing extensive sequence similarity to

Arabidopsis and Oryza sativa PRR were identified (Table

3). The identified transcript sequences are highly con-

served at the CCT region and more divergent at the re-

sponse regulator domain (Figure 4B, Figure 4C). Citrus

PRR family is highly represented in fruit developmental

stage libraries and shows an expression profile similar to

CCA1/LHY and LUX (Figure 3). Interestingly, the tran-

scripts of PRRs begin to accumulate after subjective dawn

in the following order PRR9-PRR7-PRR5-PRR3-PRR1,

separated by 2-3 h intervals (Matsushika et al., 2000). In

Oryza sativa, PRR family also consists of 5 members that

present sequential transcriptional induction from subjec-

tive dawn and with approximately 2-3 h interval between
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Figure 4 - Pseudo response regulator family of circadian clock compo-

nents in citrus. A. Schematic representation of the domain structure of

PRR proteins lacking the invariant phospho-accepting asparagine (re-

placed by a glutamate residue). B. Amino acid alignment of the

pseudo-response regulator domain of circadian clock PRR proteins. C.

Phylogenetic analysis of citrus and A. thaliana PRR family. Neigh-

bor-joining unrooted tree for citrus deduced amino acid and Arabidopsis

full length sequences were aligned with ClustalX. Bootstrap values are in-

dicated inside each branch. At, Arabidopsis thaliana; C Number, contig

number; S Number, singlet number; CS, Citrus sinensis; CR, Citrus

reticulata; LT, Citrus latifolia, PT, Poncirus trifoliata.

Figure 3 - In silico expression profile of the components of the central os-

cillator mechanism of the endogenous clock in citrus. The normalized

number of reads for the transcripts in each library is represented as a

grayscale. Fruit developmental stage libraries are represented as columns.

Hierarchical clustering of the expression patterns is represented by roman

numerals.



them (Murakami et al., 2005). Such sequential induction

is preceded by CCA1 transcriptional activation, resulting

in waves of sequential expression of CCA1-PRR9/7/5/3/1

(Mizuno and Nakamichi, 2005). These phenomena were

referred to as “circadian waves of the PRR quintet”; how-

ever, the biological function of the coordinated induction

of CCA1 and PRR transcription remains elusive. The pres-

ence of the “circadian waves of the PRR quintet” in citrus

remains to be investigated. TOC1/PRR1 and PRR9 have

been demonstrated to participate in phytochrome-

mediated photomorphogenesis regulation (Makino et al.,

2001; Ito et al., 2003; Más et al., 2003a; Ito et al., 2005).

The expression of citrus PRR in developing fruits sug-

gests that they might be involved in light-regulated sec-

ondary metabolism, although further functional analysis

is required.

Post-translation modification inducers

The post-translational modifications involved in the

circadian mechanism in Arabidopsis are protein

phosphorylation, proteolytic degradation and acetylation

(McClung, 2006). Four CK2-homologous transcripts have

been identified in citrus transcriptome (Table 3). As ob-

served for other oscillator components investigated, CK2

homologs are frequent in libraries obtained from fruit de-

velopmental stages and present a unique expression pattern

in comparison to other putative pacemaker components;

they are highly induced in developing fruits in the first and

second developmental stages (Figure 3). The ZTL/FKF1/

LKP2 family, responsible for TOC1 ubiquitin-mediated

degradation and regulation of photoperiodic responses, is

also represented in citrus, as discussed in the accompanying

paper on photoperception. Two singlets highly similar to

the N-acetylglucosamine transferase SPY protein were

identified in citrus (Table 3). Thus, it is likely that the

post-translational mechanisms involved in circadian clock

regulation in Arabidopsis are functional in citrus.

Clock outputs and integrative pathways

The endogenous time-keeping mechanisms allow or-

ganisms to adjust the timing of crucial developmental tran-

sitions to occur at the most favorable time of the year,

leading to seasonal adaptation. The mechanism of day

length measuring in higher plants is based on the integra-

tion of circadian clock and light perception, at the level of

CO protein expression and activity (Suárez-López et al.,

2001; Yanovsky and Kay, 2002; Imaizumi et al., 2003;

Valverde et al., 2004; Imaizumi et al., 2005).

Arabidopsis CO and its rice homolog HD1 directly

regulate the expression of FT and HD3a, respectively

(Putterill et al., 1995; Kobayashi et al., 1999; Samach et al.,

2000; Onouchi et al., 2000; Izawa et al., 2002; Kojima et

al., 2002), which promote the expression of meristem-

identity genes triggering the transition from vegetative to

reproductive development at the shoot apical meristem

(Komeda, 2004). Fifteen CO/COL homologs were

identified in citrus transcriptome analysis (Table 3). The

characteristic bipartite B-box Zn finger DNA binding do-

main is present at the N terminus of all citrus CO homologs

(Figure 5A), although sequence divergence is observed in

IIIa and IIIb sub-groups (Figure 5). A single EST contig

from citrus lacked the B1 sub-domain and was clustered in

the sub-group where the second B-box is replaced by a

more divergent zinc-finger domain (Griffiths et al., 2003)

(Figure 5B). Similarly, the signature CCT domain is highly

conserved in groups I, II and IIIa and more divergent in

group IIIb (Figure 5B).

Flowering requires the integration of temporal and

spatial information to restrict its initiation to specific loca-

tions. Recently, Abe et al. (2005) and Wigge et al. (2005)

have demonstrated that the interaction between FT ex-

pressed in the leaves and the transcription factor

FLOWERING LOCUS D (FD) occurs exclusively in the

shoot apex and triggers the expression of floral identity

genes in the new primordial. Moreover, Huang et al. (2005)

have shown that upon CO-mediated photoperiodic activa-

tion, FT mRNA is transported from the leaves to the shoot

meristem via the plant vascular tissue. Therefore, CO ac-

tion in the phloem activates FT expression in leaves in a

cell-autonomous manner, according to the observation that

CO activates FT expression and promotes flowering only

when expressed under the control of phloem-specific pro-

moters in the leaf, but not under control of apex-specific

promoters in the shoot (An et al., 2004; Ayre and Turgeon,

2004; Valverde et al., 2004). These results indicate that the

activity of CO is crucial for the generation of the mobile

signal that originates in the leaf and is perceived in the apex

at onset of flowering. Thus, leaf-produced FT activates the

transcription of floral identity genes, such as APETALA1

(AP1), at the shoot apex through its interaction with a new

bZIP transcription factor, FD that is expressed preferen-

tially at the shoot apex in the region where new primordia

are being generated (Abe et al., 2005; Wigge et al., 2005).

Multiple lines of evidence from these studies suggest a

model by which FD provides the spatial framework or

timely activation of flowering by FT (Blázquez, 2005). FT

and FD have been shown to physically interact in vitro and

in vivo and are hypothesized to act together to activate

downstream targets (Abe et al., 2005). Ectopic expression

of FD caused up-regulation of AP1 expression in leaves

only under conditions that increase FT expression, such as

transfer of plants from short to long days (Wigge et al.,

2005). The presence of transcripts sharing extensive se-

quence homology to Arabidopsis flowering integrators

suggest that a similar mechanism may operate in citrus as

demonstrated for other woody species (Böhlenius et al.,

2006).
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Figure 5 - CONSTANS family in citrus. A. Alignment of predicted B-box and CCT peptide domains of CONSTANS and related genes from Arabidopsis

and citrus. The shaded residues represent conserved C residues and consensus spacing defining B-box domains.



Concluding Remarks

A model for the endogenous oscillatory mechanism

in citrus, based on comparative transcriptome and sequence

conservation analysis, is proposed (Figure 6). This prelimi-

nary survey of citrus circadian clock-associated genes has

provided basic information for in-depth studies relating to

the endogenous time-keeping mechanism in this important

plant group. Further studies of the genes identified here will

also give a new perspective on the circadian regulation of

economically important metabolic processes, such as sec-

ondary metabolism control. Moreover, functional charac-

terization of the identified pathways will help to uncover

the molecular basis for seasonal responses in tropical tree

species. The results highlight the potential and the power of

comparative genomics and in silico transcriptional profil-

ing in perennial species.

Quecini 805

Figure 6 - Schematic overview of the endogenous time-keeping mechanism in citrus based on comparative genomic analysis. Solid boxes with italics let-

tering represent genes. Proteins are represented by capital letters inside oval or oblong shapes. Transcription and translation proteins are indicated by

dashed lines. Protein activity is indicated by solid lines with arrowheads for positive action and perpendicular lines for negative action. The core

CCA1/LHY/TOC1 feedback loop is represented by the innermost cycle whereas the ancillary loops are represented as outer loops. Phosphorylation of

LHY and CCA1 by CK2 is indicated with solid circled Ps. The lower half of the figure represents activities peaking during the subjective night (moon

schematic representation), whereas the superior part indicates activities peaking during the subjective day (sun schematic representation).
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Table 1S - Citrus reads constituting contigs and singlets with homology to genes involved in

the input pathway to the circadian clock in Arabidopsis thaliana.

Gene Contig / Singlet Read(s)

CRY1 C10-CR

S1-CS

CR05-C3-702-066-D11-CT , CR05-C3-702-061-F10-CT

CS00-C1-100-038-A12-CT

PHYA S2-CS

S3 - CS

CS00-C3-701-101-C11-CT

CS00-C3-705-056-G06-CT

PHYB S4-CR

S5-CS

CR05-C1-102-036-H07-CT

CS12-G8-000-003-D03-CT

FKF1 C5-CS

C6-CR/CS

CS00-C1-102-025-G12-CT, CS00-C1-102-019-A06-CT

CR05-C3-700-019-F11-EU, CS00-C1-102-053-E02-CT,

CS00-C2-003-018-C11-CT

LKP2 S6-CS CS00-C3-702-030-D01-CT

ZTL C5-CS CS00-C1-102-025-G12-CT, CS00-C1-102-019-A06-CT

ELF3 C1-CS/CR

C2- CR

S7-CA

S8-PT

CS00-C3-702-072-C10-CT,  CR05-C1-100-007-E05-CT

CR05-C3-701-025-F10-CT,  CR05-C1-102-098-H10-CT

CA26-C1-002-082-B12-CT

PT11-C1-900-009-D09-CT

GI C1-CS

C2-CS/CR

C3-CG/CR/CS

S9-CS

S10-CR

CS00-C3-703-068-A06-CT, CS00-C1-102-030-G09-CT, CS00-

C3-702-018-C07-CT, CS00-C1-102-024-G11-CT, CS00-C3-

705-013-A05-CT, CS00-C3-705-019-F09-CT

CS00-C3-703-056-C05-CT, CR05-C1-100-083-B11-CT

CG32-C1-003-008-F11-CT, CG32-C1-003-008-F10-CT,

CR05-C3-701-28-12-CT, CS00-C2-003-033-G06-CT

CS00-C1-102-069-D09-CT

CR05-C3-702-072-F10-CT

PIF3 C6-CG/LT CG32-C1-003-054-B09-CT, LT33-C1-003-071-A08-CT



Table 2S - Citrus reads constituting contigs and singlets with homology to genes involved in

the central oscillator of the circadian clock in Arabidopsis thaliana.

Gene Contig / Singlet Read(s)

CCA1 C3-CS

C7-CS/PT

C16-PT

C18-CS/CR

S11-CR

CS00-C3-700-046-B06-CT, CS00-C3-702-034-H03-CT

CS00-C3-702-101-A04-CT, CS12-C1-001-007-F05-CT,

CS12-C1-001-012-C11-CT, PT11-C1-900-055-F12-CT, CS00-

C1-100-122-C11-CT, CS00-C1-100-103-A02-UV, PT11-C1-

901-048-D05-CT, PT11-C1-900-043-B06-CT

PT11-C1-900-047-B09-CT, PT11-C1-901-054-F01-CT, PT11-

C1-900-080-D04-CT., PT11-C1-900-048-E05-CT

CS00-C1-650-031-A10-CT, CS00-C3-701-030-A11-CT,

CR05-C1-100-043-F03-CT, CR05-C1-102-049-H08-CT

CR05-C1-103-085-D10-CT

CK2 C2-CR/CS

S12-CG

S13-CR

S14-CS

CR05-C3-701-006-F08-CT, CS00-C1-100-096-D01-UV,

CS00-C3-700-002-H11-CT, CS00-C3-700-006-G03-CT,

CS00-C3-700-008-H05-CT, CS00-C3-700-074-F07-CT

CG32-C1-003-100-G07-CT

CR05-C1-103-023-A01-CT

CS00-C3-700-023-H06-CT

DET1/FUS2 S15-CS

S16-LT

CS00-C3-700-016-F11-CT

LT33-C1-003-085-H03-CT

ELF4 S17-CR

S18-CS

 S19-PT

CR05-C1-102-100-G07-CT

CS13-C1-001-024-G11-CT

 PT11-C2-300-083-B03-CT

LHY C11-CS/CR CS00-C1-650-047-H07-CT, CS00-C1-100-085-E03-EU,



C14-PT

S20-PT

S21-CR

CR05-C3-701-026-B05-CT, CS00-C3-705-032-D04-CT,

CS00-C1-102-032-E11-CT, CR05-C3-701-082-D12-CT,

CS00-C1-100-042-E09-CT, CS00-C1-100-042-E10-CT,

CS00-C3-700-001-D05-CT, CS00-C1-100-081-H04-CT,

CS00-C3-702-046-G10-CT, CS00-C1-100-016-G11-CT,

CS00-C1-100-115-F08-CT, CS00-C1-100-041-D04-CT,

CS00-C3-704-082-A10-CT, CS00-C3-705-032-E11-CT,

CS00-C3-702-074-D03-CT, CR05-C3-701-001-G09-CT,

CR05-C3-701-030-A10-CT, CS00-C3-702-052-G12-CT,

CR05-C1-100-076-B12-CT, CS00-C1-101-009-H10-CT

PT11-C1-901-005-C05-CT, PT11-C1-901-061-A10-CT

PT11-C1-900-008-A04-CT

CR05-C1-102-100-G07-CT

LUX

/PCL1

family

C1-CS

C2- CS/PT

S22-CR

S23-CR

CS00-C3-701-070-D03-CT, CS00-C3-702-058-D08-CT,

CS00-C3-700-045-C11-CT, CS00-C3-705-096-B11-CT,

CS00-C3-705-096-H07-CT, CS00-C3-701-031-F06-CT

CS00-C1-100-065-D11-CT, PT11-C1-901-020-E04-CT,

CS00-C1-100-105-A06-EU

CR05-C3-700-068-H07-CT

CR05-C3-701-021-A12-CT

PRR1/

TOC1

S24-CS CS00-C1-100-073-A05-CT

PRR3 C3-CS/CR/LT CR05-C3-701-012-G04-CT, CS00-C3-703-079-A01-CT,

CS00-C3-703-079-F01-CT, LT33-C1-003-018-F05-CT.F,

CS00-C3-705-007-F07-CT, CR05-C3-701-082-C01-CT,



S25-CS

S26-CS

CS00-C3-705-002-H03-CT, CS00-C3-702-052-A12-CT

CS00-C1-102-110-C02-CT

CS00-C3-701-087-D07-UV

PRR7 S27-CS

S28-CS

S29-PT

CS00-C3-702-097-G04-CT

CS00-C3-703-091-H07-CT

PT11-C1-901-059-F10-CT

PRR9 C1-CS

C2-CS/CR

CS00-C3-702-035-D05-CT, CS00-C3-700-053-E01-CT

CS00-C3-704-006-B05-CT, CS00-C3-704-009-E12-CT,

CR05-C1-102-033-A01-CT

SPY C1-CS/CR

S30-CR

S31-CS

CR05-C3-702-099-H11-CT, CS00-C2-003-046-H03-CT,

CR05-C1-100-064-E08-CT, CR05-C3-700-108-H02-CT,

CR05-C1-100-007-B05-CT, CS00-C3-705-041-D11-CT ,

CS00-C3-702-023-B02-CT

CR05-C1-103-015-E09-CT

CS00-C1-102-059-G10-CT



Table 3S - Citrus reads constituting contigs and singlets with homology to genes involved in

the integration of the circadian clock mechanism and the generation of output responses

Arabidopsis thaliana.

Gene Contig / Singlet Read(s)

CDF1 and

CDF

family

C4-CS/PT

C10- CA/CR

S1-CS

S2-PT

S3-PT

S4-PT

CS00-C1-100-122-G01-CT, PT11-C1-900-024-E10-CT,

CS00-C1-100-014-F05-CT

CA26-C1-002-099-H09-CT, CR05-C1-102-048-C08-CT

CS00-C1-100-077-E09-CT

PT11-C1-900-023-D03-CT

PT11-C1-900-057-F03-CT

PT11-C1-901-002-A06-CT

CO C5-CG/CS CS00-C1-100-086-A06-CT, CS00-C1-100-008-H03-CT,

CS12-C1-001-026-C04-CT, CS12-C1-001-027-D01-CT

COL1 and

COL

family

C4-CS/CR CS00-C1-101-087-B11-UV, CS00-C1-101-065-A09-CT, CS00-

C1-100-123-E03-CT, CS00-C1-100-045-C06-CT,  CS00-C1-

100-011-G06-CT, CS00-C3-700-072-G04-CT, CS00-C1-101-

102-D07-EU, CS00-C1-101-031-H07-CT,

CS00-C1-100-041-B09-CT, CS00-C1-101-006-F05-UV, CS00-

C1-650-027-B06-CT, CS00-C1-650-027-E11-CT, CS00-C1-

100-061-E06-UV, CR05-C3-701-035-A11-CT, CS00-C3-702-

013-B06-CT, CS00-C1-650-002-C12-CT, CS00-C1-650-021-

F04-CT, CS00-C1-100-099-A01-UV, CR05-C3-701-056-E06-

CT, CR05-C1-103-084-D07-CT, CS00-C3-705-019-C05-CT,

CS00-C3-705-022-G05-CT, CS00-C1-102-088-F03-CT, CR05-

C1-103-066-E12-CT



C1-CS

C7-CR

C13-PT

C14-CR/CA

C15-LT

S1-CS

S2-CS

S3-PT

S4-CR

S5-CL

S6-CS

S7-CS

S8-PT

CS13-C1-001-040-D02-CT, CS00-C1-100-008-C08-CT

CR05-C3-701-028-A11-CT, CR05-C1-100-028-C11-CT

PT11-C9-005-035-E08-CT, PT11-C1-901-063-G03-CT

CR05-C3-701-040-A06-CT, CR05-C3-700-021-A02-UV,

CA26-C1-002-073-H02-CT

LT33-C1-003-105-G01-CT, LT33-C1-003-106-C12-CT

CS00-C1-101-022-A10-CT

CS00-C1-101-004-F12-CT

PT11-C1-900-069-G04-CT

CR05-C1-102-087-D12-CT

CL06-C4-500-018-F06-CT

CS00-C1-102-043-C11-CT

CS13-C1-001-040-D02-CT

PT11-C1-901-084-D12-CT

ELF7 C1-CR/LT CR05-C3-701-022-H04-CT, CR05-C1-103-040-G06-CT, LT33-

C1-003-056-B09-CT

ELF8 C1-CS CS00-C1-101-036-F06-CT, CS00-C1-101-013-H07-CT,

CS00-C1-102-019-G06-CT, CS00-C3-700-074-H01-CT

FD S1-CG CG32-C1-003-009-B06-CT

FLC C1-CS

S1-CS

S2-CS

CS12-C1-001-012-H03-CT, CS00-C1-102-067-G11-CT, CS00-

C1-102-066-G08-CT, CS00-C1-102-065-H11-CT, CS00-C1-

101-023-C09-CT

CS00-C1-101-021-F12-CT

CS12-C1-001-009-G11-CT

FT/ S1-CS CS00-C3-704-020-B11-CT



TSF

PFT1 C2-CS/CR CS00-C1-101-049-D12-CT, CS00-C3-701-019-D08-CT, CS00-

C1-650-028-B01-CT, CS12-G8-000-105-E11-CT, CR05-C1-

103-095-D04-CT, CR05-C1-103-074-G03-CT

SOC1 S1-PT

S2-PT

PT11-C1-900-082-A11-CT

PT11-C1-900-063-G11-CT


