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Abstract

DNA barcoding is a recently proposed global standard in taxonomy based on DNA sequences. The two main goals of
DNA barcoding methodology are assignment of specimens to a species and discovery of new species. There are two
main underlying assumptions: i) reciprocal monophyly of species, and ii) intraspecific divergence is always less than
interspecific divergence. Here we present a phylogenetic analysis of the family Potamotrygonidae based on mito-
chondrial cytochrome c oxidase I gene, sampling 10 out of the 18 to 20 valid species including two non-described
species. Potamotrygonidae systematics is still not fully resolved with several still-to-be-described species while
some other species are difficult to delimit due to overlap in morphological characters and because of sharing a com-
plex color patterns. Our results suggest that the family passed through a process of rapid speciation and that the spe-
cies Potamotrygon motoro, P. scobina, and P. orbignyi share haplotypes extensively. Our results suggest that
systems of identification of specimens based on DNA sequences, together with morphological and/or ecological
characters, can aid taxonomic studies, but delimitation of new species based on threshold values of genetic dis-
tances are overly simplistic and misleading.
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Introduction

The Consortium for the Barcode of Life was created
in order to develop DNA barcoding as a global standard
(http://barcoding.si.edu). The objective of DNA barcoding
is the use of one or more genes to i) assign unknown speci-
mens to its species, and ii) increase the discovery of new
species (Moritz and Cicero, 2004). The proponents of
barcoding argue that there exists an overwhelming number
of undescribed species and the number of traditional taxon-
omists is too few to handle this diversity; morphologically
cryptic species are overlooked by traditional morphological
methods; and larval stages of some species groups often

cannot be assigned to the correct species based on morphol-
ogy (Hebert et al., 2003). The DNA barcoding supposedly
would be a fast, efficient, and globally accessible method
for delimiting and identifying new species (Hebert et al.,
2003). The mitochondrial gene cytochrome c oxidase I
(COI) was chosen as the standard gene for DNA barcoding
because it shows a conserved amino acid sequence that fa-
cilitates the design of universal primers applicable to a di-
verse group of organisms; COI also apparently functions
well to discriminate species (Hebert et al., 2003, 2004;
Ward et al., 2005; Hajibabaei et al., 2006).

There are two basic assumptions that underpin DNA
barcoding methodology; 1) monophyly of species with re-
spect of the molecular marker used, and 2) intraspecific ge-
netic divergence is much smaller than genetic differences
among species, thus justifying the use of divergence thresh-
olds to assign individuals to correct species based on ge-
netic divergence. In a seminal publication on barcoding,
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Hebert et al. (2004) found in a survey of 260 North Ameri-
can bird species that COI divergences among close rela-
tives were on average 18 times higher than intraspecific
divergences. The authors proposed a 10x threshold diver-
gence between clades to within clades as a way to acceler-
ate the discovery of new species, i.e. divergences over the
10x threshold most likely represent divergences among
species rather than within species. Using this approach
Hebert et al. (2004) identified four possible new species of
birds nesting in North America. Hajibabaei et al. (2006)
found distinct COI barcodes for 97.9% out of 521 lepi-
dopteran species surveyed in Costa Rica, albeit no thresh-
old value was proposed to assign specimens to described
species or to identify new species, an important component
of barcoding.

However, critics of DNA barcoding argue that many
of the barcoding studies do not compare sister species, the
primary candidates to share haplotypes and to show low
interspecific divergence. Additionally, because these stud-
ies do not sample diversity within the geographical distri-
bution of the species, i.e. they are typological in character,
current DNA barcoding studies tend to underestimate intra-
specific genetic variability (Moritz and Cicero, 2004). In-
deed, Johnson and Cicero (2004) found results that sharply
contrast those of Hebert et al. (2004) when comparing sister
species of birds from North America. They found average
interspecific genetic values much lower and intraspecific
genetic variability much higher than those found by Hebert
et al. (2004), and they also found many cases of paraphyly.

In the present study we test the efficiency of the mito-
chondrial gene COI for delimiting species of freshwater
stingrays of the family Potamotrygonidae, using the meth-
odology proposed by the DNA barcoding consortium. The
family Potamotrygonidae is currently composed of three
genera, Paratrygon Duméril, 1865, Plesiotrygon Rosa,
Castello and Thorson, 1987, and Potamotrygon Garman,
1877. The first two genera are considered monotypic while
Potamotrygon contains 16 (Carvalho et al., 2003) to 18
(Rosa, 1985) taxonomically valid species. However, the
taxonomy of the family is not well resolved with some spe-
cies being considered taxonomically dubious, and several
species yet to be described (Carvalho et al., 2003).

Earliest taxonomic recognition of potamotrygonid
stingrays dates to the colonial period (Castex et al., 1963
and references therein); however, it was not until the 1960’s
and 1970’s that taxonomist became interested in this group.
Studies from this period were based on few individuals
(e.g. Castex et al., 1963; Castex, 1964; Achenbach and
Achenbach, 1976) and were unable to encompass the
phenotypic variation observed in nature. Rosa (1985) pro-
vided the first taxonomic revision of the family, generating
the first genus-level phylogenetic hypothesis. Rosa (1985)
also produced a species key for the Potamotrygonidae; the
key was based primarily on coloration patterns, although
his study relied primarily on specimens already deposited

in museums. We used the key of Rosa (1985) and charac-
ters in original descriptions to classify our specimens.

Starting in the late 1990’s, several groups of research-
ers initiated field studies and collections in the Amazon basin
focusing particularly on the Negro River (Araújo, 1998), the
Amazon River (Charvet-Almeida, 2004), especially its
mouth and lower portion (Charvet-Almeida, 2001; Almeida,
2003), the Xingu River (Charvet-Almeida, 2006) and To-
cantins River (Rincon, 2006). These studies resulted in the
discovery of new and what appear to be new species, but also
demonstrated very high degrees of polychromatism in some
species pointing out the difficulty of delimiting species using
the key proposed by Rosa (1985). An especially high degree
of polychromatism was observed in Potamotrygon motoro

and Potamotrygon orbignyi in the Negro River (Araújo,
1998), Potamotrygon motoro in the Amazon River (Char-
vet-Almeida, 2004), Potamotrygon scobina in the mouth of
the Amazon River (Almeida, 2003), and Potamotrygon

orbignyi in the Paranã-Tocantins River (Rincon, 2006), and
in the Xingu River (Charvet-Almeida, 2006). Despite their
high degree of polychromatism, the taxonomic validity of
these three species of Potamotrygon is uncontested by tax-
onomists specializing in chondrichthyans (Carvalho et al.,
2003; Rosa and Carvalho, 2007).

To test the efficacy of DNA barcoding in delimiting
potamotrygonid species, we generated the first comprehen-
sive hypothesis of intra-familial phylogenetic relationships
for the freshwater stingray family Potamotrygonidae and
also evaluated the intraspecific genetic diversity of sam-
pled species. We survey 10 out of the 18 valid species using
a 522 bp portion of the COI gene, to infer phylogenetic rela-
tionships within the family, to test alternate phylogenetic
hypotheses, and to test the utility of DNA barcoding in this
family.

Material and Methods

Sampling of taxa

We sampled six valid species and two non described
species of the genus Potamotrygon with at least two indi-
viduals per species, for a total of 36 specimens (Table 1).

We analyzed the species Potamotrygon motoro

(n = 10), P. orbignyi (n = 6), P. scobina (n = 2), P. leopoldi

(n = 2), P. falkneri (n = 3), P. schroederi (n = 4), Potamo-

trygon cf. motoro (n = 4), and Potamotrygon sp.1 (n = 5).
Potamotrygon sp.1 and Potamotrygon cf. motoro are en-
demic to the Amazonian Negro River and Tapajós River,
respectively. Both species are well characterized morpho-
logically and ecologically (Araújo, 1998; Carvalho, pers.
com.), but have yet to be scientifically described. We also
included sequences of P. henlei (n = 1), and Plesiotrygon

iwamae (n = 1) from Marques (2000). As outgroup, we in-
cluded the shark Heterodontus francisci (GenBank#
AJ310141), and the Myliobatiformes stingray species
Hexatrygon bickelli (GenBank# AY597334), and
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Himantura pacifica. The genus Himantura is considered
the most likely sister taxon of Potamotrygonidae (Lovejoy,
1996; McEachran et al., 1996; Lovejoy et al., 1998; Dunn
et al., 2003).

DNA extraction, amplification and sequencing

Total genomic DNA was extracted from muscle tis-
sues preserved in alcohol by the standard protocol of Sam-
brook et al. (1989). We amplified the mitochondrial COI
gene by the polymerase chain reaction (PCR) with the
primers COIf 5’-ctgcaggaggagaycc-3’ (forward) and COIa
5’-agtataagcgtctgggtagtc-3’ (reverse), described by Palum-
bi and Benzie (1991). The PCR reactions were performed
in 25 μL reaction volume, containing 2.5 μL of dNTPs
(2.5 mM); 2.5 μL of 10X buffer (100 mM Tris-HCl,
500 mM KCl); 2 μL from each primer (2 μM), 3 μL of
MgCl2 (25 mM); l μL of DNA (ca. 10 ng) e 1 U of Taq DNA
polymerase. The amplification cycles were carried out as
follows: 35 cycles of denaturing at 92 °C for 1 min; anneal-
ing at 52 °C for 35 s; and extension at 72 °C for 90 s. A final
extension was carried out at 72 °C for 5 min. PCR products
were visualized on 1% agarose gel. PCR products were
then purified with the GFX PCR DNA Kit (GE Healthcare),
and eluted in 20 μL of elution buffer. Amplification prim-
ers were used as cycle sequencing primers, and cycle se-

quencing reactions were carried out at 52 °C following the
protocol recommended by the manufacturer of the kit ET

Terminator Cycle Sequencing Kit (GE Healthcare). Cycle
sequencing reactions were carried out in a final volume of
10 μL and contained 4 μL of DNA, 2 μL of 0.2 μM primer,
2 μL of buffer supplied in the ET kit, and 2 μL of ET mix.
Amplified products were precipitated using standard am-
monium acetate/ethanol precipitation. Cycle sequencing
products were resuspended in Hi-Di Formamide, and re-
solved on the MegaBACE 1000 (GE Healthcare) automatic
sequencer.

Alignment

Sequences were aligned in ClustalW (Thompson et

al., 1996) using default setting and edit by eye. ClustalW is
implemented in the program BioEdit (Hall, 1999). Variable
sites were checked in MEGA 3.0 (Kumar et al., 2004), and
the complete alignment was translated into putative amino
acids. The 522 bp alignment did not show insertions or de-
letions, and conceptual translation did not reveal any unex-
pected stop codons.

Phylogenetic analyses and hypotheses testing

Phylogenetic analyses under neighbor-joining (NJ),
Maximum-likelihood (ML), and Bayesian-inference (BI)
optimality criteria were performed using PAUP* 4.0b10
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Table 1 - Analyzed species and localities of collection.

Species N Site of collection Reference

Potamotrygon motoro 1
2
1
3
1
1
1

Aripuanã River, AM, Brazil (06° 00' S, 60° 12' W)
Janauacá Lake, AM, Brazil (03° 28' S, 60° 17' W)
Parguaza River, AM, Venezuela (06° 24' N, 67° 10' W)
Juruá River, AM, Brazil (04° 51' S, 66° 51' W)
Jarauá River, AM, Brazil (02° 76' S, 64° 88' W)
Itu River, AM, Brazil (00° 29' S, 63° 15' W)
Demini River, AM, Brazil (00° 47' S, 62° 56' W)

Present study

Potamotrygon orbignyi 2
4

Demini River, AM, Brazil (00° 31' S, 62° 53' W)
Aripuanã River, AM, Brazil (06° 07' S, 60° 13' W)

Present study

Potamotrygon scobina 1
1

Pará River, PA, Brazil (00° 54' S 48° 17' W)
Aripuanã River, AM, Brazil (06° 07' S, 60° 13' W)

Present study

Potamotrygon leopoldi 1
1

Xingu River, PA, Brazil (03° 15' S, 52° 04' W)
Xingu River, PA, Brazil (03° 34' S, 51° 52' W)

Present study

Potamotrygon falkneri 3 Paraná River, MS, Brazil (20° 45' S, 51° 40' W) Present study

Potamotrygon schroederi 1
3

Caura River, BO, Venezuela (06° 50' S, 64° 47' W)
Demini River, AM, Brazil (00° 46' S, 62° 56' W)

Present study

Potamotrygon sp. 1 2
3

Aiuanã River, AM, Brazil (00° 52' S, 65° 15' W)
Itu River, AM, Brazil (00° 27' S, 63° 37' W)

Present study

Potamotrygon cf. motoro 4 Tapajós River, PA, Brazil (04° 33' S, 56° 15' W) Present study

Potamotrygon henlei 1 Tocantins River Marques (2000)

Plesiotrygon iwamae 1 Solimões River Marques (2000)

Himantura pacifica 1 Panama Marques (2000)

Hexatrygon bickelli 1 GenBank: AY597334

Heterodontus francisci 1 GenBank: AJ310141

Total 41



(Swofford, 2002). The NJ methodology is the standard
method of phylogenetic inference in DNA barcoding stud-
ies (Hebert et al., 2003); its use in DNA barcoding studies is
in part due to its strong track record in being able to rapidly
analyze large species assemblages (Kumar and Gadagkar,
2000). The chosen molecular substitution model was the
computationally simple Kimura-two-parameter (K2P) (Ki-
mura, 1980) which is the standard model of molecular evo-
lution used in DNA barcoding studies (Hebert et al., 2003).
Robustness of the NJ topology was assessed using 2,000
bootstrap replicates.

We used the software Modeltest 3.7 (Posada and
Crandall, 1998) to determine the best suited model of se-
quence evolution and the accompanying evolutionary pa-
rameter values for the data. The General Time Reversible
(GTR) model of molecular evolution (Rodríguez et al.,
1990), with rate homogeneity and a portion of sites treated
as invariable, was determined to be the most likely model of
sequence evolution. The GTR + inv model of sequence
evolution was implemented in ML and BI analyses. Maxi-
mum-likelihood topology was also estimated in PAUP*
4.0b10 (Swofford, 2002) with 25 heuristic searches using
random addition of sequences, and implementing the tree
bisection and reconnection (TBR) algorithm. Statistical ro-
bustness of the ML topology was accessed using 200 boot-
strap replicates.

Bayesian-inference analysis was performed in the
program MrBayes 3.01 (Ronquist and Huelsenbeck, 2003).
The data were partitioned into three categories representing
first, second, and third positions of the COI gene, each fol-
lowing the GTR + inv model of sequence evolution. We ran
2,000,000 generations using default long and short chain
and heating parameters, sampling trees, and branch-length
every 100 generations. Log likelihoods stabilized within
the first 10% of the run, and therefore we discarded these
initial 200,000 trees as burnin steps in the computation of a
50% majority rule consensus tree.

Pair-wise distances under Kimura-two-parameter
(K2P), and maximum likelihood GTR + inv models of mo-
lecular evolution were generated in PAUP* 4.0b10 (Swof-
ford, 2002).

Alternate phylogenetic hypotheses were tested within
the ML and NJ frameworks. Four hypotheses were tested:
monophyly of P. motoro, monophyly of P. orbignyi,
monophyly of P. scobina, and the reciprocal monophyly of
the three species. We found the most likely or the best NJ
trees that satisfied these constrains, and compared them
against the most likely and best NJ topologies using the
Kishino-Hasegawa (K-H) test (Kishino and Hasegawa,
1989), and Shimodaira-Hasegawa (S-H) tests (Shimodaira
and Hasegawa, 1999). Assessment of significance was
tested using the RELL bootstrap (Kishino et al., 1990). We
also tested the hypothesis that our data follows a clock-like
tempo of molecular evolution by enforcing the constraint of
a clock-like mode of molecular evolution, and testing if this

constraint resulted in a significantly less likely phylogen-
etic hypothesis using the likelihood-ratio test (Huelsenbeck
and Rannala, 1997). To test if alleles of species were under
natural selection, we used the McDonald-Kreitman test
(McDonald and Kreitman, 1991) implemented in the pro-
gram DnaSP 3.1 (Rozas et al., 2003).

Results

Phylogenetic analyses

The COI sequence alignment comprises 522 sites of
which 180 were variable and 121 were parsimony informa-
tive (GenBank accession numbers EF532644-EF532683).
Within Potamotrygonidae, the dataset contained 111 vari-
able sites and 79 parsimony informative sites. All three
methods of phylogenetic reconstruction indicated that the
three most broadly distributed species in the Amazon basin,
P. motoro, P. orbignyi, and P. scobina, are not reciprocally
monophyletic (Figures 1-3). Monophyly of the other spe-
cies including Potamotrygon sp. 1, and Potamotrygon cf.

motoro, is statistically well supported in all analyses. The
species P. motoro, P. orbignyi, P. scobina, P. leopoldi, P.

falkneri, Potamotrygon cf. motoro, and P. henlei, hereafter
called the rosette-spot clade, form a well defined and well
supported clade; however, relationships among the species
of the rosette-spot clade remain unresolved in all three
methods of phylogenetic reconstruction (Figures 1-3).

The phylogenetic position of Plesiotrygon iwamae

conflicts among NJ, ML, and BI analyses. In the NJ topol-
ogy, Plesiotrygon iwamae appears as sister to all species of
Potamotrygon (Figure 1). In the ML phylogeny,
Plesiotrygon iwamae is sister to Potamotrygon schroederi,
and Potamotrygon sp.1 appears as sister to the rest of the
species of the family Potamotrygonidae (Figure 2). In the
BI phylogeny, Plesiotrygon iwamae appears nested within
Potamotrygon with P. schroederi as sister to other species
in family (Figure 3). The internal tree branches within the
Potamotrygonidae phylogeny are relatively short, espe-
cially within the rosette-spot clade.

Maximum parsimony analysis was not carried out
since we have multiple individuals represented by the same
haplotype which in turn resulted in a large number of
equally parsimonious topologies. The consensus of these
equally parsimonious topologies had the same phylogen-
etic pattern obtained in other analyses, but statistical tests
could not be carried out efficiently.

Consistent with expectation, pair-wise genetic dis-
tances presented similar values for closely related species
under both Kimura-two-parameter (K2P) and maximum
likelihood GTR + inv models of molecular evolution. How-
ever, relatively smaller distances were found for distantly
related species in K2P distance than in the GTR + inv
model due to the inability of the K2P model to compensate
for the accumulation of homoplaseous changes at deeper
phylogenetic divergence (Tables 2 and 3).
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Genetic distances among the species P. motoro, P.

scobina, and P. orbignyi can not be considered true mea-
sures of divergence, since these species are not reciprocally
monophyletic. Because of their lack of reciprocal mono-
phyly, intraspecific genetic distances within these species
show similar levels of divergence as among species mea-
sure of genetic distance (Table 2).

Hypotheses testing

Testing of alternate ML and NJ topological hypothe-
ses under the Kishino-Hasegawa (1989) and Shimodai-
ra-Hasegawa (1999) frameworks resulted in essentially the
same conclusions (Tables 4 and 5). The monophyly of
Potamotrygon motoro was not statistically rejected in the

ML topology and was only rejected by the K-H test in the
NJ topology. Monophyly of P. orbignyi was rejected by
both tests in the ML topology and the NJ topology. Like-
wise, monophyly of P. scobina was rejected in the ML to-
pology by the K-H test, but not by the S-H test, and was re-
jected by both tests in the NJ topology. Enforcing the
reciprocal monophyly of all three species resulted in signif-
icantly worse phylogenetic hypotheses under the ML crite-
rion, as well as under the NJ phylogenetic estimate. Results
of the McDonald-Kreitman test indicated that natural selec-
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Figure 1 - Phylogenetic relationships of the potamotrygonids based on a
Neighbor-Joining analyses of mitochondrial COI sequence data using
K2P substitution model. Bootstrap values less than 50% were not shown.
Plesiotrygon iwamae appears sister to all species of Potamotrygon. P.

motoro, P. scobina, and P. orbignyi are non-monophyletic. The relation-
ships among species of rosette-spot group are not well supported and
branch lengths are short, evidence of a radiation.

Figure 2 - Phylogenetic relationships of the potamotrygonids based on a
Maximum-Likelihood phylogenetic analyses of mitochondrial COI se-
quence data using GTR + inv substitution model. Plesiotrygon iwamae is
sister to Potamotrygon schroederi and Potamotrygon sp.1 appears as the
sister species of the family Potamotrygonidae. P. motoro, P. scobina, and
P. orbignyi are non-monophyletic. The relationships among species of ro-
sette-spot group are not well supported and branch lengths are short, evi-
dence of a radiation.



tion is or was acting in P. orbignyi (p < 0.05), however,
overall sequence data evolve in a clock-like fashion (LTR
test p > 0.05).

Discussion

Potamotrygonidae is the only family of the Class
Chondrichthyes that is considered completely adapted to liv-
ing in fresh water (Thorson et al., 1983). Initial phylogenetic
studies of Rosa (1985), Lovejoy (1996), Lovejoy et al.

(1998), and Marques (2000) aimed to test the monophyly of
this family, to infer the phylogenetic relationships among its
three described genera, and to establish its sister group.
These studies supported the monophyly of the Potamo-
trygonidae and most of them concluded that colonization of
fresh water in South America is the result of a single coloni-
zation event. The majority of authors also considered the ma-
rine genus Himantura to be the sister taxon of Potamotry-
gonidae. Relationships within the Potamotrygonidae were
hypothesized as (Paratrygon (Plesiotrygon

(Potamotrygon))), although Marques (2000) and Quijada
(2003) found Plesiotrygon nested within Potamotrygon. The
first attempt to define species relationships within the genus
Potamotrygon was made by Marques (2000), although his
study was based on only few specimens per species and spe-
cies were not sampled throughout their geographical distri-
bution. This sampling design assumes that species are
monophyletic with respect to the alleles at the studied locus,
and that they show no or only very limited intraspecific vari-
ation (Funk and Omland, 2003). In turn, this assumption re-
quires that nominal study species represent genetically and
reproductively independent lineages whose boundaries have
been accurately identified by taxonomists and whose recon-
structed gene trees are accurate approximations of orga-
nismal history, i.e. species trees (Funk and Omland, 2003).
This scenario also does not accommodate species that are
paraphyletic or polyphyletic, cases extensively reported in the
literature (Funk and Omland, 2003, and references therein).
Non-reciprocal monophyly of species can, for example, be
caused by the retention of ancestral polymorphism or intro-
gression following a hybridization event (Avise, 2000; Moritz
and Cicero, 2004). In our phylogenetic analysis we sampled
four species in at least two different localities, and majority
of species are represented by at least four individuals. Even
with this sampling scheme, we find extensive haplotype
sharing, and lack of monophyly in three out of the eight in-
vestigated species with more than one specimen sampled.

Potamotrygon motoro, Potamotrygon scobina, and
Potamotrygon orbignyi

We found that three of the four species with broadest
distribution in the Amazon basin (the fourth species
Paratrygon aiereba was not included in this study), species
which also are highly polymorphic, were not reciprocally
monophyletic, and extensively shared haplotypes among
species. Haplotype sharing may indicate that i) taxonomic
validity of these species should be reassessed; ii) lineages did
not have enough time to reach reciprocally monophyly; iii)
hybridization; or iv) combination of these factors (Moritz
and Cicero, 2004).
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Figure 3 - Phylogenetic relationships of the potamotrygonids based on a
Bayesian-inference phylogenetic analyses of mitochondrial COI sequence
data using GTR + inv substitution model. Plesiotrygon iwamae appears
nested within Potamotrygon with Potamotrygon schroederi as sister spe-
cies of the family. P. motoro, P. scobina, and P. orbignyi are non-mono-
phyletic. The relationships among species of rosette-spot group are not
well supported and branch lengths are short, evidence of a radiation.
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The phylogenetic results are consistent with the pos-
sibility that these species can actually represent one highly
polychromatic species with broad geographical distribution
within the Amazon basin. There is overlap in some mor-
phometric characters (Rosa, 1985), although this author
mostly measured juveniles, and there is also a large amount
of color and pattern variation within P. scobina from the
Marajó Bay (Almeida, 2003), and P. orbignyi from the
Tocantins River (Rincon, 2006). There also appears to be
some overlap in color pattern among the species P. motoro,
P. orbignyi, and P. scobina from various places in the Ama-
zon basin (Araújo and Toffoli, unpublished data). For ex-
amples of color patterns see electronic appendix at
http://www.evoamazon.net/publications. However, there
are also several morphological as well as ecological charac-
ters that have been argued to separate these species. Differ-
ences between P. scobina and P. orbignyi include pres-
ence/absence of a labial furrow (Almeida, 2003), color of
the ventral portion of tail, teeth cuspid, and dorsal color pat-
terns (Rincon, 2006).

Another hypothesis is that P. motoro, P. orbignyi, and
P. scobina are true evolutionary species, and P. motoro is
the ancestor. Although non-monophyletic, very little haplo-
type sharing among geographic localities of P. scobina and

P. orbignyi occurs, and both species are phylogenetically
nested within P. motoro. Potamotrygon scobina and P.

orbignyi may be in the process of incipient speciation with
not yet well defined species borders. The observed selec-
tion acting on P. orbignyi supports this scenario, as does a
phylogeographic analysis (Toffoli, 2006), but additional
data including ecological, behavioral, and populational
studies are needed to test this hypothesis rigorously. The
potential role of hybridization in the diversification of this
group is unknown.

Phylogenetic relationships within the rosette-spot
clade - “The Radiation”

Phylogenetic relationships among species of the ro-
sette-spot clade are not resolved. With the exception of
Potamotrygon motoro, P. orbignyi and P. scobina, the
monophyly of all other species is well supported, but no
statistical support exists for phylogenetic relationships
among them. This pattern suggests that the rosette-spot
clade underwent or is still in the process of phylogenetic ra-
diation, resulting in a rapid increase in number of species
(Schluter, 2000). A phylogenetic signature of this process
is generally a polytomy, due to extremely short evolution-
ary periods that separate successive speciation events. This
prevents the accumulation of synapomorphic characters at
internode branches, leading to the failure of all phylogen-
etic methods to reconstruct a statistically supported bifur-
cating topology. Radiations are not rare or restricted in time
or space, and usually fill a previously unoccupied niche.
Some examples include the Cambrian radiation (Philippe et

al., 1994; Bromham et al., 1998; Conway-Morris, 1999),
Anolis lizards from the Caribbean (Jackman et al., 1999),

Toffoli et al. 331

Table 3 - Distances among outgroup taxa and an average of
Potamotrygonidae species under K2P and GTR + inv model of evolution.

K2P distance ML distance

Himantura x Potamotrygonidae 0.17713 0.27001

Hexatrygon x Potamotrygonidae 0.22182 0.39907

Heteredontus x Potamotrygonidae 0.22241 0.43416

Table 4 - Results of ML constraint tests of monophyly of species Potamotrygon motoro, P. orbignyi, and P. scobina. * p < 0.05.

Topology type KH-test SH-test

-ln L Diff -ln L p p

Unconstrained topology 2267.274 (best)

Monophyly of P. motoro 2287.596 20.322 0.057 0.078

Monophyly of P. orbignyi 2293.598 26.323 0.022* 0.017*

Monophyly of P. scobina 2287.120 19.846 0.037* 0.059

Reciprocal monophyly of P. motoro, P. orbignyi, and P. scobina 2318.833 51.559 0.003* 0.003*

Table 5 - Results of NJ constraint tests of monophyly of species Potamotrygon motoro, P. orbignyi, and P. scobina. *p < 0.05.

Topology type KH-test SH-test

-ln L Diff -ln L p p

Unconstrained topology 2270.696 (best)

Monophyly of P. motoro 2289.381 18.685 0.034* 0.123

Monophyly of P. orbignyi 2297.192 26.496 0.010* 0.011*

Monophyly of P. scobina 2293.614 22.918 0.013* 0.037*

Reciprocal monophyly of P. motoro, P. orbignyi, and P. scobina 2322.812 52.116 0.009* 0.009*



the Hawaiian silversword alliance (Baldwin and Sander-
son, 1998), cichlid fishes of the east African lakes (Avise,
1990; Turner et al., 2001), and sciaenid fishes of the west-
ern Atlantic (Vinson et al., 2004), among others.

Rooting the Potamotrygonidae

In the NJ topology, Plesiotrygon iwamae appears sis-
ter to all species of Potamotrygon (Figure 1), in the ML
phylogeny, Plesiotrygon iwamae is sister to Potamotrygon

schroederi (Figure 2), and in the BI phylogeny,
Plesiotrygon iwamae appears nested with Potamotrygon

(Figure 3). The phylogenetic relationship of Plesiotrygon

iwamae in the ML topology is not statistically supported by
a high bootstrap value. Despite these conflicts, the unrooted
ingroup topology among Plesiotrygon iwamae,
Potamotrygon schroederi, Potamotrygon sp.1, and the ro-
sette-spot clade of Potamotrygon remains the same in all
three methods of phylogenetic inference (Figure 4). Correct
placement of the root is especially difficult in phylogenies
with relatively short internal branches rooted by a distantly
related or highly divergent outgroup. Classic example in-
volves the placement of the root of birds whose closest rela-
tives are the distantly related crocodilians, and vice versa
(Mindell et al., 1999; García-Moreno and Mindell, 2000).

The average maximum likelihood within Potamotry-
gonidae distance is 5.9%, while the average maximum like-
lihood distance observed between Potamotrygonidae and
the Himantura sister group is 27.0%, and higher to other
cartilaginous outgroup species (Table 3). Therefore, it is
not entirely surprising that the root of the Potamotrygo-
nidae is difficult to place. However, we suspect that
Plesiotrygon iwamae is phylogenetically nested within
Potamotrygon, as suggested by the ML and BI topologies
(Figures 2 and 3). This supposition is derived from the use
of a more complex and more appropriate model of molecu-
lar evolution in the ML and BI analyses, and the consis-
tently better performance of likelihood-based methods of
phylogenetic inference when proper models of molecular
evolution are used (Huelsenbeck and Hillis, 1993; Hillis et

al., 1994). Eliminating third codon positions or translating
the sequence data into putative amino acids, and analyzing
these datasets using NJ also places Plesiotrygon iwamae

within the genus Potamotrygon (results not shown). Fur-
thermore, the inference drawn from the ML and BI topol-
ogy is supported by Marques (2000) and Quijada (2003)
who also hypothesize the paraphyly of Potamotrygon and
the nested position of Plesiotrygon with Potamotrygon.

DNA barcoding

Studies supporting DNA barcoding often do not com-
pare sister species which are the natural candidates to share
haplotypes (Moritz and Cicero, 2004). Assuming that
Potamotrygon motoro, P. scobina, and P. orbignyi are
valid species in the sense of being a natural kind, our results
showed that the use of DNA sequences to assign unknown
specimens to any of these three species would invariably
fail. Correct assignment would only be possible with the
addition of other data types such as morphological, ecologi-
cal, and behavioral characters, or even haplotype frequency
data if non-random distribution of haplotypes across geog-
raphy existed. Methodologies such as DNA barcoding
which rely solely on one data type and one criterion will in-
evitably have higher failure rates than those incorporating
diverse sources of information. Substituting one charac-
ter-type philosophical system (e.g., based on meristic char-
acters) of taxonomy for another one character-type system
(e.g., based on COI DNA barcoding) will not solve existing
taxonomic problems. One system may clarify some taxo-
nomic questions, but it will also obscure other questions.
Thus, unless a holistic approach to taxonomy and systemat-
ics is used we will inevitably fail to understand important
aspects of biological diversity.

With the above caveat in mind, and assuming our
sampling is representative of the genetic diversity present
in the remaining analyzed Potamotrygon species, the re-
maining species surveyed in this study form monophyletic
and well supported groups separated by reasonably large
genetic distances. This pattern would allow the use of the
COI phylogeny to assign unknown specimens to their cor-
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Figure 4 - Schematic representation of the ingroup topology which is re-
covered by all three methods of phylogenetic inference. Arrows represent
rooting points of the different analyses: a) Neighbor-joining root; b) Bay-
esian-inference root; c) Maximum-likelihood root. See text for discussion.



rect species, as proposed by the Barcoding Consortium.
However, this assignment is critically dependent on suffi-
ciently dense genetic sampling of the group studied, i.e. it
requires populational rather than typological sampling. The
case of specimens from the Caura River, Venezuela, and
specimens from Negro River, Brazil, is an illustrative ex-
ample. As recognized morphologically, P. schroederi oc-
curs both in the Negro and Orinoco River basins; the type
specimen was from the Orinoco, but after being lost, a
neotype was designated from the Negro River (Carvalho,
2001).

Our analyses indicate that the Venezuelan Caura
River specimen is sister to the Negro River specimens, and
separated by 0.8% sequence divergence. The genetic diver-
gence of 0.8% is relatively low compared to the average
2.5% among rosette-spot clade divergence, and would indi-
cate, based on barcoding assumptions, that fishes from the
Caura and the Negro Rivers represent a single species. This
barcoding-based inference is predicated on the assumption
that the clades from which these individuals were sampled
are sister, an assumption which critically hinges on taxo-
nomic sampling. On the other hand, the color pattern of the
Orinoco basin P. schroederi is quite different when com-
pared to animals from Negro River. The Negro/Orinoco
watershed divide represents a major barrier to gene flow for
a number of species, with numerous instances of sister spe-
cies occurring on either side of the divide (Reis et al.,
2003), and therefore it is possible that P. schroederi from
the Negro and Caura Rivers represent different species.
We, therefore, can neither accept nor reject that P.

schroederi occurring on either side of the Negro/Orinoco
watershed divide represents more than one species. These
results pose serious questions about the exclusive reliance
on the DNA barcoding methodology in species identifica-
tion, at least for the freshwater stingrays of the family
Potamotrygonidae.

Assuming that species are well characterized, are
monophyletic, and that intraspecific divergence is much
smaller than interspecific divergence, criteria that can only
be verified through populational rather than the currently
prevalent typological sampling and analyses, DNA
barcoding should be powerful in assigning unknown sam-
ples to species. However, DNA barcoding is not powerful
in discovering new species using the proposed threshold
methods as advocated by Hebert et al. (2003). For example,
in a comprehensive study of the adoption of threshold val-
ues for three thoroughly sampled groups of invertebrates,
Meyer and Paulay (2005) found a significant overlap of
intraspecific genetic variability and interspecific distance,
providing strong evidence against the adoption of thresh-
olds. Furthermore, the use of thresholds implicitly assumes
that molecular sequences evolve in a clock-like manner.
While we cannot reject a clock-like mode of molecular evo-
lution in the potamotrygonid COI dataset, a clock-like
mode of molecular evolution is rare in all groups of organ-

ism (for a review see Li, 1997) which resulted in the devel-
opment of multiple algorithms specifically taking this fact
into account in the calculation of divergence times (Sander-
son, 1997, 2002; Thorne and Kishino, 2002).

DNA barcodes have been proposed as a fast, efficient,
and inexpensive way to catalogue all biodiversity (Hebert
et al., 2003). However, most studies that advocate useful-
ness of barcoding actually test its assumptions in already
predefined taxonomic groups based on previous works,
whereas true barcoding consists of broad, essentially blind
and random surveys of communities, with little or no back-
ground taxonomic information (Rubinoff, 2006a). The
study of Hajibabaei et al. (2006) is one of the most striking
positive results of barcoding, identifying 98% of previously
well characterized species of tropical Lepidoptera. How-
ever, Funk and Omland (2003) found species level
paraphyly and polyphyly in 23% of 2,319 vertebrate spe-
cies whose mitochondrial genomes were surveyed. The
Lepidoptera results (Hajibabaei et al., 2006) should be seen
as an exception rather than norm. The study does not report
the intraspecific sampling scheme used.

The more geographically widespread a species is, the
higher is the probability of finding elevated levels of intra-
specific variability if the species is sampled across its distri-
butional range. Consequently, such a study would have a
higher probability of finding overlaps between genetic dis-
tance among closely related species and variability within a
species, making even more questionable the establishment
of thresholds, as well as increasing the likelihood of observ-
ing paraphyly and polyphyly. If, however, all specimens of
a particular species were sampled from the same locality,
one is likely to observe much less intraspecific variability
than if sampling was done across a distributional range of
the species. This consequently would lead to a reduction in
the variation within species, and to a reduction in the num-
ber of observed cases of paraphyly and polyphyly. The de-
gree of difference between intraspecific and interspecific
divergence would also be overestimated.

The fundamental problem with using thresholds lies
in the fact that species are a natural kind that embody an
evolutionary process. Species are subject to demographic
and selective processes that will act to increase or decrease
genetic diversity and coalescent depth of individual species
(e.g., Avise, 2000; Hey, 2001; Coyne and Orr, 2004). Spe-
cies may not be morphologically distinct from other spe-
cies, yet be genetically distinct (e.g., Hrbek et al., 2006),
and conversely species may be morphologically distinct
without being genetically distinct (e.g., Verheyen et al.,
2003; Duda Jr. and Rolán, 2005). Species are real evolu-
tionary groups and not categories which are created as a di-
rect function of perceived distinction (Hey, 2001). Species
are not categories defined by criteria, such as amount of se-
quence divergence. Therefore, the use of thresholds in “dis-
covering” new species is overly simplistic, misleading, and
invalid.
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Freshwater stingrays are a taxonomic group similar to
several other tropical biota in the sense that much taxon-
omy is yet to be done and therefore a good exercise for test-
ing usefulness of barcoding in discovery life on Earth. We
found that four out of 10 species surveyed (40%) could not
be discriminated by barcoding criteria (we observed shar-
ing of haplotypes among Potamotrygon motoro, P.

orbignyi, and P. scobina, and small sequence divergence
between P. aff. schroederi from Venezuela and P.

schroederi from Negro River). DeSalle (2006) advocates
that DNA barcoding should focus mainly on the identifica-
tion of specimens rather than the discovery of new species,
which should be essentially the domain of taxonomy. How-
ever, this radically changes the main goal of barcoding,
which is identification of life on Earth in a cost-effective
fashion. This mission makes it obligatory to deal with taxo-
nomic groups in which previous taxonomic efforts are vir-
tually nonexistent. The results of the current and other
studies pose serious doubts of the appeal of designating bil-
lions of dollars to the barcoding enterprise (Cameron et al.,
2006; Rubinoff, 2006a,b). So should one trust and rely on
barcoding? By any standard, 23% (Funk and Omland,
2003) or even higher (40% - present study) failure rates to
identify taxonomically valid species are not acceptable, and
the political, economical, and environmental consequences
of using DNA barcoding as currently proposed can be enor-
mous.
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