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Abstract

This report describes the construction of integrated genetic maps in pearl millet involving certain purple phenotype
and simple sequence repeat (SSR) markers. These maps provide a direct means of implementing DNA marker-
assisted selection and of facilitating “map-based cloning” for engineering novel traits. The purple pigmentation of leaf
sheath, midrib and leaf margin was inherited together ‘en bloc’ under the control of a single dominant locus (the
‘midrib complex’) and was inseparably associated with the locus governing the purple coloration of the internode.
The purple panicle was caused by a single dominant locus. Each of the three characters (purple lamina, purple
stigma and purple seed) was governed by two complementary loci. One of the two loci governing purple seed was
associated with the SSR locus Xpsmp2090 in linkage group 1, with a linkage value of 22 cM, while the other locus
was associated with the SSR locus Xpsmp2270 in linkage group 6, with a linkage value of 23 cM. The locus for purple
pigmentation of the midrib complex was either responsible for pigmentation of the panicle in a pleiotropic manner or
was linked to it very closely and associated with the SSR locus Xpsmp2086 in linkage group 4, with a suggestive link-
age value of 21 cM. A dominant allele at this locus seems to be a prerequisite for the development of purple pigmen-
tation in the lamina, stigma and seed. These findings suggest that the locus for pigmentation of the midrib complex
might regulate the basic steps in anthocyanin pigment development by acting as a structural gene while other loci
regulate the formation of color in specific plant parts.

Key words: gene tagging, pearl millet, pigmentation genetics.

Received: May 4, 2011; Accepted: October 24, 2001.

Introduction

Integrated genetic maps involving molecular and

phenotypic markers provide a direct means for investigat-

ing the number of genes influencing a trait, their location

along the chromosomes and the effects of variation in their

dosage. These maps also provide the information needed to

implement DNA marker-assisted selection, an approach of

growing importance in plant and animal improvement that

facilitates “map-based cloning” for engineering novel

traits. However, accurate genotyping and phenotyping of

the materials is required for the successful application of

this information (Zhou, 2010). The phenotypic characters

related to pigmentation have been the most frequently used

genetic markers in plants. These markers have been widely

used to study the genetic basis of phenotypic diversity asso-

ciated with evolutionary changes and with the processes of

tolerance to abiotic stress and disease resistance.

Pearl millet [Pennisetum glaucum (L.) R. Br. = P.

americanum (L.) Leeke = P. typhoides S&H; 2n = 14] is an

important cereal of traditional farming systems in tropical

and subtropical Asia and sub-Saharan Africa. This millet,

which is a staple food grain and a source of feed, fodder,

fuel and construction material, is grown on 29 million hect-

ares (FAO, 2005) and supports millions of poor rural fami-

lies in the hottest and driest drought-prone semi-arid

regions of Africa and the Indian sub-continent, where rain-

fed agriculture is practiced. Despite the considerable atten-

tion that pearl millet has received from agronomists, plant

breeders and cytogeneticists, and the availability of molec-

ular maps, the tagging of genes that can be used as molecu-

lar markers for various characters in this cereal is still in its

initial stages. The first RFLP-based genetic linkage map in

pearl millet was reported by Liu et al. (1994) and has since

been updated by the addition of more RFLP and SSR mark-

ers (Qi et al., 2004). These markers have improved our un-

derstanding of the complex relationship between the pearl

millet genome and those of other cultivated graminaceous

species (Devos et al., 2000), in addition to being useful in
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studies of aspects such as marker-assisted breeding (Hash,

2004; Serraj et al., 2005).

A review of earlier studies on the genetics of pheno-

typic markers in pearl millet, especially those related to pig-

mentation (Al-Fakhry et al., 1965; Singh et al., 1967;

Athwal and Gill, 1966; Gill, 1969; Phul et al., 1969; Gill

and Athwal, 1970; Koduru and Krishna Rao, 1979; Manga

et al., 1988; Hanna and Burton, 1992), revealed certain ap-

parently contradictory findings and “several of these early

publications do not provide adequate descriptions of the

mutant phenotypes to permit comparison by other research-

ers” (Anand Kumar and Andrews, 1993).

In view of these gaps in our knowledge of this crop

plant, the present work was undertaken to provide a de-

tailed description of some of the purple phenotype markers

with reference to a standard color code, to report their ge-

netic basis and to describe their linkage relationships. We

also provide accurate phenotyping and genotyping of the

accessions used and have tagged the loci to SSR markers. A

model is suggested to explain the genetic architecture un-

derlying the purple pigmentation; this model may also help

to resolve the contradictory findings of earlier studies.

Materials and Methods

Plant material

Two inbred lines of pearl millet, i.e., green dwarf (d2)

and purple (IP3128), were used in this work. Green dwarf

(d2d2) seeds were obtained from ICRISAT, Patancheru, In-

dia. The purple plant was originally identified in 1981 in a

population of 500 plants derived from combined mutagenic

treatment with a 20 Kr dose of gamma rays and a 0.1%

aqueous solution of ethyl methane sulphonate (EMS). Both

of these accessions have been maintained through selfing

and/or sib mating. Parents and F1s were checked randomly

at meiosis in pollen mother cells to eliminate those carrying

chromosomal aberrations.

Seeds were germinated on moist filter paper in 4-inch

diameter plastic petri dishes and after 2-3 days germinated

seeds were transferred to earthenware pots filled with ster-

ilized soil. After 25-30 days, seedlings were transplanted

into the field in rows spaced 60 cm apart, with plants within

each row spaced 30 cm apart. The specific color/pigmenta-

tion was described based on the Royal Horticultural Soci-

ety color codes (RHS) and the IBPGR and ICRISAT (1993)

descriptors for pearl millet. Gene names and symbols were

defined based on the criteria established for Arabidopsis

(Anonymous, 2005).

DNA isolation

Genomic DNA was isolated from fresh leaf tissue us-

ing the CTAB method of Saghai-Maroof et al. (1984).

Isopropanol-precipitated DNA was washed with 70% etha-

nol, air dried, dissolved in 200 �L of TE buffer (10 mM

Tris, 1 mM EDTA, pH 8.0) and stored at 4 °C. RNAse

(Sigma-Aldrich, USA) was added to the DNA solution (fi-

nal concentration: 50 �g/mL, from a stock solution of

10 mg/mL) and the mixture incubated at 37 °C for 15 min.

DNA was re-precipitated with 250 �L of 7.5 M ammonium

acetate and 1 mL of absolute ethanol, collected, washed in

70% ethanol, dried and re-suspended in 100 �L of TE

buffer prior to storage at 4 °C.

Primers

61 simple sequence repeats (SSRs; see supplemen-

tary material Table S1 for details), expected to map across

all of the seven possible linkage groups in pearl millet, were

used in this work. The nucleotide sequences of the primers

(PSMP for primers and Xpsmp for SSR loci) used to am-

plify these SSR markers were developed at the John Innes

Institute (Qi et al., 2004) and were made available to the au-

thors by ICRISAT.

Polymerase chain reaction (PCR)

Polymerase chain reactions (PCR) were done in

96-well plates using a model PTC 220 DNA engine DYAD

Peltier thermal cycler (MJ Research Inc., USA). The reac-

tions were done in a final volume of 20 �L that consisted of

2.5 �L of DNA (5 ng/mL), 2 �L of 10X PCR buffer

(100 mM Tris-HCl, pH 8.3, 500 mM KCl, 15 mM MgCl2,

0.01% gelatin), 2 �L of 2 mM dNTP, 0.5 �L of 25 mM

Mg2+, 1 �L of primer (30 ng/�L), 1.5 �L of Bioline Taq

polymerase (1 U/�L) (Bioline Reagents Ltd. UK) and

9.5 �L of distilled water. The PCR involved initial denatur-

ation of the template DNA at 94 °C for 3 min followed by

35 cycles of denaturation at 94 °C for 1 min, annealing at

48, 58 or 61 °C (depending on the melting temperature of

the primer) for 1 min and extension at 72 °C for 1 min.

Post-PCR gel electrophoresis

PCR products were separated on 7.7% polyacryl-

amide gels in 10X TBE buffer. The gel was pre-run for at

least 10 min at 5 V/cm (600 V, 9 W). Urea gels were used to

separate the amplification products of primers PSMP 2089,

PSMP 2068, PSMP 2246, PSMP 2220 and PSMP 2251.

The urea gels were run at 50 °C and 100 W for 45-60 min.

4 �L of each PCR product was loaded onto the gels, along

with 2 �L of 100 bp standard molecular weight marker

(50 ng/�L; Qiagen) which was also loaded in the first and

last lanes of the gel. The gels were run at 600-650 V in 0.5X

TBE buffer for 3-3.5 h using a Bio-Rad sequencing gel ap-

paratus. After the run, the gels were silver stained, as de-

scribed by Tegelstrom (1992). Only bands in the 100-

300 bp range were considered. The most anodal band was

considered as band 1.

Data analysis

Data were collected from the segregating populations

(F2 and Testcross) derived from a minimum of four sepa-
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rate parental crosses. The corresponding data were pooled

after checking the homogeneity of their variances and the

pooled data are presented in the tables. The deviations be-

tween the observed and expected ratios and homogeneity of

the Chi-square values for different segregating populations

corresponding to a cross were checked with the Chi-square

test, as described by Snedecor and Cochran (1967). The

logarithm of odds (LOD) scores were calculated using the

methods of Morton (1955) and Lathrop and Lalouel (1984).

The odds ratio was calculated for the observed proportion

of each category of data versus that expected on the basis of

independent assortment of the markers. Only those cases

for which the Chi-square value deviated significantly at a

probability level of 0.05 and an LOD = 2.8 were taken as in-

dicative of linkage.

Results

Inheritance patterns of phenotypic markers

The inheritance patterns of purple pigmentation of the

leaf, panicle, stigma and seed coat were studied individu-

ally and in combinations using reciprocal crosses between

plants of the two parental lines, viz., green dwarf (d2) and

purple (IP3128; Figure 1a,b). A common feature of inheri-

tance noted for all of these phenotypic markers was the lack

of reciprocal differences as judged from the F1, F2 and

testcross progeny phenotypes.

Description and inheritance patterns of individual
phenotypic markers

Purple foliage (purple pigmentation of leaves)

Plants of the parental purple accession showed deep

purple pigmentation (purple group 79B of RHS) through-

out their leaves (sheath, lamina, midrib and margin) while

those of the green dwarf parental accession were green. The

development of purple pigmentation was initially detected

at the base of the leaf sheath in 12-15-day-old seedlings and

extended over the entire leaf within 30 days after transplan-

tation, starting at the base of the lamina and gradually

spreading towards the leaf tip (Figure 1c-e). For the sake of

consistency, the lamina color was recorded 55-58 days after

sowing (or 30 days after seedling transplantation).

Reciprocal crosses between plants with purple leaf

blades and those with green leaf blades produced F1 plants,

all of which showed purple leaves, indicating the dominant

nature of the purple phenotype. These F1 plants were selfed

and also crossed to the green parental accession. The data

on segregation pattern of foliage color are presented in Ta-

ble 1. Three phenotypic categories were identified in the F2

and testcross progeny, namely,

1) Category 1 – plants with purple leaves resembling

those of the purple parent and F1,

2) Category 2 – plants with a green lamina but a pur-

ple sheath, midrib and margin (Figure 1f),

3) Category 3 – plants with completely green leaves

resembling those in the green parent.

The frequencies of these three phenotypic categories

showed a good fit to a 9:3:4 ratio while the testcross prog-

eny showed a good fit to a 1:1:2 ratio (Table 1). When the

F2 and testcross progeny were scored for lamina pigmenta-

tion only (purple lamina: green lamina, i.e., category 1: cat-

egories 2+3), irrespective of the type of pigmentation pres-

ent in the leaf sheath, midrib and leaf margin, they showed a

good fit to 9:7 and 1:3 ratios, respectively (p > 0.05). For

further genetic analysis of the category 2 phenotype, F2

plants with a green lamina and purple pigmentation in the

leaf sheath, midrib and margin were randomly selected and

selfed. One third of this population (data not shown) bred

true, indicating that these plants were homozygous at the

loci governing this phenotype, while two-thirds segregated

in a 3:1 ratio of category 2: category 3 plants.
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Table 1 - Segregation patterns of purple foliage.

Progeny (ratio) Purple lamina and purple

sheath, midrib, margin and

internode (Category 1)

Green lamina and purple

sheath, midrib, margin and

internode (Category 2)

Green lamina and green

sheath, midrib, margin and

internode (Category 3)

Total � p

A) Purple parent X Green parent*

F2 (9:3:4) 438 151 233 822 5.0284 0.08

Test cross (1:1:2) 63 49 109 221 2.9118 0.03

B) Purple lamina (Purple parent X True breeding segregants of Category 2

F2 (3:1) 432 157 - 589 0.7748 0.68

Test cross (1:1) 66 56 - 122 0.6639 0.72

C) Purple sheath, midrib,

margin and internode

F2 (3:1) - 500 196 696 3.7088 0.05

Test cross (1:1) - 118 103 221 0.8869 0.64

*Ratio of purple lamina:green lamina (column 2: columns 3+4) is a good fit to 9:7 in F2 and 1:3 in testcross progeny (p > 0.05).
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Figure 1 - Purple and non-purple phenotypes of pearl millet. a. Plant of purple parental accession. b. Plant of green dwarf (d2) parental accession. c. Purple

parent showing brachytic nature, pigmentation of leaf sheath (double arrow) and initiation of purple pigmentation in the lamina (single arrow). d. Leaf of

purple parent showing initiation of purple pigmentation at the base of the lamina. e. Leaf of purple parent showing pigmentation of the entire lamina. f.

Purple parent showing purple internode (double arrow) and green node (single arrow). g. F2 segregant with green lamina and purple midrib complex (pur-

ple midrib, purple sheath and purple lamina). h. Panicle of purple parent showing development of pigmentation on the exposed part. i. Purple panicle with

purple stigmas at the time of emergence. j. Green panicle with white stigmas. k. F2 segregant with purple panicle and green stigmas at the initiation of

anthesis. l. Grey (A) and purple (B) seeds from the parental accessions.



To analyze lamina pigmentation alone, plants of the

purple accession were crossed to true breeding plants of

category 2. Purple pigmentation of the sheath, midrib and

margin was common to both of the parents. The F1 plants

showed complete purple foliage. The F2 progeny segre-

gated (3:1 ratio) into plants with complete purple foliage

and those with a green lamina and purple sheath, midrib and

margin. The test cross progeny segregated in a 1:1 ratio for

these characters. These results suggested that purple pig-

mentation of the lamina was a monogenic dominant charac-

ter.

To analyze the pigmentation of the leaf sheath, midrib

and margin, the progeny of true breeding plants of category

2 that had a green lamina and purple leaf sheath, midrib and

leaf margin were crossed to plants from the green parental

line. The F1 plants resulting from this cross had green

lamina but a purple leaf sheath, midrib and leaf margin.

These F1 plants were selfed and also test crossed to the

green dwarf. The F2 progeny segregated in a 3:1 ratio of

plants having green lamina with a purple sheath, midrib and

margin and those with completely green leaf parts. In the

testcross progeny, these two types segregated in a 1:1 ratio.

In none of the progeny resulting from either F2 or

testcross populations of any of the above crosses was there

any separation of pigmentation in the leaf sheath, midrib

and margin. In all of these cases, internode pigmentation

was also associated with the pigmentation of these three

parts of leaf, i.e., whenever the leaf sheath, midrib and mar-

gin were purple, the internode was also purple (Figure 1g)

and whenever these parts were green, the internode was

also green. Thus, purple pigmentation of the internode, leaf

sheath, midrib and leaf margin was apparently inherited en

bloc and determined by a dominant allele at a single locus.

For the sake of convenience, the purple pigmentation in

these four plant parts (internode, leaf sheath, midrib and

leaf blade margin) is denoted hereafter as pigmentation of

the ‘midrib complex’.

Purple panicle

Plants of the green parental accession had green pani-

cles. In plants of the purple parental accession, the panicles

were green when they were still inside the boot leaf. The

purple color started developing as the panicles gradually

emerged from the boot leaf, beginning first at the tip and

gradually extending towards the base of the inflorescence

(Figure 1h). The panicle color was recorded after complete

emergence of the stigmas and corresponded to purple group

79B of RHS. After formation of the seed, the purple panicle

turned purplish black (corresponding to No. 9 of pearl mil-

let descriptors). Reciprocal crosses between plants with

purple panicles and those with green panicles produced F1

plants having purple panicles. The segregation ratios ob-

served in the F2 (599:222) and testcross (120:101) progeny

were a good fit to purple:green ratios of 3:1 and 1:1, respec-

tively.

Purple stigma

The stigma color was recorded after its complete

emergence and before anthesis. The green parental acces-

sion had white stigmas while the purple parental accession

showed purple ones (Figure 1i-k). Reciprocal crosses be-

tween plants of these two accessions produced F1 plants, all

of which had purple stigmas. The F2 progeny segregated in

a 9:7 ratio (447 purple : 305 white) and testcross progeny in

a ratio of 58:162 (1:3; p > 0.05).

Purple pigmentation of seed coat

Seed color was recorded at the harvesting stage. In the

purple parental accession, the seed was purple (purple

group T9B of RHS) at earlier stages but turned purplish

black at the harvesting stage (No. 9 of pearl millet des-

criptors; Figure 1a). The purple pigmentation was confined

to the seed coat only and the endosperm was white; how-

ever, this character is referred to here as ‘seed color’ for the

sake of presentation. The seeds of the green parental acces-

sion were grey colored (grey group 201 of RHS; Figure1

lB) with a white endosperm.

Crosses between purple-seeded and grey-seeded

plants of the two parental lines revealed that the color of the

F1 seed depended on the genotype of the female parent used

in the cross. For example, the F1 seeds were grey if the fe-

male parent had grey seed and were purple when the female

parent had purple seeds. Upon sowing, these two types of

seeds produced F1 plants, all of which had purple seeds af-

ter selfing or in controlled pollination using pollen from

either purple- or grey-seeded parent plants. These purple-

seeded F1 plants were selfed to produce F2 seeds. The F2

plants produced by sowing these F2 seeds segregated for

panicles producing purple seeds (411) and those producing

grey seeds (330) in a 9:7 ratio (p > 0.05). The testcrosses in-

volving F1 plants (bearing purple seeds) and the grey-

seeded parental line resulted in progeny that included 62

purple seed plants and 143 grey seed plants (1:3; p > 0.05).

Joint segregation patterns of phenotypic markers

Purple midrib complex with purple panicle, stigma and
seed

Analysis of the joint segregation pattern of the purple

midrib complex with panicle pigmentation revealed the

presence of only two phenotypic categories in the F2 and

testcross progeny, viz., (1) plants with a purple midrib com-

plex and purple panicle and (2) plants with a green midrib

complex and green panicle. The frequencies of these two

phenotypic categories showed a good fit to a 3:1 ratio in the

F2 generation and a 1:1 ratio in the testcross generation (Ta-

ble 2).

The combined inheritance of the purple midrib com-

plex and purple stigma traits revealed three phenotypic cat-

egories in the F2 and testcross progeny that included (1) the

purple midrib complex and purple stigma, (2) the purple

midrib complex and white stigma, and (3) the green midrib

110 Pigmentation genetics and SSR tagging in pearl millet



complex and white stigma (Table 2). The theoretically ex-

pected fourth category (green midrib complex and purple

stigma) was not observed. The F2 data showed a good fit to

a 9:3:4 ratio for these three categories, while the corre-

sponding testcross progeny segregated in a 1:1:2 ratio. The

LOD scores for the F2 and testcross progeny were < 2.

The pattern of joint segregation of the purple midrib

complex and purple seed was similar to that for purple pig-

mentation of the stigma, i.e., only three phenotypic catego-

ries were observed in the F2 and testcross progeny, namely,

(1) the purple midrib complex and purple seed, (2) the pur-

ple midrib complex and grey seed, and (3) the green midrib

complex and grey seed. The ratios of these three phenotypic

categories were 9:3:4 and 1:1:2 in the F2 and testcross prog-

eny, respectively (Table 3). The LOD score values in all

these cases were also < 2.

Purple panicle with purple lamina, stigma and seed

The joint segregation pattern of purple panicle (char-

acter 1) with any of the other three pigmentation traits as the

second character (purple lamina or purple stigma or purple

seed) was similar to that observed in the case of the midrib

complex described above in that only three phenotypic cat-

egories were detected in either the F2 or testcross progeny.

These categories were: (1) both characters 1 and 2 being

purple, (2) purple for character 1 and non-purple for charac-

ter 2 (green for lamina, white for stigma, grey for seed), and

(3) both characters green. The frequencies of these three

phenotypic categories showed good fits to 9:3:4 (F2) and

1:1:2 (testcross) ratios and the corresponding LOD scores

were < 2 (Table 2).

Purple lamina with purple stigma and purple seed

The co-segregation of lamina and stigma pigmenta-

tion resulted in four phenotypic categories (Table 2),

namely:

1) plants with purple lamina, purple midrib complex

and purple stigma,

2) plants with purple lamina, purple midrib complex

and white stigma,

3) plants with green lamina, purple midrib complex

and purple stigma,
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Table 2 - Joint segregation patterns of purple pigmentation in various plant parts.

Characters Progeny Ph 1 Ph 2 Ph 3 Ph 4 Total Chi-square value# LOD score

A) Pigmentation of midrib complex and

i) Panicle F2 592 0 0 222 814 1.0614 (3:1)* -

TC 105 0 0 116 221 0.4525 (1:1)* -

ii) Stigma F2 440 114 0 185 739 5.7764 (9:3:4)* 1.3099

TC 69 42 0 108 219 6.6986 (1:1:2)* 1.4495

iii) Seed F2 410 124 0 207 741 4.2709 (9:3:4)* 0.9203

TC 71 52 0 92 215 7.8279 (1:1:2)* 1.6139

B) Pigmentation of panicle and

i) Lamina F2 428 168 0 221 817 4.9736 (9:3:4)* 1.0738

TC 66 56 0 99 221 3.2986 (1:1:2)* 0.6989

ii) Stigma F2 440 114 0 185 739 5.7764 (9:3:4)* 1.3099

TC 69 42 0 108 219 6. 6986 (1:1:2)* 1.4495

iii) Seed F2 410 124 0 207 741 4.2709 (9:3:4)* 0.9203

TC 71 52 0 92 215 7. 8279 (1:1:2)* 1. 6139

C) Pigmentation of lamina and

i) Stigma F2 350 93 35 260 738 316.9033(81:63:63:49)** 78.3473

TC 99 33- 21 75 228 539.4386 (1:3:3:9)** 55.6725

ii) Seed F2 321 104 65 267 757 245.9433 (81:63:63:49)** 55.6449

TC 62 23 24 105 214 192.5296 (1:3:3:9)** 25.1509

D) Pigmentation of stigma and seed

F2 347 82 47 242 718 288.7104 (81:63:63:49)** 68.9312

TC 66 20 37 92 215 223.0362 (1:3:3:9)** 27.2277

Ph = phenotype; Ph 1 = both characters purple; Ph 2 = first character purple and second character non-purple; Ph 3 = first character non-purple and second

character purple; pH 4 = both characters non-purple. NB: non-purple indicates green panicle, green lamina, green midrib complex, grey seed and white

stigma for the respective parts. #Theoretical ratios used to calculate the Chi-square values and LOD scores. *Ratio for which the data showed best fit

(p = 0.01). **Significantly different (p < 0.05) from the expected theoretical ratio.
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4) plants with green lamina, green midrib complex

and white stigmas.

The frequencies of these four categories deviated sig-

nificantly from the expected 81:63:63:49 ratio in F2 and

1:3:3:9 ratio in the testcross progeny based on the involve-

ment of four independent/unlinked loci acting in two com-

plementary pairs, with each pair segregating in a 9:7 ratio in

F2. The corresponding LOD score values were > 3

(Table 2). In the joint segregation of lamina and seed pig-

mentation, only four phenotypic classes similar to those de-

scribed above deviated from the expected ratios in the F2

and testcross progeny. The LOD scores were also > 3.

Purple stigma with purple seed

When the joint segregation of stigma and seed pig-

mentation was considered, the four phenotypic classes ob-

served were (1) purple seed and stigma, (2) purple stigma

and grey seed, (3) white stigma and purple seed, and (4)

white stigma and grey seed. Their frequencies also deviated

from the expected 81:63:63:49 ratio in F2 and 1:3:3:9 in

testcross progeny, with the corresponding LOD scores be-

ing > 3 (Table 2).

SSR patterns and their inheritance

When DNA samples from the two parental lines were

amplified using the 61 primer pairs, only 18 pairs produced

banding patterns that differed from the amplicons of the

two parental lines. The remaining primers were mono-

morphic, i.e., their amplicon banding patterns were similar

to the two parents, and were not included in the present

analysis. Of the 18 polymorphic primer pairs, two

(PSMP2251 for LG 3 and PSMP2274 for LG 5) yielded

patterns that differed from the parental lines but could not

be distinguished in the F1 hybrids, perhaps because of the

occurrence of recombinant bands that made scoring diffi-

cult. For this reason, these two SSR markers were not con-

sidered for further analysis. As a result, only 16 primer

pairs were used for further investigation. Table 3 summa-

rizes the basic amplicon band patterns observed in the two

parents with these 16 primers. For 13 of these 16 SSR

primer pairs the segregation pattern of the amplicons in the

F2 progeny corresponded to the codominant segregation ra-

tio of 1:2:1 (p > 0.05). The segregation pattern in the F2

progeny with the remaining three primer pairs (PSMP2068,

PSMP2220 and PSMP2273) deviated significantly from

1:2:1 (p < 0.05). Consequently, these three markers that

showed skewed allelic frequencies or segregation distor-

tion were not included in the subsequent joint segregation

analysis.

Joint segregation patterns of the SSRs and purple
phenotypic markers

Data on the joint segregation of pigmentation of the

midrib complex with the 13 SSR markers showed a good fit

to the 3:6:3:1:2:1 ratio expected based on independent as-

sortment of these two types of markers. In all of these cases,

the LOD scores were < 2. In the case of the SSR locus

Xpsmp2086 (LG IV), the frequencies of the marker combi-

nation deviated significantly from the expected ratio (p <

0.05; Table 4) and the LOD score was 2.806.

The joint segregation pattern of purple pigmentation

of leaf lamina with the 13 SSR loci was a good fit to the

9:18:9:7:14:7 ratio expected based on independent assort-

ment of these markers (p > 0.05; data not shown). The LOD

scores were < 2.4. Similarly, data for the joint segregation

of panicle pigmentation with the 13 SSR markers (except

Xpsmp2086) showed good correspondence to the

3:6:3:1:2:1 ratio (p > 0.05; data not shown). The corre-

sponding LOD scores were < 2.2. The co-segregation of

panicle pigmentation with Xpsmp2086 deviated signifi-

cantly from the ratio expected for independent assortment

(p < 0.05; Table 4). The LOD score was 2.87.

The joint segregation of purple stigma with the SSR

markers showed a ratio of 9:18:9:7:14:7. Only one SSR lo-

cus (Xpsmp2206) deviated significantly from this ratio

(p < 0.05; data not shown) with an LOD score of 2.613;

there was no significant deviation with the other SSRs; the

LOD values for joint segregation were < 2.2.
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Table 4 - Linkage of the genes for pigmentation of the midrib complex, panicle and seed with SSR markers.

LG SSR Locus Phenotypic marker Total Chi-square P(Chi) LOD score P(LOD)

Purple Non-purple

A H B A H B

1 Xpsmp 2090# 54 96 34 26 89 27 326 13.8173 0.02 3.0801 0.000083

4 Xpsmp 2086* 79 153 53 22 59 35 401 12.6725 0.03 2.8062 0.000103

Xpsmp 2086** 79 152 53 22 60 35 401 13.0183 0.02 2.8746 0.000137

6 Xpsmp 2270# 51 94 26 46 71 21 309 18.3232 0.00 4.2857 0.000004

A – SSR pattern of parent A (purple accession), B – SSR pattern of parent B (green dwarf), H – SSR pattern of the hybrid A X B. LG – Linkage group to

which SSR marker loci were previously assigned. *Joint segregation of gene for pigmentation of the midrib complex and the SSR marker locus;

Chi-square and LOD values expected on the basis of a 3:6:3:1:2:1 ratio. **Joint segregation of gene for pigmentation of the panicle and the SSR marker

locus; Chi-square and LOD values expected on the basis of a 3:6:3:1:2:1 ratio. #Joint segregation of genes for purple seed color and the SSR marker locus;

Chi-square and LOD values expected on the basis of a 9:18:9:7:14:7 ratio.



In the case of purple seed and SSR markers, joint seg-

regation yielded a ratio of 9:18:9:7:14:7. Chi-square analy-

sis indicated significant deviation (p < 0.05; Table 4) from

the expected ratio when the SSR locus Xpsm2090 on LG 1

was involved and the LOD value was 3.08. Another SSR

locus, Xpsmp2270 (LG 6), also showed significant devia-

tion (p < 0.05) and the LOD value was 4.29. For all of the

other SSR markers used here, the observed values showed a

good fit to the expected segregation ratios and gave LOD

values < 2 (data not shown).

Recombination frequencies and map distances
between the linked markers

The joint segregation patterns for purple seed and the

SSR locus Xpsmp2090 (LG 1) and purple seed and the SSR

locus Xpsmp2270 (LG 6) deviated significantly from inde-

pendent assortment, as shown by Chi-square analysis and

the LOD scores(see supplementary material Table S4 for

details). Recombination frequencies for Xpsmp2090 were

calculated using the Maximum Likelihood method of

Allard (1956), as well as the method of Maximization of

LOD scores (Snustad et al., 1997); the averages of these

two values are shown in Table 5. For the SSR locus

Xpsmp2270, Allard’s formula gave a linkage value of 50

that differed considerably from the results for the Chi-

square and LOD analyses; hence this value was not consid-

ered here. When the LOD score threshold was set at 2.8,

two more characters (purple midrib complex and purple

panicle, see supplementary material Tables S2 & S3 for de-

tails) showed linkages with the SSR locus Xpsmp2086 (LG

4). The map distances for both of these phenotypic markers

from Xpsmp2086 were the same (24 � 3 cM; Table 5).

Discussion

Plants for which the parents and F1 progeny had pur-

ple foliage also generally showed pigmentation in the leaf

sheath, midrib and lamina (including the margin). How-

ever, pigmentation of the lamina segregated from that of the

leaf sheath, midrib and margin in the F2 and testcross prog-

eny. The 9:3:4 ratio of these three phenotypic categories in

the segregating progeny indicated a recessive epistatic

mode of gene interaction involving two loci. Pigmentation

of the midrib, margin and sheath showed no separation in

any of the progeny and was inherited en bloc in these three

parts. When this character alone was analyzed using suit-

able crosses, a single dominant gene control of pigmenta-

tion was inferred. Similar conclusions regarding the en bloc

inheritance and monogenic dominant nature of pigmenta-

tion in these plant parts have been reported by Manga et al.

(1988).

Purple sheath and leaf were analyzed separately by

Athwal and Gill (1966), Singh et al. (1968), Gill (1969) and

Gill and Athwal (1970). Based on these earlier studies,

Manga et al. (1988) inferred that pigmentation of the

midrib, margin and sheath may reflect the close linkage of

separate genes and proposed the gene symbols Pmi, Pmg

and Psh for purple midrib, purple margin and purple sheath,

respectively. Since the results described here were similar

to those obtained by Manga et al. (1988) we chose to use

the symbols defined by these authors. However, for the

sake of convenience, PmiCx (purple) is used hereafter to de-

note Pmi, Pmg and Psh, whereas pmiCx (green) is used to

denote pmi, pmg and psh.

Athwal and Gill (1966), Gill (1969) and Gill and

Athwal (1970) reported two-loci complementary gene con-

trol for purple leaf color and described this character under

the term ‘purple foliage’. The purple parent in the present

study showed complete purple foliage, i.e., purple sheath

and lamina, including the midrib and margin. When lamina

color alone was considered (purple or green) irrespective of

that of the midrib, margin and sheath, the segregation ratio

was 9:7 in F2 and 1:3 in the testcrosses, suggesting the role

of two complementary loci, in agreement with earlier stud-

ies of purple foliage.

When the homozygotes for purple sheath, midrib,

margin and green lamina (isolated from the F2 progeny)

were crossed with the original purple parent (showing pur-

ple pigmentation in all of these parts), a 3:1 ratio for purple

lamina versus green lamina was obtained in the F2 genera-

tion. Since purple pigmentation in the leaf sheath, midrib

and margin was a common character of these two parents

segregation of these three parts was not expected. Hence,

the single gene that segregated for lamina color must have

been different from the gene controlling purple pigmenta-

tion in the other three parts. We propose the gene symbol

114 Pigmentation genetics and SSR tagging in pearl millet

Table 5 - Zmax values, recombination frequencies and map distances between linked markers.

Markers Zmax Ø Map distance

(cM)*

MLH estimate of

map distance**

Average map

distance

Purple midrib complex and Xpsmp2086 (LG 4) 36.7907 0.187 18.7 24 � 3 21 � 3

Purple panicle and Xpsmp2086 (LG 4) 36.79067 0.187 18.7 24 � 3 21 � 3

Purple seed and Xpsmp2090 (LG 1) 30.53443 0.1841 18.4 26 � 5 22 � 4

Purple seed and Xpsmp2270 (LG 6) 20.16439 0.2329 23.29 - 23.3

LG – Linkage group. Zmax (maximum lod score). *Calculated based on the LOD score. **Maximum likelihood (MLH) estimate calculated as described by

Allard (1956). Values are shown as the mean � SEM.



‘Pl’ for the dominant allele governing the purple color of

the lamina and ‘pl’ for its recessive allele (green lamina).

Plants with a purple lamina and purple midrib com-

plex represented nine sixteenths of the F2 population and

must have involved at least one dominant allele at each of

the two loci. Using the gene symbols Pl and PmiCx, to desig-

nate the two characters, the genotype of this complete pur-

ple foliage in F2 could be represented as Pl – PmiCx –. As

such, the genotype of plants with only a purple midrib com-

plex (the lamina being green) would be pl pl PmiCx –. The

remaining two genotypes, Pl – pmiCx pmiCx and pl pl pmiCx

pmiCx result in completely green foliage (in the lamina and

midrib complex). The recessive locus pmiCx therefore ex-

erts epistatic control on the Pl locus.

The purple internode character was inferred by Man-

ga et al. (1988) to be controlled by a single dominant locus

that was very close (2.17 map units) to the block of genes

governing purple midrib, margin and sheath. Gill (1969)

also studied the inheritance of purple internode (purple

stem) and described the recessive nature of the purple pig-

mentation and the involvement of two loci with a domi-

nant-recessive interaction. In contrast, Koduru and Krishna

Rao (1979) suggested the presence of two dominant genes

with a complementary action. These various patterns of ge-

netic control can be attributed to differences in the geno-

types used in these studies and suggest a more complicated

genetic control than that revealed so far in the foregoing

cases and in the present study. The gene symbol Ps pro-

posed by Koduru and Krishna Rao (1979) is used here to

describe this genetic control.

The results described here indicate that pigmentation

in the four parts (internode, leaf sheath, midrib and margin)

was inherited en bloc and behaved as if it were under the

control of a single dominant locus. Since the purple parent

used here was derived from mutagenic treatment (EMS and

�-rays) of the same line as used by Manga et al. (1988) it is

possible that this treatment may have induced an inversion

involving this genomic region, thereby bringing the ‘Ps’ lo-

cus still closer (< 2.17 map units) to the PmiCx locus. The in-

version may have been pericentric or so cryptic that it was

not identifiable by the presence of bridges and fragments in

the anaphase stage of PMC meiosis. This inversion may

have also reduced or suppressed recombination in this re-

gion, resulting in linkage disequilibrium of the two loci

such that only the combinations of alleles causing pigmen-

tation (or lack of it) in these four anatomical parts were able

to segregate whereas the theoretically expected recom-

binants were not observed.

The purple pigmentation of panicles was inferred to

be governed by a single dominant gene based on the 3:1 ra-

tio in F2 and 1:1 ratio in the testcrosses. We propose the

gene symbol ‘Pp’ for this locus. Interestingly, the purple

panicle character co-segregated with the purple internode

complex and their joint segregation showed a 3:1 ratio in F2

and 1:1 ratio in the testcrosses. Only the parental combina-

tions (purple midrib complex + purple panicle and green

midrib complex + green panicle) appeared in these segre-

gating generations; no recombinants were observed. Two

possible explanations could account for this type of co-

segregation: (1) the gene for purple panicle may be located

very close to the loci for purple pigmentation of the midrib

complex or, alternately, (2) one of the loci involved in the

midrib complex may also govern panicle pigmentation in a

pleiotropic manner.

Joint segregation of the purple midrib complex with

purple stigma or purple seed revealed the same pattern as

observed between the purple midrib complex and purple

lamina, i.e., a two-loci recessive epistatic gene interaction.

This finding suggested that the locus governing the purple

midrib complex was also involved in the purple pigmenta-

tion of the stigma and seed. Hence, assuming the same logic

as set out above in the case of joint segregation involving

the purple midrib complex and purple lamina, the following

genotypes could be deduced for plants with purple stigma

and purple seeds:

PmiCx , Pst Purple midrib complex and purple stigma

(9/16 in F2)

PmiCx , pst pst Purple midrib complex and white

stigma (3/16 in F2)

pmiCx pmiCx , Pst and pmiCx pmiCx , pst pst Green

midrib complex and white stigma (4/16 in F2)

PmiCx , Psd Purple midrib complex and purple seed

(9/16 in F2)

PmiCx , psd psd Purple midrib complex and grey seed

(3/16 in F2)

pmiCx pmiCx , Psd , and pmiCx pmiCx , psd psd Green

midrib complex and grey seed (4/16 in F2)

When the F2 population was classified into purple and

non-purple categories, regardless of the color of the midrib

complex, the data provided a good fit to the 9:7 ratio. As a

further check, the observed frequencies of the phenotypic

categories for each of the three cases of joint segregation of

the purple midrib complex with (1) lamina pigmentation,

(2) stigma color and (3) seed color were also tested for their

conformity to the 27:21:16 ratio expected based on three in-

dependent loci (one locus for pigmentation of the midrib

complex showing recessive epistasis to two independent

complementary loci for each of the other three characters)

and to a 27:21:9:7 ratio (without assuming recessive epis-

tatis). The observed frequencies in all three cases deviated

significantly from the expected ratios for these two segre-

gation patterns, suggesting that either the three locus model

is not applicable or that, if three or more loci are involved,

then the purple midrib complex locus must be linked with at

least one of the loci governing the other character. Further

resolution of these linkage relationships was not possible

with the present data. The two locus model, which is sim-

pler, was used in this work.

Each of the joint segregation patterns involving (1)

lamina pigmentation and stigma color, (2) lamina pigmen-
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tation and seed color, and (3) stigma and seed pigmentation

deviated significantly from the 81:63:63:49 ratio expected

based on four independent loci (with two complementary

loci for each character). If one locus is assumed to be com-

mon to the two characters, then the theoretical ratio ex-

pected based on complementary gene action involving

three loci would be 27:9:9:19 (i.e., both characters purple,

first one purple and second green, first one green and sec-

ond purple and both characters green, respectively). The

observed frequencies for these character combinations also

deviated from this ratio. The significant deviations from

both of these independent assortment expectations, to-

gether with the high LOD scores, suggested that more than

one locus was involved in the expression of purple color in

these parts and that either one of these loci was common to

all of these markers or that at least one locus for each might

be linked to one for the other characters. The presence of

gene interactions meant that it was not possible to identify

which of these loci were actually linked or to determine

their map distances.

The purple midrib complex in the recessive homozy-

gous state (pmiCx pmiCx) was inferred to prevent lamina pig-

mentation by acting as a recessive loss-of-function allele.

Several dominant inhibitor loci associated with antho-

cyanin pigmentation have been reported in rice (see Reddy

1996). For example, the dominant allele Ilb in rice inhibits

purple color development in the leaf blade. PmiCx of the

present work is comparable to Ilb of rice, with the differ-

ence that pmiCx is inhibitory in a recessive state while Ilb is

inhibitory in a dominant state. Another inhibitory gene that

inhibits gene color is C1 in maize (Cone et al., 1986). This

inhibitory locus encodes a DNA-binding protein that is as-

sociated with regulation of the anthocyanin biosynthetic

pathway. Such inhibitor alleles may be very useful tools in

aiding our understanding of the genetic regulatory mecha-

nisms involved in biosynthetic pathways such as those

leading to anthocyanin production (Reddy, 1996).

Based on the foregoing discussion of the joint segre-

gation of pigmentation markers, the following model is

suggested for the genetic architecture of purple pigmenta-

tion in pearl millet. This model assumes that a functional al-

lele at the PmiCx locus is a prerequisite for the development

of purple pigmentation in at least four other parts (lamina,

panicle, stigma and seed). With the exception of panicle,

pigment development in the remaining plant parts requires

additional loci, at least one for each part. Thus, PmiCx may

regulate the basic steps in anthocyanin pigment develop-

ment while other loci control the formation of color in spe-

cific plant parts. In rice, the genes associated with antho-

cyanin pigment development form three groups, namely,

(1) structural genes responsible for pigment development,

(2) regulatory genes responsible for the distribution of pig-

ment in various plant parts, and (3) inhibitory genes respon-

sible for the suppression of pigmentation in specific plant

parts.

A similar classification of structural and regulatory

genes is also possible in maize, where about 20 genes are

reported to be involved in the development of pigmentation

in various plant parts (reviewed by Mol et al., 1998). About

seven structural genes encode the biosynthetic enzymes

that are coordinately controlled at the transcriptional level

by the products of at least two groups of regulatory genes;

these genes are responsible for the development and tis-

sue-specific pigmentation of plant and seed tissues in

maize. By analogy with the pigment system in rice and

maize, the PmiCx gene in pearl millet is a structural gene re-

sponsible for the production of anthocyanin and pmiCx is its

recessive allele. The remaining loci (Ps, Pl, Pp, Pst and

Psd) may have a regulatory role and control the develop-

ment of pigment in the internode, lamina, panicle, stigma

and seed respectively.

SSR analysis and gene tagging

The pigmentation of lamina did not deviate from the

expected values for independent assortment with any of the

13 SSR loci used in this study; indeed, the corresponding

LOD scores were < 2, indicating that genes controlling

these morphological markers sorted independently of the

13 SSR marker loci. Purple pigmentation of the midrib

complex, panicle, stigma and seeded deviated significantly

from independent assortment with some of the SSR marker

loci, as shown by the Chi-square values. When the thresh-

old value for the LOD score was held at 3, only purple seeds

showed linkage with Xpsmp2090 (LG 1) and Xpsmp2270

(LG 6).

While a LOD score threshold of 3 is widely considered

as a definite indication of a “significant association” among

traits, this threshold is nevertheless somewhat arbitrary

(Nyholt, 2000). Lander and Kruglyak (1995) proposed the

term ‘suggestive linkage’ for cases that are not significant

(< 3) but point to a certain level of association between the

markers and the trait, based on other considerations. Van

Ooijen (1999) used the LOD threshold of 2.7 to establish

suggestive linkage in F2 populations. With reference to char-

acters involving epistasis, quantitative trait loci (QTL) anal-

ysis in maize used LOD scores > 2.2 as indications of linkage

(Schön et al., 1993; Lübberstedt et al., 1998; Cardinal et al.,

2001; Krakowsky et al., 2002). Casley et al. (1999) used

LOD threshold values of 2-2.8 in their detection of QTLs

that affected caffeine metabolism in mice.

In view of these suggestions, when the threshold limit

for a significant LOD score was kept at 2.8, two more

phenotypic markers could be considered as linked to SSR

markers, namely, (1) the purple midrib complex with

Xpsmp2086 (LG 4) and (2) purple panicle with Xpsmp2086

(LG 4). Interestingly, genes controlling both of these mor-

phological traits were associated with the same SSR

marker. As already discussed above, the locus for purple

pigmentation of the midrib complex might either be closely

linked to the single locus controlling panicle pigmentation
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or might also govern the pigmentation of earheads in a

pleiotropic manner. In either case, this assumption is sup-

ported by the inference that genes associated with both of

these morphological markers are associated with the same

SSR marker and with the same degree of suggestive link-

age. However, even this SSR analysis could not clarify

whether these two morphological traits involved close link-

age or pleiotropism. The location of PmiCx on LG 4 agreed

with the findings of Azhaguvel et al. (2003) in pearl millet

who inferred ‘loose linkage’ between the purple foliage lo-

cus and RFLP markers on LG 4.

The linkage between genes controlling the purple

seed trait and two SSR loci mapping on two independent

linkage groups (1 and 2) indicated that two independent

loci were likely to be involved in the expression of this trait.

This conclusion supports the observation that more than

one locus (in addition to the purple midrib complex locus)

is involved in controlling seed pigmentation.

The apparent independent assortment observed be-

tween some of the markers may indicate either that the lo-

cus is not present in the same linkage group, or that its

position in the linkage group may be located = 50 recombi-

nation units (Ø = 0.5) from other loci. The tentative map lo-

cations of the four phenotypic marker loci are depicted in

Figure 2.
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Table S1 - List of 61 SSR primers of pearl millet and their characteristics.

Linkage
group

SSR
marker tried

Primer sequence (F/R) PCR product
(bp)

Remark

LG 1 PSMP2006 GACTTATAGTCACTGGGAAAGCTC
GCTTTAATAACTTTGTGCGTATT

253 L

PSMP2030 ACCAGAGCTTGGAAATCAGCAC
CATAATGCTTCAAATCTGCCACAC

107 M

PSMP2069 CCCATCTGAAATCTGGCTGAGAA
CCGTGTTCGTACAAGGTTTTGC

225 M

PSMP2090 AGCAGCCCAGTAATACCTCAGCTC
AGCCCTAGCGCACAACACAAACTC

178 P

PSMP2232 TGTTGTTGGGAGAGGGTATGAG
CTCTCGCCATTCTTCAAGTTCA

233 M

PSMP2246 CGGATGCTAAATTAACCGAAGC
CCAGCTTGCTTCTGTTGCGTTC

262 P

PSMP2273 AACCCCACCAGTAAGTTGTGCTGC
GATGACGACAAGACCTTCTCTCC

169 P

LG 2 PSMP2050 ATCAAACGGCATCAGACAAC
GGATCTCTTAGTGTGGTGGAGAGC

102 M

PSMP2059 GGGGAGATGAGAAAACACAATCAC
TCGAGAGAGGAACCTGATCCTAA

119 M

PSMP2066 ATATTAGAGCATTGCATCGC
GCATAGCAGCATACAGCAGCAACTAA

267 M

PSMP2068 CAATAACCAAACAAGCAGGCAG
CTTCACTCCCACCCTTTCTAATTC

105 P

PSMP2072 GAAATCTACACAAGGGTCTCCA
GTACGGCAGAATGACATCTGAA

165 M

PSMP2077 GCCAATATTATTCCCAAGTGAACA
CTCTTGGTTGCATATCTTTCTTTT

180 M

PSMP2088 AAGAAGCCACCAGCACAAAA
TGCATGAAAGTAGAGGATGGTAAA

149 M

PSMP2089 TTCGCCGCTGCTACATACTT
TGTGCATGTTGCTGGTCATT

127 P

PSMP2201 CCCGACGTTATGCGTTAAGTT
A TCCATCCATCCATTAATCCAC

364 M

PSMP2206 AGAAGAAGAGGGGGTAAGAAGGAG
AGCAACATCCGTAGAGGTAGAAG

203 P

PSMP2211 CTGCATGACGTGTGAACCAATACC
AACAAATCAGCACCAGCCTCC

256 L

PSMP2231 TGTTGTTGGGAGAGGGTATGAG
CTCTCGCCATTCTTCAAGTTCA

226 P

PSMP2232 TGTTGTTGGGAGAGGGTATGAG
CTCTCGCCATTCTTCAAGTTCA

230 M

PSMP2237 TGGCCTTGGCCTTTCCACGCTT
CAATCAGTCCGTAGTCCACACCCCA

233 P



PSMP2255 CATCTAAACACAACCAATCTTGAAC
TGGCACTCTTAAATTGACGCAT

264 P

LG 3 PSMP2056 ACCTGTAGCTTCAAAATTCAAAAA
AATTCAGTGTGATTTCGATGTTGC

213 L

PSMP2070 ACAGAAAAAGAGAGGCACAGGAGA
GCCACTCGATGGAAATGTGAAA

226 M

PSMP2071 TTGCAGTCCCACGAATTATTTG
CTTTGAATTTATAATCCTCATACT

181 M

PSMP2214 CGCACAGTACGTGTGAGTGAAG
GATTGAGCAGCAAAAACCAGC

246 M

PSMP2227 ACACCAAACACCAACCATAAAG
TCGTCAGCAATCACTAATGACC

197 M

PSMP2251 TCAAACATAGATATGCCGTGCCTCC
CAGCAAGTCGTGAGGTTCGGATA

162 P

LG 4 PSMP2267 GGAAGGCGTAGGGATCAATCTCAC
ATCCACCCGACGAAGGAAACGA

241 M

PSMP2008 GATCATGTTGTCATGAATCACC
ACACTACACCTACATACGCTCC

238 L

PSMP2076 GGAATAGTATATTGGCAAAATGTG
ATACTACACACTGTAAGCATTGTC

161 M

PSMP2081 CTGTGCTGTCATTGTTACCA
TCAGATCACCTATTACTTTCCCT

167 M

PSMP2084 AATCTAGTGATCTAGTGTGCTTCC
GGTTAGTTTGTTTGAGGCAAATGC

245 M

PSMP2085 GCACATCATCTCTATAGTATGCAG
GCATCCGTCATCAGGAAATAA

176 M

PSMP2086 CGCTTGTTTTCCTTTCTTGCTGTT
CCTTCTCAGATCCTGTGCTTTCTT

122 P

LG 5 PSMP2001 CATGAAGCCAATTAGGTCTC
ACCATCTGACTTGTTCTTATCC

304 M

PSMP2064 ACCGAATTAAAGTCATGGATCG
TTGATCTTCTGACACAAATGAG

190 M

PSMP2078 CATGCCCATGACAGTATCTTAAT
ACTGTTCGGTTCCAAAATACTT

172 P

PSMP2202* CTGCCTGTTGAGAATAATGAG
GTTCCGAATATAGAGCCCAAG

161 P

PSMP2208* GAAAGAGCAAACTGAACAATCCC
ACTTTGCCCTGGATGATCCTC

246 M

PSMP2220* GCATCCTTCACCATTCAAGACA
TGGGAAACAGAATGGAGAAAAGAG

128 P

PSMP2233 TGTTTTCTCCTCTTAGGCTTCGTTC
ACCTTCTCCGCCACTAAACAACT

258 M

PSMP2274* CACCTAGACTCTACACAATGCAAC
AATATCAAGTGATCCACCTCCCAA

265 P

LG 6 PSMP2018 CGCAAGACATTTTAGTATCACC
ACAGTCATCCTCAGTCGTCC

203 L



PSMP2048 TGAATTGGGAATAAAGGAGACC
ACGTGTGCCTGCTTTTAGTAAC

252 L

PSMP2213* CCCAAAAGAACCACACCCAC
GTTGATGCTACTGCTCGTTTTG

193 M

PSMP2248 TCTGTTTIGTTTGGGTCAGGTCCTTC
CGAATACGTATGGAGAACTGCGCATC

167 M

PSMP2270 AACCAGAGAAGTACATGGCCCG
CGACGAACAAATTAAGGCTCTC

153 P

LG 7 PSMP2013 GTAACCCACTAACCCTTACC
GTCGCACAGAAAAAGAATAG

153 M

PSMP2019 TGTGCCACAGCTTGTTCCTC
CAAGCAGCCAGTTCCTCATC

248 M

PSMP2027 AGCAATCCGATAACAAGGAC
AGCTTTGGAAAAGGTGATCC

273 M

PSMP2033 CTATACCATTGAATTGAAAGGTC
CAATCTTTAGCTTTTTCAAGAGAC

200 M

PSMP2040 CATTACACGTTTCTTCAAACGC
TCTTCGGCCTAATAGCTCTAAC

163 M

PSMP2043 TCATATTCTCCTGTCTAAAACGTC
ACAAATCGTACAAGTTCCACTC

192 L

PSMP2063 GAGCACATGAAATAGGAAGCAG
AAGGTAGTTATAGTTAGCTTGATC

166 M

PSMP2079 AGCCGAAGGCTAATCAACAA
GTGGTCAGCAGCAGATGTAA

165 L

PSMP2087 GGAACAGACTCCATACCTGAAA
TACCTGCCTGTGCTGTTAGT

126 L

PSMP2203* GAACTTGATGAGTGCCACTAGC
TTGTGTAGGGAGCAACCTTGAT

357 M

PSMP2224 GGCGAATTGGAATTCAGATTG
CGTAATCGTAGCGTCTCGTCTAA

157 P

PSMP2263 AAAGTGAATACGATACAGGAGCTGAG
CATTTCAGCCGTTAAGTGAGACAA

238 P

PSMP2266 CAAGGATGGCTGAAGGGCTATG
TTTCCAGCCCACACCAGTAATC

181 L

L – low resolution, M – monomorphic, P – polymorphic.  *Tm  = 58 °C while for all other
primers, it was 61 °C.



Table S2 - Linkage assessment of the gene for midrib complex color and pearl millet SSR marker loci.

Midrib complex color
Purple Green

LG SSR locus

A H B A H B

Total Chi-
square

P(Chi) LOD
score*

P(LOD)

1 Xpsmp 2246 54 136 51 27 46 15 329 8.1996 0.15 1.7960 0.002014

Xpsmp 2090 65 126 49 15 55 17 327 9.6932 0.08 2.0792 0.000986

2 Xpsmp 2255 62 150 82 28 50 29 401 3.8944 0.56 0.8647 0.022990

Xpsmp 2089 47 119 61 19 43 22 311 3.1522 0.68 0.7120 0.035087

Xpsmp 2231 64 130 48 21 49 19 331 5.0725 0.41 1.1432 0.010881

Xpsmp 2237 56 124 61 22 49 19 331 2.2367 0.81 0.4734 0.069903

Xpsmp 2206 61 121 58 25 40 24 329 1.8369 0.87 0.3800 0.092930

4 Xpsmp 2086 79 153 53 22 59 35 401 12.6725 0.03 2.8062 0.000103

5 Xpsmp 2202 50 119 50 15 44 16 294 4.0045 0.55 0.8660 0.022911

Xpsmp 2078 56 109 50 24 39 17 295 2.4554 0.78 0.5051 0.063606

6 Xpsmp 2270 57 120 53 18 47 22 317 2.5878 0.76 0.5504 0.055686

7 Xpsmp 2224 54 128 46 17 45 18 308 5.4286 0.37 1.1996 0.009377

Xpsmp 2263 61 107 51 16 53 10 304 8.2105 0.14 1.6583 0.002860

A - SSR pattern of parent A (purple accession), B - SSR pattern of parent B (green dwarf), H - SSR pattern of the hybrid A X B. LG – Linkage

group to which SSR marker loci were previously assigned. *Chi-square of LOD values expected on the basis of a 3:6:3:1:2:1 ratio for the joint

segregation of the genes for pigmentation of the midrib complex and the SSR marker locus.



  Table S3 – Linkage assessment of the gene for panicle color and pearl millet SSR marker loci.

Panicle color
Purple Green

LG SSR locus

A H B A H B

Total Chi-
square

P(Chi) LOD
score*

P(LOD)

1 Xpsmp 2246 54 135 51 27 47 15 329 8.2644 0.14 1.8086 0.001951

Xpsmp 2090 65 125 49 15 56 17 327 10.362 0.07 2.2020 0.000725

2 Xpsmp 2255 63 152 77 289 49 32 401 4.3267 0.50 0.9281 0.019350

Xpsmp 2089 47 118 61 19 44 22 311 3.3580 0.64 0.7532 0.031211

Xpsmp 2231 64 129 48 21 50 19 331 5.3786 0.37 1.2026 0.009302

Xpsmp 2237 56 123 61 22 50 19 331 2.6395 0.75 0.5534 0.055191

Xpsmp 2206 61 120 58 25 41 24 329 1.8531 0.87 0.3836 0.091901

4 Xpsmp 2086 79 152 53 22 60 35 401 13.0183 0.02 2.8746 0.000137

5 Xpsmp 2202 52 119 49 13 44 16 293 4.8749 0.43 1.0813 0.012823

Xpsmp 2078 56 109 49 23 41 17 295 2.4554 0.78 0.5186 0.061128

6 Xpsmp 2270 57 119 53 20 48 22 319 2.7806 0.73 0.5873 0.050025

7 Xpsmp 2224 54 128 46 17 25 18 288 8.3056 0.14 1.8603 0.001711

Xpsmp 2263 61 106 51 16 54 16 304 9.1579 0.10 1.8364 0.0018018

A - SSR pattern of parent A (purple accession), B - SSR pattern of parent B (green dwarf), H - SSR pattern of the hybrid A X B. LG – Linkage

group to which SSR marker loci were previously assigned. *Chi-square of LOD values expected on the basis of a 3:6:3:1:2:1 ratio for the joint

segregation of the genes for pigmentation of the panicle and the SSR marker locus.



Table S4 - Tagging of the genes for purple seed color with pearl millet SSR marker loci.

Seed color
Purple Pearly

Total Chi-
square

P(Chi) LOD
score*

P(LOD)LG SSR locus

A H B A H B
1 Xpsmp 2246 43 98 40 35 82 24 322 6.8148 0.24 1.5601 0.054133

Xpsmp 2090 54 96 34 26 89 27 326 13.8173 0.02 3.0801 0.000083

2 Xpsmp 2255 52 95 59 39 88 45 378 2.6688 0.75 0.5816 0.05086

Xpsmp 2089 26 92 47 33 58 35 291 8.4661 0.13 1.9972 0.001212

Xpsmp 2231 55 96 35 30 80 31 326 7.1352 0.21 1.5879 0.003424

Xpsmp 2237 44 100 43 32 80 28 327 4.0659 0.54 0.9047 0.020618

Xpsmp 2206 51 80 53 32 74 31 321 4.2597 0.51 0.9180 0.019886

4 Xpsmp 2086 59 103 41 34 87 41 365 4.7750 0.44 1.0652 0.013386

5 Xpsmp 2202 37 82 35 26 83 31 294 8.0857 0.15 1.6894 0.002641

Xpsmp 2078 46 74 29 33 68 33 283 5.1597 0.40 1.1739 0.010034

6 Xpsmp 2270 51 94 26 46 71 21 309 18.3232 0.00 4.2857 0.000004

7 Xpsmp 2224 38 78 34 29 73 28 280 3.3542 0.64 0.7095 0.035335

Xpsmp 2263 46 77 32 30 73 31 289 4.3764 0.50 0.9612 0.017693

A - SSR pattern of parent A (purple accession), B - SSR pattern of parent B (green dwarf), H - SSR pattern of the hybrid A X B. LG – Linkage

group to which SSR marker loci were previously assigned. *Chi-square of LOD values expected on the basis of a 9:18:9:7:14:7 ratio for the joint

segregation of the genes for purple seed color and the SSR marker locus.




