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Abstract

E2F1 plays a key role in cell-cycle regulation in mammals, since its transcription factor activity controls genes re-
quired for DNA synthesis and apoptosis. E2F1 deregulation is a common feature among different tumor types and
can be a major cause of cell proliferation. Thus, blocking E2F1 expression by RNA interference represents a promis-
ing therapeutic approach. In this study, the introduction of specific short hairpin RNAs (shRNAs) reduced E2f1 ex-
pression by up to 77%, and impaired rat glioma cell proliferation by approximately 70%, as compared to control cells.
Furthermore, we investigated the expression of E2f1 target genes, Cyclin A and Cyclin E. Cyclin A was found to be
down-regulated, whereas Cyclin E had similar expression to control cells, indicating that gene(s) other than E2f1
control its transcription. Other E2f family members, E2f2 and E2f3, which have been classified in the same subgroup
of transcriptional activators, were also analyzed. Expression of both E2f2 and E2f3 was similar to control cells, show-
ing no cross-inactivation or up-regulation to compensate for the absence of E2f1. Nevertheless, their expression was
insufficient to maintain the initial proliferation potential. Taken together, our results suggest that shE2f1 is a promis-
ing therapy to control tumor cell proliferation.
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E2F comprises a family of transcription factor pro-

teins, with a pivotal role in controlling genes related to

cell-cycle progression (Helin et al., 1992; Kaelin Jr et al.,

1992; Shan et al., 1992). Eight E2F family members have

been identified so far, E2F1 to E2F8, whereas E2F1 to

E2F6 share the same structure: conserved DNA binding

and dimerization domains, and, except for E2F6, have do-

mains for transactivation and binding Pocket Proteins (PP):

p107, p130 and Rb (Retinoblastoma) (reviewed in Tsan-

toulis and Gorgoulis, 2005; DeGregori and Johnson, 2006).

In general terms, the E2F family can be functionally classi-

fied in two subgroups, namely transcriptional activators

(E2F1 to E2F3a) and repressors (E2F3b to E2F8). The E2F

dimerization domain binds to members of the DP protein

family, and the resulting complexes regulate overlapping

gene collections (DeGregori and Johnson, 2006).

Despite Rb having been found to be associated with

many members of the family, E2F1 is its main target (Wells

et al., 2003; Frolov and Dyson, 2004). Rb phosphorylation

by Cyclin D/CDK4 and Cyclin E/CDK2, in late G1 phase,

releases E2F transcription factors, thereby promoting ex-

pression of genes related to DNA synthesis and cell-cycle

progression, resulting in cell proliferation (Polyak et al.,

1994; DeGregori et al., 1995). The dissociation of E2F

from pRb protein seems to be the main determinant in regu-

lating cell proliferation, by permitting transactivation of

genes such as cyclin A, cyclin E, c-myb, cdc2, PCNA and

thymidine kinase, and committing cells to S phase (DeGre-

gori, 2002).

The best characterized gene of the E2F family is

E2F1, which plays a paradoxical role by acting in two op-

posing pathways: induction of cell cycle progression and

apoptosis (Pierce et al., 1999). E2F1, in response to DNA

damage, can induce apoptosis by regulating related genes

in a p53-dependent and p53-independent manner (Bates et

al., 1998; Irwin et al., 2000; Lissy et al., 2000; Moroni et

al., 2001).

Dysfunction of the intricate cell-cycle regulation

pathways described above can exacerbate cell growth and,

eventually, lead to cancer-cell development. In fact, dereg-

ulation of E2F1 gene expression is a common event in the

majority of tumors, where it appears over-expressed rather

than mutated (Sherr, 1996; Dyson, 1998). E2F1 over-

expression is due to a positive feedback loop created be-

tween this protein and its own promoter and due to high

pRb phosphorylation levels or lack of functional pRb, both

resulting in the liberation of E2F1. The main reasons for

this hyperphosphorylation are high CDK4/6 and CDK2 ac-
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tivity, the absence of Cdk inhibitors (CDIs) and over-

expression of Cyclins (reviewed in Halaban, 2005).

Since Rb is the most important PP and is preferen-

tially associated with E2F1, inactivation of E2F1 seems to

be a promising therapy for impairing the proliferation of

different tumor types and in other diseases where cell pro-

liferation is a secondary effect, like vascular smooth muscle

cell hyperplasia. Furthermore, the function of E2F1 in con-

trolling the expression of other genes, such as Cyclin A and

Cyclin E, and its overlapping function with other E2F mem-

bers, namely E2F2 and E2F3, are controversial (Ohtani et

al.,1995; DeGregori et al, 1995; Takahashi et al., 2000;

Goto et al., 2006; Kong et al., 2007), thereby necessitating

further characterization.

In this study, our aim was to develop short interfering

RNAs for the impairment of cancer cell proliferation in vi-

tro. E2f1 was elected as the target, as its expression plays a

key role in cell-cycle progression, besides being up-regu-

lated in most types of tumor (Sherr, 1996; Dyson, 1998).

We employed the rat glioma cell line, C6, as an in vitro can-

cer model, and showed that the shE2f1 (short hairpin RNA

against E2f1 mRNA) is a potent tool for impeding cell pro-

liferation, since it diminished C6 proliferation 3.5 to 4-fold.

Furthermore, we also examined the effects of shE2f1 on the

expression of two other members of the E2f family, E2f2

and E2f3, to explore whether any cross-inhibition or com-

pensatory mechanisms were occurring. The expression of

Cyclin A and Cyclin E was also assessed to investigate E2f1

transcriptional regulation of these genes.

Three different shRNAs were designed for interfer-

ence with the rat E2f1 transcript at distinct regions

(shE2f1A, B and C), and were inserted into the pBS/hU6-1

plasmid vector (generously provided by Dr. David Balti-

more - California Institute of Technology, CA- USA – Qin

et al., 2003) yielding pBSE2f1A, B and C. As control, an

additional vector (pBSshGFP) containing a shRNA against

eGFP RNA (enhanced Green Fluorescent Protein) was also

generated by using a previously validated target sequence

described by Tiscornia et al. (2003) and Mousses et al.

(2003). None of the target sequence shows any significant

homology to other rat gene sequences. Therefore, synthetic

oligonucleotides (Invitrogen) were designed (listed in Ta-

ble 1) and cloned as described by Qin et al. (2003). The

generated constructs were confirmed by sequencing, using

25 ng of the respective primers T3 and T7 (Stratagene) and

the ABI Prism – Big Dye Terminator Cycle Sequencing

Ready Reaction Kit, with an ABI377 sequencer, according

to manufacturer’s instructions (Perkin-Elmer).

The rat glioma cell line, C6 (ATCC CCL-107), was

cultured in Dulbecco’s Modified Eagle’s minimum essen-

tial medium (DMEM high glucose), supplemented with

10% fetal bovine serum (FBS) and penicillin/streptomycin

(Invitrogen) at 37 °C/5% CO2. C6 cells were plated at 80%

confluence and co-transfected, using lipofectamine (Invi-

trogen) with 3 �g of a plasmid DNA mixture containing

pBABEpuro and pBSshE2f1 -A, -B, -C or pBSshGFP

(1:10, respectively), whereas pBS/hU6-1 derived plasmids

were previously digested by XmnI, according to manufac-

turer’s protocol (BioLabs). After co-transfection, cells

were selected using 400 ng/mL of puromycin. As the first

step towards identifying the most effective pBSshE2f1,

several clones, denominated C6shE2f1-A, -B, -C and

C6shGFP, were obtained from each co-transfection and

maintained in selective medium. Their genomic DNA was

extracted with lysis buffer (100 mM Tris-HCl, pH 8.5;

5 mM EDTA; 0.2% SDS; 200 mM NaCl; 100 �g/mL of

proteinase K), to verify the presence of pBS/hU6-1 derived

plasmids by PCR using 25 ng of each of the primers T3 and

T7 (Stratagene), according to manufacturer’s instructions.

pBS/hU6-1 was used as negative PCR control. Positive

clones were selected and used in subsequent experiments.

In order to assess the proliferation-altering potential

of each shRNA vector, the parental C6 cell line (triplicate)

and different clones of C6shE2f1-A (3 clones), -B (5 clo-

nes), -C (3 clones) and C6shGFP (4 clones) were analyzed

by a growth curve assay. At day zero, 5 x 104 cells from

each of the different clones (C6shE2f1-A; -B; -C; -shGFP),

as well as the parental C6 cell line, were each seeded into 10
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Table 1 - Oligonucleotide sequences to construct pBS/hU6-1 encoding different shRNAs.

shRNAs name Oligonucleotide sequencea

shE2f1-A sense (273)b 5’ACCgACCACCAAACgCTTCTTgTTCAAgAgACAAgAAgCgTTTggTggTCTTTTTC 3’

shE2f1-A antisense 5’TCgAgAAAAAgACCACCAAACgCTTCTTgTCTCTTgAACAAgAAgCgTTTggTggT 3’

shE2f1-B sense (426) 5’ACCgAATCATATCCAgTggCTATTCAAgAgATAgCCACTggATATgATTCTTTTTC 3’

shE2f1-B antisense 5’TCgAgAAAAAgAATCATATCCAgTggCTATCTCTTgAATAgCCACTggATATgATT 3’

shE2f1-C sense (246) 5’ACCgTCACgCTATgAgACCTCATTCAAgAgATgAggTCTCATAgCgTgACTTTTTC 3’

shE2F1-C antisense 5’TCgAgAAAAAgTCACgCTATgAgACCTCATCTCTTgAATgAggTCTCATAgCgTgA 3’

shGFP sense 5’ACCgCAAgCTgACCCTgAAgTTCTTCAAgAgAgAACTTCAgggTCAgCTTgCTTTTTC 3’

shGFP antisense 5’TCgAgAAAAAgCAAgCTgACCCTgAAgTTCTCTCTTgAAgAACTTCAgggTCAgCTTg 3’

a: underlined, 9-nucleotide spacer sequence.

b: in parenthesis, starting nucleotide of shRNA target, based on GenBank accession number XM 230765.



dishes, 35 mm in diameter, with DMEM supplemented

with 5% FBS. At indicated times, each clone and the paren-

tal cells were sampled in duplicate. The final results shown

in Figure 1 represent the average among clones of each

type. The culture medium was replaced every two days.

The data presented indicate that construct pBSshE2f1-B

significantly impaired the proliferation of C6 cells when

compared to controls. A comparative analysis at day 9

showed that C6shE2f1 B cell proliferation was 3.5 to 4

times lower than that observed in the controls, these cells

remaining with only 30% of the proliferative capacity ob-

served in C6shGFP cells.

Total RNA was extracted from C6 (parental cell line),

and clones C6shGFP-6 (control cells), C6shE2f1-A22,

C6shE2f-C3 and 2 different clones from C6shE2f1-B (B7

and B11), by using Trizol (Invitrogen) according to manu-

facturer’s protocol (see Figure 1). This was carried out on

the 7th day of the growth curve, so as to ensure exponential

growth and synchronized phases between the different

cell-lines. This procedure was employed to minimize dif-

ferences in E2f1 expression due to the manner in which the

cells were handled, and because E2f1 expression cycles

during cell division. After RNA integrity was confirmed,

each sample was treated with DNase I (Invitrogen) to avoid

DNA contaminants, and purified by phenol/chloroform ex-

traction before reverse transcription. An aliquot of 2 �g of

RNA was used for first strand cDNA synthesis by priming

with an oligo dT primer and using SuperScript II Reverse

Transcriptase (Invitrogen) according to manufacturer’s in-

structions. To control for DNA contamination of the cDNA

samples, cDNA synthesis was performed in either the pres-

ence or the absence of reverse transcriptase. Samples were

used as template for real time PCR amplification, where

each cDNA was sampled in triplicate to detect E2f1, E2f2,

E2f3, Cyclin A and Cyclin E gene expression. Real time

PCR was performed in an ABI Prism 7700 Sequence De-

tection System (Applied Biosystems), according to manu-

facturer’s guidelines. Expression of �-actin was assessed as

an internal control, and used to calculate relative quantifi-

cation as described by Pfaffl (2001). Each pair of primers

was designed using Primer3 software, and their sequences

are as follows: E2f1 F - 5’ TGTGCCCTGAGGAAAGTG

3’; E2f1 R - 5’ AAGGTTGGGGATGTGGAG 3’; E2f2 F -

5’ AGTTCCTGTCCCCAATCCT 3’; E2f2 R - 5’

GAGCCTGTCAATCTGTCTGTG 3’; E2f3 F - 5’

GCCCATTGAGGTTTACTTGTG 3’; E2f3 R - 5’

CCAGAGGAGAGAGGTTTGCT 3’ (designed using as a

template GenBank database E2f3 LOC291105 - E2f3 pre-

dicted from genome rat); Cyclin A F - 5’ TTTGCCA

TCGCTTATTGCT 3’; Cyclin A R - 5’ TGTGGTGCTT

TGAGGTAGGT 3’; Cyclin E F - 5’ CTCGCTGCTTCT

GCTTTGT 3’; Cyclin E R - 5’ TGTGGGTCTGGATGTT

GTG 3’; �-actin F 5’- ACCAACTgggACgATATggAgA

AgA - 3’; and �-actin R 5’- TACgACCAgAggCATACA

gggACAA - 3’ (Invitrogen).

Detection of E2f1 expression was performed in these

samples by real time PCR to investigate shE2f1 efficiency.

A comparative analysis of E2f1 expression between one

clone of each construct C6shE2f1 (-A22; -B7; -3C), C6 pa-

rental line and control clone C6shGFP-6 is presented in

Figure 1b. The figure shows that E2f1 is more efficiently

knocked down in C6shE2f1-B cells. These results are con-

sistent with phenotypic observations.

Based on these results, two clones, C6shE2f1-B7 and

-B11, were chosen to test E2f1 expression by real time

PCR. A comparative analysis of E2f1 expression between

two C6shE2f1-B clones (B7 and B11) and control clone

C6shGFP6 is presented in Figure 2a. The data show that

E2f1 was knocked down by as much as 77% in C6shE2f1-B

clones. The data are in accordance with inactivation by

RNA interference (RNAi) of other genes, as described in

the literature (Shi, 2003). Therefore, knockdown E2f1 ex-

pression significantly impairs cell proliferation. These re-

sults are in disagreement with those of Humbert et al.

(2000) and Wu et al. (2001), who suggest that E2f1 does

not play a key role in cell proliferation, since cell division in

the E2F1 knockout mouse is maintained. However, the

cells used in their experiments were not malignant, as is C6,

and so there was no exacerbated proliferation or the accu-

mulation of genetic alteration.
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Figure 1 - Phenotypic assay to assess activity of shE2f1. (a) In this growth

curve, the data represent the mean cell number observed from parental C6

cells (triplicate), C6shGFP (4 clones), C6shE2f1-A (3 clones),

C6shE2f1-B (5 clones) and C6shE2f1-C (3 clones) at the indicated time

points. (b) Quantification of E2f1 transcript levels by real time PCR. E2f1

expression profile in cells C6, C6shGFP clone 6 (C6shGFP-6), and one

clone from each of the different constructs C6shE2f1(-A22; -B7; -C3). Re-

sults were normalized by comparison to �-actin expression levels. cDNAs

were synthesized from RNA obtained from synchronized cell cultures.

The PCR assay is representative of the several assays performed.



We showed that knockdown of E2F1 by RNAi is a

promising approach to impair unwanted cell proliferation,

but we have not yet explored the impact of reduced E2F1 on

apoptosis. In E2f1 knockout mice, thymocytes revealed

low levels of apoptosis and the animals had a high fre-

quency of spontaneous tumor formation from different tis-

sues (Field et al., 1996; Yamasaki et al., 1996). If designing

a treatment strategy based on the induction of apoptosis,

then shE2f1 may not be an appropriate option. Neverthe-

less, E2F1 is not the only factor involved in controlling the

apoptosis pathway, since tumors can undergo apoptosis in

the absence of its expression (Baudino et al., 2003). There-

fore, the choice of treatment could depend on the back-

ground of each tumor.

The E2F family includes 8 genes, most of which are

involved in cell-cycle regulation. Only E2F1 to E2F3a are

known to exert overlapping functions on inducing cell pro-

liferation (Blais and Dynlacht, 2004). To test the influence

that the lack of E2f1 may exert over the E2f2, E2f3, genes,

their expression levels were also assessed (Figure 2a).

Their expression was not affected in C6shE2f1-B clones,

when compared to control cells. These results suggest that:

i) shE2f1-B does not disrupt E2f2 and E2f3 expression,

thereby proving its specificity; ii) E2f1 is not responsible

for controlling E2f2 and E3f3 expression; iii) E2f2 and

E2f3 do not compensate for the absence of E2f1 in cell pro-

liferation, thus demonstrating that E2f1 was the major pro-

mitotic effector under the present experimental conditions.

Our data are in agreement with a recent study on HeLa

cells, where the authors inhibited E2F1 by siRNA, and ob-

served no effect on E2F2 expression (Goto et al., 2006),

and are also consistent with a study on double-knockout

cells, where the authors found that E2F3 protein levels were

unaffected by loss of E2F1/E2F2 (Li et al., 2003). How-

ever, our findings are in contrast to those of Kong et al.

(2007), as these authors conclude that the long-term loss of
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Figure 2 - (a) E2f1, E2f2 and E2f3 expression profile in C6shGFP cells, clone 6, and C6shE2f1-B clones 7 and 11. (b) Expression profiles of E2f1 target

genes, Cyclin A and Cyclin E, to evaluate their response to altered E2f1 levels. Expression of the indicated genes was determined as described legend of

Figure 2. PCR reactions were performed three times.



E2F activity leads to compensation by other family mem-

bers. Nevertheless, our data were obtained from established

clones and no compensatory effects were observed. A pos-

sible explanation for these different observations may be

due to the different cell types that were utilized. Knock-

down of E2F1 in cells with normal E2F1 expression may

release a compensatory response in E2F2 and E2F3 expres-

sion, whereas in cancer cells, which usually over-express

E2F1, knock down of this gene may not have a compensa-

tory effect by other members of the family, thus being suffi-

cient to impair proliferation.

Genes controlled by E2F1 have been described in a

few studies where E2F1 was over-expressed. Cyclin A and

Cyclin E were found to be over-expressed in response to

E2F1, thereby demonstrating a direct correlationship be-

tween E2F1 and its targets (Ohtani et al., 1995; Inoshita et

al., 1999, Takahashi et al., 2000). The expression of these

two genes was also assessed in a double-knockout model

for E2f1/E2f2, where Cyclin A was down-regulated and

Cyclin E was not significantly influenced (Li et al., 2003).

In contrast to these findings, Goto et al. (2006) revealed a

different view by demonstrating that the lack of E2F1 does

not negatively influence Cyclin A and Cyclin E. Because of

the controversial function of E2F1 in controlling expres-

sion of genes involved in cell-cycle progression, we also

analyzed Cyclin A and Cyclin E gene expression in

C6shE2f1-B cells by real time PCR (Figure 2b). In accor-

dance to E2F1 overexpression studies, Cyclin A was

down-regulated in our cells when compared to controls,

thus accompanying E2f1 knockdown. However, this was

not the case for Cyclin E, where expression was not signifi-

cantly changed, when compared to control cells. This sug-

gests that E2f1 does not control Cyclin E expression in C6

cells. However, continued expression of Cyclin E does not

compromise the use of shE2F1-B in diminishing cell prolif-

eration.

In conclusion, specific inactivation of E2f1 was suffi-

cient to impair cell proliferation by 70%, and RNAi meth-

odology seems to be an effective tool for targeting

unwanted cell proliferation. Further investigation of these

shRNAs in other cell-lines may provide additional infor-

mation about this tool. Nevertheless, we have shown that

shE2F1-B was capable of reducing the expression of E2f1,

as well as impeding cell proliferation. With further devel-

opment, shRNA against E2f1 may prove to be an interest-

ing strategy in the treatment of proliferative diseases, such

as cancer and other physiopathological conditions, includ-

ing neointimal hyperplasia associated to cardiovascular de-

rangements.

Acknowledgments

The authors thank Dr. David Baltimore (California

Institute of Technology, CA- USA) for the pBS/hU6-1

plasmid, Dr. Carlos F. Menck and Dr. Eloísa S. Moreira for

helpful comments, and Marcilene Floriano and Daniela

Jardim for expert technical assistance. This work was sup-

ported by the Fundação de Amparo à Pesquisa do Estado de

São Paulo (FAPESP, Brazil), and Conselho Nacional de

Desenvolvimento Científico e Tecnológico (CNPq, Bra-

zil). Dr. Luciana Vasques was a recipient of a Post-

Doctoral Fellowship from FAPESP.

References

Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL and

Vousden KH (1998) p14ARF links the tumour suppressors

RB and p53. Nature. 395:124-1255.

Baudino T, Maclean KH, Brennan J, Parganas E, Yang C, Asla-

nian A, Lees JA, Sherr CJ, Roussel MF and Cleveland JL

(2003) Myc-mediated proliferation and lymphomagenesis,

but not apoptosis, are compromised by E2f1 loss. Mol Cell

11:905-914.

Blais A and Dynlacht BD (2004) Hitting their targets: An emerg-

ing picture of E2F and cell cycle control. Curr Opin Genet

Dev 14:527-532.

DeGregori J, Kowalik T and Nevins JR (1995) Cellular targets for

activation by the E2F1 transcription factor include DNA

synthesis- and G1/S-regulatory genes. Mol Cell Biol

15:4215-4224. Erratum in: Mol Cell Biol 15:5846-5847.

DeGregori J (2002) The genetics of the E2F family of transcrip-

tion factors: Shared functions and unique roles. Biochim

Biophys Acta 1602:131-50.

DeGregori J and Johnson DG (2006) Distinct and overlapping

roles for E2F family members in transcription, proliferation

and apoptosis. Curr Mol Med 6:739-748.

Dyson N (1998) The regulation of E2F by pRB-family protein.

Genes Dev 12:2245-2262.

Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin Jr WG, Livingston

DM, Orkin SH and Greenberg ME (1996) E2F-1 functions

in mice to promote apoptosis and suppress proliferation.

Cell 85:549-561.

Frolov MV and Dyson NJ (2004) Molecular mechanisms of

E2F-dependent activation and pRB-mediated repression. J

Cell Sci 117:2173-2181.

Goto Y, Hayashi R, Kang D and Yoshida K (2006) Acute loss of

transcription factor E2F1 induces mitochondrial biogenesis

in HeLa cells. J Cell Physiol 209:923-934.

Halaban R (2005) Rb/E2F: A two-edged sword in the melanocytic

system. Cancer Metastasis Rev 24:339-356.

Helin K, Lees JA, Vidal M, Dyson N, Harlow E and Fattaey A

(1992) A cDNA encoding a pRB-binding protein with prop-

erties of the transcription factor E2F. Cell 70:337-350.

Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S

and Lees JA (2000) E2f3 is critical for normal cellular pro-

liferation. Genes Dev 14:690-703.

Inoshita S, Terada Y, Nakashima O, Kuwahara M, Sasaki S and

Marumo F (1999) Roles of E2F1 in mesangial cell prolifera-

tion in vitro. Kidney Int 56:2085-2095.

Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W,

Flores ER, Tsai KY, Jacks T, Vousden KH, et al. (2000)

Role for the p53 homologue p73 in E2F-1-induced

apoptosis. Nature 407:645-648.

Kaelin Jr WG, Krek W, Sellers WR, DeCaprio JA, Ajchenbaum

F, Fuchs CS, Chittenden T, Li Y, Farnham PJ, Blanar MA, et

al. (1992) Expression cloning of a cDNA encoding a retino-

Knockdown of E2f1 impairs cell proliferation 21



blastoma-binding protein with E2F-like properties. Cell

70:351-364.

Kong LJ, Chang JT, Bild AH and Nevins JR (2007) Compensa-

tion and specificity of function within the E2F family. Onco-

gene 26:321-327.

Li FX, Zhu JW, Hogan CJ and DeGregori J (2003) Defective gene

expression, S phase progression, and maturation during

hematopoiesis in E2F1/E2F2 mutant mice. Mol Cell Biol

23:3607-3622.

Lissy NA, Davis PK, Irwin M, Kaelin Jr WG and Dowdy SF

(2000) A common E2F-1 and p73 pathway mediates cell

death induced by TCR activation. Nature 407:642-645.

Moroni MC, Hickman ES, Lazzerini Denchi E, Caprara G, Colli

E, Cecconi F, Muller H and Helin K (2001) Apaf-1 is a

transcriptional target for E2F and p53. Nat Cell Biol 3:552-

558.

Mousses S, Caplen NJ, Cornelison R, Weaver D, Basik M, Hau-

taniemi S, Elkahloun AG, Lotufo RA, Choudary A, Dou-

gherty ER, et al. O (2003) RNAi microarray analysis in cul-

tured mammalian cells. Genome Res 13:2341-2347.

Ohtani K, DeGregori J and Nevins JR (1995) Regulation of the

cyclin E gene by transcription factor E2F1. Proc Natl Acad

Sci USA 92:12146-12150.

Pfaffl MW (2001) A new mathematical model for relative quanti-

fication in real-time RT-PCR. Nucleic Acids Res 29:2002-

2007.

Pierce AM, Schneider-Broussard R, Gimenez-Conti IB, Russell

JL, Conti CJ and Johnson DG (1999) E2F1 has both onco-

genic and tumor-suppressive properties in a transgenic

model. Mol Cell Biol 19:6408-6414.

Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massaque J, Roberts

JM and Koff A (1994) p27kip1, a cyclin-Cdk inhibitor, links

transforming growth factor-beta and contact inhibition to

cell cycle arrest. J Gene Dev 8:9-22.

Qin XF, An DS, Chen IS and Baltimore D (2003) Inhibiting

HIV-1 infection in human T cells by lentiviral-mediated de-

livery of small interfering RNA against CCR5. Proc Natl

Acad Sci USA 100:183-188.

Shan B, Zhu X, Chen PL, Durfee T, Yang Y, Sharp D and Lee WH

(1992) Molecular cloning of cellular genes encoding retino-

blastoma-associated proteins: Identification of a gene with

properties of the transcription factor E2F. Mol Cell Biol

12:5620-5631.

Sherr CJ (1996) Cancer cell cycles. Science 274:1672-1677.

Shi Y (2003) Mammalian RNAi for the masses. Trends Genet

19:9-12.

Takahashi Y, Rayman JB and Dynlacht BD (2000) Analysis of

promoter binding by the E2F and pRB families in vivo: Dis-

tinct E2F proteins mediate activation and repression. Genes

Dev 14:804-816.

Tiscornia G, Singer O, Ikawa M and Verma IM (2003) A general

method for gene knockdown in mice by using lentiviral vec-

tors expressing small interfering RNA. Proc Natl Acad Sci

USA 100:1844-1848.

Tsantoulis PK and Gorgoulis VG (2005) Involvement of E2F

transcription factor family in cancer. Eur J Cancer 41:2403-

2414.

Wells J, Yan PS, Cechvala M, Huang T and Farnham PJ (2003)

Identification of novel pRb binding sites using CpG micro-

arrays suggests that E2F recruits pRb to specific genomic

sites during S phase. Oncogene 22:1445-1460.

Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT,

Nuckolls F, Giangrande P, Wright FA, Field SJ, et al. (2001)

The E2F1-3 transcription factors are essential for cellular

proliferation. Nature 414:457-462.

Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E and Dyson

NJ (1996) Tumor induction and tissue atrophy in mice lack-

ing E2F-1. Cell 85:537-548.

Associate Editor: Carlos F.M. Menck

License information: This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

22 Vasques et al.


