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Abstract

Heterochromatin comprises a fraction of the genome usually with highly repeated DNA sequences and lacks of func-
tional genes. This region can be revealed by using Giemsa C-banding, fluorochrome staining and cytomolecular
tools. Some plant species are of particular interest through having a special type of heterochromatin denominated
the cold-sensitive region (CSR). Independent of other chromosomal regions, when biological materials are subjected
to low temperatures (about 0 °C), CSRs appear slightly stained and decondensed. In this study, we used Cestrum
strigilatum (Solanaceae) to understand some aspects of CSR condensation associated with cytosine methylation
levels, and to compare the behavior of different heterochromatin types of this species, when subjected to low temper-
atures.
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Introduction

The major portion of plant genomes is composed of

repetitive DNAs, which are organized in families, accord-

ing to base-pair length, mechanisms of accumulation/re-

duction, dispersion and their role in genome behavior. The

most important site of satDNA occurrence is heterochro-

matin, and the genomes of some plant species exhibit large

portions of heterochromatin, in addition to other repetitive

families, for example, Scilla (Deumling and Greilhuber,

1992) and Citrus (Silva et al., 2010). Furthermore, hetero-

chromatin itself can also be associated with various repeti-

tive DNA families (Grewal and Jia, 2007; Gaeta et al.,

2010), which can be revealed after Giemsa C-banding, dif-

ferentiated as AT-rich (DAPI+) or GC-rich (CMA+) by flu-

orescence staining (Guerra, 2000), and recognized by mo-

lecular techniques (Chang et al., 2008). A good example of

this is in a study by Urdampilleta et al. (2009), who isolated

and located a satDNA (AT-rich) with a length of 725 bp, in

the chromosomes of Urvillea chacoensis (Sapindaceae).

The genomes of species of Cestrum (Solanaceae) also

possess numerous and diverse repetitive DNA families,

many of which associated with heterochromatin. These, en-

countered as dots or large blocks, can be classified into i)

C-Giemsa+ bands, ii) CMA+ bands associated or not with

NORs, (iii) DAPI+ bands associated or not with CSRs

(cold-sensitive regions), and (iv) CMA+/DAPI+ bands

(Berg and Greilhuber, 1992, 1993a,b; Fregonezi et al.,

2006; Fernandes et al., 2009). Cold-sensitive regions are

revealed when meristematic tissues are exposed to low

temperatures (about 0 °C). They appear as decondensed

chromatin, weakly stained after exposure to a nonspecific

dye, such as Giemsa or orcein. CSRs have been described

in approximately 50 plant-species belonging to different

families (see Punina et al., 2001). Eight species of Cestrum

revealed CSRs. Cestrum parqui, C. strigilatum, C.

fasciculatum, C. elegans and C. aurantiacum were studied

by Berg and Greilhuber (1992, 1993a,b). Fregonezi et al.

(2006), when studying C. amictum, C. intermedium, C.

sendtnerianum and C. strigilatum, showed that, in these

species, the principal CSRs are DAPI+. Even so, in the case

of C. strigilatum, not all DAPI+ heterochromatin corre-

sponds to CSRs. Although, according to Punina et al.

(2001), most CSRs are composed of DAPI+ heterochro-

matin, there are species of the genus Sambucus and Vibur-

num with CMA+/CSRs (Benko-Iseppon and Morawetz,

1993).

To better understand the decondensed behavior of

DAPI+/CSRs in Cestrum strigilatum, we examined root

tips treated at low temperatures (= cold treatment) using se-
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quential fluorescence banding (CMA/DAPI) and immu-

nolabeling with an anti-5-methylcytosine antibody.

Material and Methods

Seedlings of Cestrum strigilatum (10) were collected

in five different localities at Londrina, Paraná, Brazil, for

subsequent cultivation in tubes in the Laboratório de Bio-

diversidade e Restauração de Ecossistemas (LABRE),

Centro de Ciências Biológicas, Universidade Estadual de

Londrina, Londrina, Paraná, Brazil. Vouchers were depos-

ited at the FUEL herbarium. Samples were pre-treated in

two ways: i) with 0.05% colchicine at room temperature for

4 h to obtain conventional chromosomes and ii) with dis-

tilled water at 0 °C for 25 h to obtain CSRs. In both cases,

samples were fixed in a solution of ethanol/acetic acid (3:1,

v:v), for up to 24 h and stored at -20 °C. For conventional

staining, samples were softened in 4% cellulase plus 40%

pectinase (w: v) at 37 °C for 1 h, hydrolyzed in 1 N HCl for

10 min at 60 °C, dissected in a drop of 60% acetic acid, and

then squashed. After removal of the coverslips by freezing

in liquid nitrogen, samples were stained in 2% Giemsa and

mounted with Entellan (Merck).

Chromosome banding was according to Schweizer

(1976). For both pre-treatments, root tips were first soft-

ened in an enzyme solution, dissected and squashed, as pre-

viously described. After removal of the coverslips by freez-

ing in liquid nitrogen, samples were aged for 3 days, stained

with 0.5 mg/mL of chromomycin A3 (CMA) for 90 min and

2 �g/mL of 4-6-diamidino-2-phenylindole (DAPI) for

30 min, and mounted in 1:1 glycerol/McIlvaine buffer

(pH 7.0) plus 2.5 mM MgCl2.

Immunodetection was performed in root tips previ-

ously treated with colchicine and with low temperatures.

Samples were softened in 4% cellulase plus 40% pectinase

(w: v) in 1x PBS buffer at 37 °C for 2 h, dissected and

squashed, as previously described. After removal of the

coverslips by freezing in liquid nitrogen, slides were kept in

1x PBS for 5 min. The material was blocked in a solution of

3% BSA (Inlab) in 1x PBS plus 0.2% Tween 20 at room

temperature for 10 min. Afterwards, samples were incu-

bated in a moist chamber at 4 °C for 12 h with 25 �L of a so-

lution (1:100, v:v) of mouse anti-5-methylcytosine

(Eurogentec) and 3% BSA (Inlab) in 1x PBS plus 0.2%

Tween 20. After three washes in 1x PBS for 5 min each,

samples were incubated with the FITC-conjugated second-

ary goat anti-mouse IgG, diluted 1:100 (v:v) in 3% BSA in

1x PBS plus 0.2% Tween 20, at 37 °C for 1 h. Washes were

carried out in 1x PBS at room temperature. Slides were

mounted with 25 �L of a solution composed of glycerol

(90%), DABCO (2.3%), 20 mM Tris-HCl, pH 8.0 (2%),

2.5 mM MgCl2 (4%), and distilled water (1.7%), plus 1 �L

of 2 �g/mL DAPI.

Images were acquired separately in grayscale mode

using a Leica DM 4500 B microscope equipped with a DFC

300FX camera, and overlapped using a Leica IM50 4.0

software, with the colors blue for DAPI, yellow for CMA3,

and greenish-yellow for FITC.

Results and Discussion

Conventional Giemsa staining and CMA/DAPI band-

ing showed that the samples of Cestrum strigilatum exam-

ined here had a chromosome number of 2n = 16, with five

metacentric and three submetacentric pairs (Figure 1A), as

well as large AT-rich blocks in pairs 2, 3, 4, 6, 7 and 8 (Fig-

ure 1C) and fewer GC-rich blocks in pairs 7 and 8 (Figu-

re 1E), as previously reported (Berg and Greilhuber, 1993a;

Fregonezi et al., 2006). Cold treatment showed that the

DAPI+/CSRs of pairs 2, 4, 6, 7 and 8 were negatively

stained with CMA (Figures 1B, D, F and 2), as reported by

Berg and Greilhuber (1993a) and Fregonezi et al. (2006).

Notwithstanding, some fine AT-rich blocks that appeared

as CMA- (Figure 1D and F, indicated by arrowheads), and

also in pair 4 (Figure 2), were not cold-sensitive. The

decondensed appearance of DAPI+/CSRs was more evident

when compared to adjacent GC-rich blocks (Figures 2 and

3, pair 8) and non-adjacent blocks (Figures 2 - pair 7 and 3 -

pair 6). This difference in chromatin condensation certainly

depends on epigenetic control, which basically consists of

the modification of histones and/or DNA methylation

(Fuks, 2005).

In general, when compared to other chromosome re-

gions, heterochromatic regions have high levels of cytosine

methylation, as also occurs in non-cold-treated chromo-

somes of C. strigilatum (Figure 4A-F). The use of the

anti-5-methylcytosine antibody in plants has been effective

in differentiating highly methylated cytosine residues in

chromosomes (Cremonini et al., 2003). Differences in me-

thylation levels between euchromatic and heterochromatic

regions have been reported by immunolabeling with anti-

5-methylcytosine antibody in several plant groups, such as

Haplopappus gracilis (Castiglione et al., 2008), and Costus

spiralis and Eleutherini bulbosa (Feitosa and Guerra,

2011).

Immunodetection using anti-5-methylcytosine anti-

bodies in cold-treated samples revealed hypomethylation in

the DAPI+/CSR regions (Figure 5). The differences in

methylation levels can be better visualized, on comparing

both DAPI+ regions of non-cold-treated samples (Figure 4)

and the terminal CMA+ block on the short arm of pair 7.

Notwithstanding also showing hypermethylation (Figure

5G-H, head and arrowhead), thereby indicating that AT-

rich sequences of C. strigilatum are more inclined to hypo-

methylation than the GC-rich. It is assumed here that this

relationship is due to DAPI preferentially binding to AT-

rich and CMA to GC-rich regions (see Guerra, 2000). Inter-

estingly, Cremonini et al. (2003) obtained CSRs in those

chromosomes of Zingeria biebersteiniana that were not

fully compatible with the heterochromatic regions revealed

by chromosome banding. Our results with C. strigilatum
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seem to be more consistent with the hypothesis proposed by

Punina et al. (2001) that cold-sensitive regions are AT-rich

heterochromatic regions that decondense in response to a

strong cold-shock. It is proposed that cold treatment could

interfere in the stability of DAPI+/CSRs in C. strigilatum,

thereby provoking modifications in normal heterochro-

matin condensation. According to Avramova (2002), DNA

methylation is important in stabilizing heterochromatin

structures.

Species of Cestrum show karyotypical differences in

the number of sites and amount of CSRs. In spite of this dis-

crepancy, it is important to note that in our results, as well

as for DAPI+/CSRs bands in species of Cestrum (Berg and

Greilhuber, 1993a; Fregonezi et al., 2006), and

CMA+/CSRs bands in species of Sambucus and Viburnum

(Benko-Iseppon and Morawetz, 1993), only larger hetero-

chromatic blocks are not only more easily visualized, but
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Figure 2 - Partial karyogram and idiogram showing the locations of

DAPI+/CSRs, DAPI+/ not CSR and CMA+/ not CSR. Note that all the

CSRs are from interstitial to terminal regions in short arms. Also note a

small DAPI+/ not CSR in pair 4. The CMA+ bands of pairs 7 and 8 are asso-

ciated with NOR. The subterminal CMA+ band in pair 6 (in this idiogram)

is shown in Figure 3.

Figure 3 - Two chromosomes representative of pairs 6 and 8, which show

differences in condensation levels between DAPI+/CSR (arrows) and

CMA+ bands (arrowheads). The CMA+ band in pair 8 is associated with

NOR.

Figure 1 - Conventional staining and CMA/DAPI banding in Cestrum strigilatum. Metaphases in A, C and E correspond to non-cold-induced material:

A) 2% Giemsa, C) DAPI-banding and E) CMA-banding. Prometaphases in B, D and F correspond to cold-induced material: B) 2% Giemsa. Arrows indi-

cate the CSRs. D and F correspond to DAPI- and CMA-banding, respectively. Arrows in F indicate the CMA-CSRs, Arrowheads in B, D and F indicate a

small DAPI+/CMA- band not CSR. Note that all cold-sensitive regions are DAPI+ (D). Bar represents 10 �m.



appear evidently decondensed, when samples are treated at

low temperatures.

Thus, there is possibly a minimum size for hetero-

chromatin blocks capable of detecting changes in methyl-

ation levels, when samples are exposed to cold-treatment.

This, together with the examination of small and hypo-

methylated heterochromatic regions being difficult through

technical limitations, could possibly be alternative explana-

tions for the occurrence of cold-sensitive regions contain-

ing both DAPI+ and CMA+. However, it is important to

mention that anti-5-methylcytosine detection has not been

undertaken in Sambucus and Viburnum species.

To better understand the behavior of CSRs, as well as

the evolutionary significance, epigenetic role and molecu-

lar drive of these DAPI+/CSRs in Cestrum, it will be neces-

sary, not only to determine the sequences of these satDNA

regions, but also test other antibodies against proteins ca-

pable of controlling heterochromatin dynamics, such as

post-translational modifications associated with histone

phosphorylation, acetylation, ubiquitylation and/or methyl-

ation.
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