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Abstract

The comparison of genetic divergence or genetic distances, estimated by pairwise FST and related statistics, with
geographical distances by Mantel test is one of the most popular approaches to evaluate spatial processes driving
population structure. There have been, however, recent criticisms and discussions on the statistical performance of
the Mantel test. Simultaneously, alternative frameworks for data analyses are being proposed. Here, we review the
Mantel test and its variations, including Mantel correlograms and partial correlations and regressions. For illustrative
purposes, we studied spatial genetic divergence among 25 populations of Dipteryx alata (“Baru”), a tree species en-
demic to the Cerrado, the Brazilian savannas, based on 8 microsatellite loci. We also applied alternative methods to
analyze spatial patterns in this dataset, especially a multivariate generalization of Spatial Eigenfunction Analysis
based on redundancy analysis. The different approaches resulted in similar estimates of the magnitude of spatial
structure in the genetic data. Furthermore, the results were expected based on previous knowledge of the ecological
and evolutionary processes underlying genetic variation in this species. Our review shows that a careful application
and interpretation of Mantel tests, especially Mantel correlograms, can overcome some potential statistical problems
and provide a simple and useful tool for multivariate analysis of spatial patterns of genetic divergence.
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Introduction

The estimation of genetic divergence between indi-

viduals from different localities (“populations” hereafter)

has been an important component of empirical studies in

population genetics. These studies are supported by a

strong theoretical basis since the classical papers by S.

Wright, R.A. Fisher and G. Malecot, among others (Ep-

person, 2003). The most popular approaches for estimating

divergence include calculation of genetic distances and

variance partitioning among and within populations using

Wright’s FST and other related statistics, such as GST, AST,

RST, �ST and �ST (see Holsinger and Weir, 2009 for a recent

review). For instance, the FST gives an estimate of the bal-

ance of genetic variability among and within populations,

and is an unbiased estimator of divergence between pairs of

populations under an island-model in which all populations

diverged at the same time and are linked by approximately

similar migration rates. However, migration rates usually

vary proportionally with geographical distances, so that

pairwise FST estimates between pairs of populations vary.

Regardless of how genetic divergence among popula-

tions is computed, a recurrent goal in landscape genetics is

to evaluate the amount of spatial structure in the genetic

distance matrix. For instance, it is common to use cluster

(such as UPGMA or Neighbor-Joining) and ordination

techniques (e.g., Principal Coordinates Analysis) to visual-

ize the relationships among populations based on these ma-

trices (see Lessa, 1990; Felsenstein, 2004). More recent

techniques, such as Bayesian approaches (see Balkenhol et

al., 2009; Guillot et al., 2009), do not start from pairwise

distances, but follow a similar reasoning of establishing

clusters based on genetic differentiation among individu-

als. However, these approaches do not explicitly evaluate

the effect of geographic space. By far, the Mantel test is the

most commonly used method to evaluate the relationship

between geographic distance and genetic divergence (Man-

tel, 1967; see Manly, 1985, 1997).
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The Mantel test was proposed in 1967 to test the asso-

ciation between two matrices and was first applied in popu-

lation genetics by Sokal (1979). Despite recent controver-

sies and criticisms about its statistical performance (e.g.

Harmon and Glor 2010; Legendre and Fortin, 2010; Guillot

and Rousset, 2013) and the existence of more sophisticated

and complex approaches to analyze spatial multivariate

data, the Mantel test is still widely used. We believe that at

least part of the problems associated with this test is due to

lack of understanding of basic aspects of the test and misin-

terpretations in empirical applications.

Here we review the Mantel test and its extensions

(Mantel correlogram, partial correlation and regression),

discussing how it can be associated with theoretical models

in population genetics (i.e., isolation-by-distance and land-

scape models). Routines of different forms of the Mantel

test are widely available in several computer programs for

population genetic analyses (Table 1) and in several pack-

ages for the R platform (R Development Core Team, 2012).

All Mantel tests performed here were conducted using the

R packages vegan (Oksanen et al., 2012) and ecodist

(Goslee and Urban, 2007) and a complete script is available

from the authors upon request.

We illustrate several applications of the Mantel test

using an example based on population genetic divergence

among Dipteryx alata populations, the “Baru”, an endemic

tree widely distributed in the Brazilian Cerrado biome (see

Diniz-Filho et al., 2012a,b; Soares et al., 2012). Previous

analyses suggested that spatial patterns of genetic variabil-

ity in this species are due to a combination of isola-

tion-by-distance and range expansion after the last

maximum glacial, creating clines in some loci.

Original Formulation

The Mantel test, as originally formulated in 1967, is

given by
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where gij and dij are, respectively, the genetic and geo-

graphic distances between populations i and j, considering

n populations. Because Zm is given by the sum of products

of distances its value depends on how many populations are

studied, as well as the magnitude of their distances. The

Zm-value can be compared with a null distribution, and

Mantel originally proposed to test it by the standard normal

deviate (SND), given by

SND = Zm/var(Zm)1/2
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Table 1 - Some of the softwares available for different approaches based on Mantel tests, including simple Mantel test (S), partial Mantel tests (P) and

correlograms (C), and the website where they can be found.

Software Mantel approach Website

Alleles in Space (AIS) S http://www.marksgeneticsoftware.net/AISInfo.htm

Arlequin S, P http://cmpg.unibe.ch/software/arlequin35/Arl35Downloads.html

Fstat S, P http://www2.unil.ch/popgen/softwares/fstat.htm

GenAlEx S, P http://biology.anu.edu.au/GenAlEx/Download.html

Genepop S http://genepop.curtin.edu.au/

Genetix S http://kimura.univ-montp2.fr/genetix/

IBD (Isolation by Distance) S, P http://www.bio.sdsu.edu/pub/andy/IBD.html

IBDWS (On line) S, P http://www.webcitation.org/query.php?url=http://phage.sdsu.edu/~jensen/&

refdoi = 10.1186/1471-2156-6-13

Mantel Nonparametric Test Calculator S http://www.terc.csiro.au/mantel.htm

Mantel-Struct S http://www.marksgeneticsoftware.net/mantel.htm

NTSys S, P http://www.exetersoftware.com/cat/ntsyspc/ntsyspc.html

PASSaGE S, P, C http://www.passagesoftware.net/download.php

PC-Ord S, P http://people.oregonstate.edu/~mccuneb/pcord.htm

Quiime S, P, C http://qiime.org/index.html

R - package vegan S, P, C http://vegan.r-forge.r-project.org/

R - package ade4 S http://pbil.univ-lyon1.fr/ADE-4/

R - package ecodist S, P, C http://cran.r-project.org/web/packages/ecodist/index.html

SAM S, C http://www.ecoevol.ufg.br/sam/

Spagedi S http://ebe.ulb.ac.be/ebe/SPAGeDi.html

TFPGA S http://www.marksgeneticsoftware.net/tfpga.htm

ZT S, P http://bioinformatics.psb.ugent.be/webtools/zt/



where var(Zm) is the variance of the Zm (see Mantel, 1967

and Manly, 1985 for detailed formulas). Later, however,

Mielke (1978) showed that this formulation is biased,

working well only for large sample sizes, and suggested

that a null distribution must be obtained empirically by per-

muting rows and columns of one of the distance matrices.

Thus, the idea underlying Mantel’s randomization

test is that if there is a relationship between matrices G and

D, the sum of products Zm will be relatively high, and ran-

domizing rows and columns will destroy this relationship

so that Zm values, after randomizations, will tend to be

lower than the observed. If one generates, say, 999 values

and none of the randomized Zm-values is higher than the ob-

served, it is possible to conclude that the chance to observe

a Zm-value as high as the observed by chance alone is

1/999+1 (the 1 is the observed, which is conservatively

added to both the numerator and denominator). This is then

the p-value from Mantel test.

One can also use a standardized version of the Man-

tel’s test (ZN):
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using the means (G and D) and the variances (var(G) and

var(D)) of the matrices G and D. The standardized version

of Mantel’s test (ZN) is actually the Pearson correlation r

between the standardized elements of the matrices G and D.

ZN values close to 1 indicate that an increase in geographic

distance between populations i and j is related with an in-

crease in genetic distances between these populations. ZN

values close to -1 indicate de opposite pattern, and ZN val-

ues close to zero indicate that there is no relationship be-

tween the two matrices. Notice also that if the two matrices

G and D are standardized prior to the analysis (so that the

mean is equal to 0 and variance is equal to 1) Mantel origi-

nal Zm and standardized ZN have exactly the same value. For

simplicity of notation, this standardized Mantel test ZN will

be referred to hereafter as Mantel correlation rm.

The dataset for Dipteryx alata populations used

throughout the text consists of genotypes based on 8 micro-

satellite loci of 644 individuals collected in 25 populations

of the Brazilian Cerrado (States of Goiás, Mato Grosso,

Mato Grosso do Sul, Minas Gerais and Tocantins, Figure 1;

see Diniz-Filho et al., 2012a,b for details). The overall FST

was equal to 0.254, indicating a spatial heterogeneity

among populations. We built matrices of genetic distances

among population by calculating pairwise FST estimated by

an Analysis of Variance of Allele Frequencies (Holsinger

and Weir, 2009) and Nei’s genetic distances (these two ge-

netic distances are strongly correlated: rm = 0.868;

p < 0.001). We then correlated these genetic distance matri-

ces with pairwise geographic distances (measured in kilo-

meters) between populations. Results of Mantel tests are

qualitatively the same using pairwise FST or Nei’s genetic

distances, so a G matrix is hereafter given by the pairwise

FST.

The first and simplest application of the Mantel test is

to correlate genetic (G) and geographic (D) distances, seek-

ing for spatial pattern of genetic variation. The Mantel cor-

relation between G and D matrices was equal to 0.499. The

scatterplot between elements in G and D matrices showed a

linear relationship between genetic and geographic dis-

tances (Figure 2). Performing 4999 randomizations of the

rows and columns of G generated the distribution of corre-

lations under the null hypothesis. Out of these 4999 values,

none was larger than the observed value of 0.499, so that

the chance of obtaining a value as large as the observed is

smaller than 1/5000, indicating a p-value of 0.0002. Thus,

we conclude that nearby populations tend to be genetically

more similar than expected by chance, and genetic differ-

ences increase linearly with geographic distances.

Two Useful Extensions: Mantel Correlograms
And Partial Mantel Tests

Mantel correlograms

The Mantel correlation, as shown in Figure 2, shows

the overall relationship between matrices G and D. How-

ever, it is often interesting to study the relationship between

genetic and geographic distances across space, especially if

this relationship is not linear. Thus, the matrix D can be di-

vided into several sub-matrices, each one describing pairs

of populations within a bounded interval of geographic dis-
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Figure 1 - The twenty-five populations of Dipterx alata, the “Baru” tree,

for which 644 individuals were genotyped for 8 microsatellite loci, used in

the examples for the Mantel test. Dark regions represent remnants of natu-

ral vegetation.



tances. Specifically, this is done to describe possible varia-

tions in the correlation between genetic and geographic

distances. These matrices, called here Wk, express in a bi-

nary form (0/1 values) if pairs of populations are connected

(a value of 1), or not (a value of 0), within a given geo-

graphic distance range, usually referred as “distance class”

k. To analyze the variation of correlation coefficients across

space it is, however, necessary to create multiple non-

overlapping and contiguous distance classes. Thus, several

Mantel correlations are obtained by performing a Mantel

test between G and the matrices W1, W2, W3, ..., Wk .

Finally, the Mantel correlogram is constructed by plotting

Mantel correlations between G and each W against the

mid-point of the respective distance class k (Oden and

Sokal, 1986; Legendre and Legendre, 2012). The definition

of distance classes, both in terms of the total number of

classes and their upper and lower limits, is somewhat arbi-

trary and depends on the spatial distribution of the popula-

tions. A “rule of thumb” suggests about four to five classes

for 20 populations.

From a statistical point of view it is recommendable

to keep the number of links (pairs of populations) within

each matrix W approximately constant, which may require

unequal distance intervals (e.g., 0-100 km, 100-250 km,

250-500 km, 500-2000 km, see Sokal and Oden, 1978a,b

for a discussion). The most important issue about corre-

lograms is that they should capture a continuous distribu-

tion in geographic space. Thus, it is desirable to have a large

number of classes. However, one must keep in mind that, if

the number of populations is relatively small, or if the pop-

ulations are distributed irregularly across space (e.g. aggre-

gated in clusters), it may not be possible to use a large

number of distance classes. This is so because there may

not be enough pairs of populations within a given distance

class to provide a reliable estimate of the correlation.

For the “Baru” populations, a correlogram with five

geographic distances classes indicated that populations dis-

tant by 156 km (first distance class: from 0 km to 318 km)

tend to be similar (rm = 0.337; p < 0.001 with 4999 permuta-

tions) (Figure 3a). The Mantel correlation decreased more

or less linearly up to a value of -0.333 (p < 0.001) in the last

distance class, when populations were approximately

1120 km apart. As discussed earlier, negative correlation

values indicate that populations that are located at a given

distance apart tend to be genetically dissimilar. Notice,

however, that the Mantel correlations in both the first and

last distance classes were not very high (i.e., -0.33), indicat-

ing that the spatial structure is not strong (remember that

the overall Mantel test is 0.499, so that only about 24.9%

(i.e. 0.4992) of the genetic divergence is explained by geo-

graphic distance - see below).

It is also possible to compute the mean FST within

each distance class and plot it against the mean value of the

class (Figure 3b). This is sometimes called distogram and

provides an interesting and more direct visual evaluation of

spatial patterns in genetic structure. For the “Baru” dataset,

when nearby populations in the first distance class were

compared, the mean FST was 0.224 (smaller than the overall

value of 0.367), whereas in the last distance class the mean

FST was equal to 0.522, which is higher than the mean

value.

Thus, the correlogram and the distogram showed a

continuous and linear decrease of genetic similarity (a
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Figure 2 - Relationship between pairwise FST and geographic distances

(r = 0.499) for the 25 “Baru” populations.

Figure 3 - Mantel correlogram (A) and distogram (B), the latter one given

by the mean FST in each distance class.



higher mean FST, and a lower Mantel correlation) when

geographic distance increased (Figure 2a). This result is ex-

pected when there is a clinal pattern of genetic variation in

the studied region (i.e., when allele frequencies decrease or

increase in a directional way). Spatial clines can arise by se-

lection along environmental gradients (unlike in the case of

microsatellite markers), and/or by range expansions or dif-

fusion of genes through space in migratory events or allelic

surfing. Indeed, previous analyses suggest that patterns of

genetic variation in “Baru” are related to range expansions

from north to south, tracking climate changes after the last

glacial maximum (see Diniz-Filho et al., 2012b).

Other more complex patterns can be detected using

correlograms, and perhaps the most common pattern ob-

served in nature is an exponential-like decrease in which

there are high Mantel correlations in the first distance

classes, which tend to decrease and stabilize after a given

distance class, indicating that there are patches of genetic

variation or similarity. These patches can be caused by sev-

eral factors, including different environments driving ge-

netic variation (again unlike in the case of microsatellites),

or the subdivision of the studied region by barriers, or sim-

ple isolation-by-distance (see below). The geographic dis-

tance at which the Mantel correlation is zero or non-

significant indicates the size of the patch, and this can be

useful for understanding population and genetic dynamics

in space (see Sokal and Wartenberg, 1983; Sokal et al.,

1997). Patch size can also be used for establishing more ef-

ficient approaches in conservation genetics, allowing to es-

timate regions within which genetic variability is similar

(see Diniz-Filho and Telles, 2002, 2006).

When exponential-like correlograms appear, the

overall Mantel test may be a poor estimate of the spatial

pattern because it assumes a linear correlation between ma-

trices. Thus it is important to check for non-linearity and

heteroscedastic relationships between geographic and ge-

netic distances with a simple scatterplot before interpreting

the result of a global Mantel test. An even safer alternative

would consist in using correlograms instead of the simple

Mantel test (see Borcard and Legendre, 2012).

Finally, it is also important to highlight that, despite

recent discussions on the validity of the Mantel test (espe-

cially of the partial Mantel tests, see below), the Mantel

correlogram deserves its place in the ecologist’s “toolbox”.

For instance, Borcard and Legendre (2012) recently used

several simulations to show that the statistical performance

of a Mantel correlogram, for both Type I and Type II error

rates, is reliable.

Partial Mantel tests

Another possibility for using the Mantel test is to

compare the relationship between two matrices, but taking

into account the effect of a third one (usually the geograph-

ical distances), as originally proposed by Smouse et al.

(1986). When analyzing spatially distributed data, the main

issue is to find out if the two matrices are “causally” related

(i.e., in the sense that they indicate an ecological or evolu-

tionary process), or if the observed relationship appears

only because both variables are spatially structured by in-

trinsic effects (i.e., distance-structured dispersal causing

more similarity between neighboring populations).

When one is interested in evaluating the statistical

correlation between two variables (say, an allele frequency

and temperature) whose values are spatially distributed, the

most common (and statistically sound) approach is to apply

spatial regression ,methods (see Diniz-Filho et al., 2009 for

a review using genetic data and Perez et al., 2010 for an ap-

plication). However, when the hypotheses are specified in

terms of distance matrices, such as in the case of isola-

tion-by-distance and many landscape models (see Wagner

and Fortin, 2013), the most popular approach is to apply

partial Mantel tests (see Legendre and Legendre, 2012 for a

review).

There are several forms of partial Mantel tests (see

Smouse et al., 1986; Oden and Sokal, 1992; Legendre and

Legendre, 2012), but the general reasoning is to evaluate

how two matrices are correlated after controlling, or keep-

ing statistically constant, the effect of other matrices (see

Sokal et al., 1986, 1989, for initial applications). In a first

approach, it is possible to calculate the partial correlation

between matrices G and E (where E is a distance matrix

that one wants to correlate with G, keeping matrix D con-

stant). The partial correlation is given by

r(GE|D) = rm (GE) - rm (ED) rm (GD) / [(1 - rm (ED)
2)1/2] [(1 - rm (GD)

2)1/2]

where ZN (GE) is, for instance, the correlation coefficient be-

tween matrices G and E and r(GE|D) is the correlation be-

tween G and E, after taking D into account.

To illustrate these approaches with the “Baru”

dataset, it is necessary to generate other explanatory matri-

ces. First, for each locality, we obtained the altitude and 19

bioclimatic variables from WorldClim (Hijmans et al.,

2005) and, after standardizing each variable to zero mean

and unity variance, an environmental (Euclidean) distance

matrix for all possible pairwise combinations of the local

populations was obtained. This matrix (E) expresses then

the environmental (mainly climatic) differences between

populations. Second, we also estimated the amount of natu-

ral habitats remaining between pairs of populations, as the

proportion of natural habitats in a 10 km wide “corridor”

linking two populations (a matrix R). This matrix was de-

rived from land use data obtained using the vegetation

cover maps of the Brazilian biomes at the 1:250.000 spatial

scale, based on compositions of the bands 3, 4 and 5 of

Landsat 7 ETM+ images of the year 2002 (see Diniz-Filho

et al., 2012a).

A simple Mantel correlation revealed that FST is not

correlated to the proportion of the natural remnants matrix

R (rm = -0.23; p = 0.142), and that this matrix is not spatially

correlated (rm = -0.075; p = 0.552). Thus, no further partial
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analyses were needed (Dutilleul, 1993). However, FST is

significantly correlated with environmental distances E ac-

cording to a simple Mantel test (rm = 0.302; p = 0.008).

However, we already know that genetic divergence is spa-

tially patterned (rm = 0.499) and there is also a very strong

spatial pattern in environmental variation E (rm = 0.838;

p < 0.001). Thus, the main issue is to test if there is a corre-

lation between G and E, after taking the geographic dis-

tances (matrix D) into account. This relationship is not

expected for neutral markers as microsatellites, except if

one considers that these loci are linked with adaptive ones.

Indeed, the partial correlation between G and E, after

taking into account geographic distances D, was equal to -

rm (GE|D) = -0.248 (p = 0.956), so the relationship between

genetic and environment disappeared when geographic

structure common to both matrices was accounted for (as in

principle expected for neutral markers, as pointed out

above). First, it is possible to quantify the relationships be-

tween FST and geographic distance D and environmental

distance E by partial coefficients of determination, disen-

tangling the amount of variation explained by each predic-

tor matrix and their shared contribution (see Pellegrino et

al., 2005 for an application in a phylogeographical con-

text). In the “Baru” example, the geographic distances ex-

plained 24.9% of the variation in FST (the square of the

Mantel correlation, rm
2 equal to 0.499), whereas the effect

of environment was equal to 9.09%. Using a standard mul-

tiple regression framework, if the matrices E and D are used

as explanatory matrices to explain FST, the overall Rm
2 is

equal to 0.295. The sum of the rm
2 is slightly larger than the

overall Rm
2 and, therefore, there is a small shared fraction

(4.4%). The unique effects of geographic and environmen-

tal distances are equal to 0.204 and 0.046, respectively.

This result reveals that about half of the small explanatory

power of environmental distances was due to spatial pat-

terns (in agreement with the results of the partial correlation

shown above).

Finally, it is also possible to generalize the multiple

regression approach and evaluate simultaneously the ef-

fects of several explanatory matrices, a framework called

Multiple Regression on Distance Matrices (MRM;

Lichstein, 2007). Using the “Baru” dataset, we can evaluate

the “effects” of the explanatory distance matrices (D, E and

R) on the genetic divergence estimated by FST. In this case,

these matrices explained 32.1% of the variation in genetic

divergence, and only the standardized partial regression co-

efficient of geographic distances was significant at

p < 0.001 (p-value for E was equal to 0.111 and for R equal

to 0.239). The results are thus similar to all previous Mantel

tests that did not show partial effects of the environment or

proportion of natural remnants on genetic distances.

By far, the partial test is still the most controversial

application of Mantel test, and there has been a long discus-

sion about its statistical performance in terms of Type I er-

ror and power (Raufaste and Rousset, 2001, 2002;

Castellano and Balletto, 2002; Cushman and Landguth,

2010; Harmon and Glor 2010; Legendre and Fortin, 2010;

Guillot and Rousset, 2013). Actually, since its initial appli-

cations, some potential problems of low power to detect

correlation and inflated Type I error in partial tests have

been considered (Oden and Sokal, 1992), and different

forms of permutations may provide different results de-

pending on data characteristics (Legendre, 2000). How-

ever, some issues emerge when matrices are built upon two

variables (transformed into matrices using Euclidean dis-

tances) and not multivariate distance matrices per se (such

as a Nei genetic distance or pairwise FST). In this case there

are more appropriate tools for correlating variables while

taking their spatial structure into account (Dormann et al.,

2007, Diniz-Filho et al., 2009; Guillot and Rousset, 2013).

However, Legendre and Fortin (2010), besides indicating

that other approaches have higher statistical power than the

Mantel test, wrote that “...the Mantel test should not be used

as a general method for the investigation of linear relation-

ships or spatial structures in univariate or multivariate

data”, and “its use should be restricted to tests of hypothe-

ses that can only be formulated in terms of distances” (see

also Cushman and Landguth, 2010). Likewise, Guillot and

Rousset (2013) recently found very high Type I error rates

for partial Mantel tests and strongly condemned their use.

Nonetheless simulations showed that other ap-

proaches for estimating partial correlation between matri-

ces (i.e., Redundancy Analysis based on Eigenfunction

Spatial Analyses - see section below) may also have in-

flated Type I error rates (Legendre et al., 2005; Peres-Neto

and Legendre, 2010). A simple solution to this problem

with Type I error was given by Oden and Sokal (1992), who

pointed out that when using partial Mantel tests it is impor-

tant to be conservative and only reject the null hypothesis of

no correlation if p is much smaller (say, p = 0.001) than the

nominal level of 5%. Until the development of other meth-

ods, this overall reasoning should be adopted when using

partial Mantel tests.

Mantel Test and Isolation-By-Distance

Many recent studies have interpreted a significant

Mantel correlation between G and D as due to Wright’s Iso-

lation-By-Distance (IBD) process. Although this is one

possibility, it is hardly the only one (see Meirmans, 2012),

and even a correlogram expressing a exponential-like de-

crease in Mantel correlations may indicate other processes

creating patches of genetic variation (see Sokal and Oden,

1978a,b; Sokal and Wartenberg, 1983). Thus, it is not

straightforward to link patterns to processes and, in princi-

ple, a significant Mantel test or a correlogram pattern only

indicates that genetic variability is structured in geographic

space. Sokal and Oden (1978b; see also Sokal and Warten-

berg, 1983; and Diniz-Filho and Bini, 2012 for a historical

review) proposed a more complex framework based on

spatial analyses (a combination of univariate correlograms

480 Diniz-Filho et al.



built with Moran’s I spatial correlograms) to infer IBD, but

even this framework is not unanimously accepted (see

Slatkin and Arter, 1991). However, under the assumption

that the processes driving genetic variation is IBD, it is pos-

sible to infer demographic and ecological parameters based

on the shape of the correlograms (see Epperson, 2003;

Hardy and Vekemans, 1999; Vekemans and Hardy, 2004).

Rousset (1997) showed that, under IBD, the regres-

sion of FST/(1-FST) against the logarithm of geographic dis-

tances would provide a linear relationship with slope b

equal to

b = 1/(4N�	2)

and intercept a equal to

a = -ln(	) + 
e - ln(2) + 2�A2

where N is the population size, 	2 the variance of distance

between parent and offspring (4�	2 is Wright’s neighbor-

hood area in two dimensions), A2 a constant related to the

dispersal Kernel, and 
e is Euler’s constant (0.5772). In

practice, although it is difficult to estimate population size

and dispersal distance without further experiments (cap-

ture-recapture data, for example), as it is difficult to assume

A2 = 0 (Rousset, 1997), the theoretical derivation clearly

shows how empirical relationship between matrices can

provide insights on IBD parameters.

For the “Baru” dataset, the transformation of both ge-

netic and geographic distances indicates a non-linear rela-

tionship (Figure 4), and the model with the transformations

proposed by Rousset (1997) is clearly less fit. This result

suggests that IBD does not apply in general, and parameter

estimation associated with this process may be flawed.

Alternatives to Mantel Test

Because of the recent discussions on Mantel tests (see

above), it is worthy to discuss other strategies for data anal-

ysis in the multivariate case. The overall problem in com-

bining genetic data and geographic space, in a broad sense,

is to convert the two datasets into a common “format” (i.e.,

vectors or distance matrices). For example, the discussions

on the use of Mantel tests in the bivariate case (the correla-

tion between two variables keeping distance constant, see

Guillot and Rousset, 2013) started because space was ex-

pressed as distances, so a first idea was to transform genetic

variables into distances and use a partial Mantel test (al-

though simpler strategies to deal with spatial structures un-

derlying two variables exist). If the data is multivariate,

such as several alleles and loci used to calculate a diver-

gence matrix, the Mantel test can be even more directly ap-

plied, because pairwise distances can be intuitively

compared using this approach. However, there are other

possibilities to deal with the raw data (i.e., allelic frequen-

cies) and, because they are based on ordinations (see

Legendre and Legendre, 2012), one can use scores to com-

pare populations and not the original values per se.

The most common current alternative to the Mantel

test (and partial Mantel tests) is to ordinate the genetic dis-

tances (FST) and compare them with geographic coordi-

nates or other vector representations of geographical

distances (e.g., polynomial function of geographic coordi-

nates). Although it is also possible to perform the analyses

below based on the 52 allele frequencies directly, this

would generate a Euclidean metric (Rogers) in a linear or-

dination, making a comparison with Mantel tests not exact

(although quite close, by considering the high correlation

between Nei, Rogers and FST pairwise distances for the

“Baru”). So, we applied a Principal Coordinate Analysis

(PCoA) to the FST matrix and retained the first five axes

based on a broken-stick criterion. We then used these five

axes as a response matrix in a series of Redundancy Analy-

sis (RDA) (Legendre and Legendre, 2012), and compared

them with the Mantel tests already presented.

First, an RDA was carried out to analyze the spatial

patterns of the genetic dataset (as summarized by the first

five axes derived from PCoA) using latitude and longitude

as explanatory variables. This is a multivariate generaliza-

tion of the linear trend surface (mTSA) analysis (see War-

tenberg, 1985; Bocquet-Appel and Sokal, 1989). The coef-

ficient of determination R2 of the RDA was equal to 0.251

(that of the Mantel test was equal to 0.249). The similarity

between these figures is expected by considering previous

discussions about the strong linear component of genetic

variation revealed by the Mantel correlograms and reflect-

ing past range expansion.

However, the mTSA allows fitting a linear model, de-

scribing only broad-scale spatial structures. A polynomial
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Figure 4 - Relationship between transformed FST and logarithm of geo-

graphic distances for the 25 populations of “Baru” tree. Notice that trans-

formation did not produce a linear relationship, supporting previous analy-

ses showing that IBD does not apply in this case.



function of the geographic coordinates would capture more

complex patterns, but collinearity problems and low statis-

tical power for small sample sizes make this approach less

recommended. A more general approach to transform geo-

graphic space in a raw data form (i.e., variables x popula-

tions, instead of distance matrix) is to apply an eigen-

function analysis of geographic distances (or binary W

connections) to obtain “eigenvector maps”, expressing spa-

tial relationships among populations at different spatial

scales. There are several versions of this approach (see

Griffith and Peres-Neto, 2006; Bini et al., 2009; Landeiro

and Magnusson 2011; Diniz-Filho et al., 2009, 2012c).

These methods are now collectively called Spatial Eigen-

function Analyses (SEA) and have been extensively used in

ecology, and recently also gained attention from landscape

geneticists (i.e., Manel et al., 2010; Manel and Holdereg-

ger, 2013).

The idea of SEA is to extract eigenvectors from geo-

graphic distances and connectivity matrices, and these

eigenvectors tend to map the spatial structure among popu-

lations at different spatial scales. When allele frequencies

or PCoA axes are regressed against these eigenvectors,

some of them will tend to describe the spatial patterns in ge-

netic variation. This can be done for single alleles, but here

we modeled simultaneously the five axes from the PCoA of

FST matrix using an RDA, following a multidimensional

approach. One of the main difficulties with this approach is

to decide which spatial eigenvectors shall be used in the

analyses, and several criteria can be applied. Here we fol-

lowed Blanchet et al. (2008) and used a forward approach

to select spatial eigenvectors. When the five axes derived

from PCoA matrix were regressed against the three se-

lected eigenvectors (1, 3 and 5), the RDA R2 was equal to

0.362, slightly higher than the one obtained by mTSA (be-

cause it was able to capture more complex spatial structures

in genetic data beyond the overall linear trend).

Thus, the Mantel test, mTSA and SEA all showed sig-

nificant correlations between G and D. The magnitude of

spatial pattern for E and R modeled by these different ap-

proaches was also similar (see Table 2). However, an inter-

esting application of the ordination approach based on

RDA is to evaluate partial relationships, providing thus an

alternative to partial Mantel tests (which is important, by

considering all discussions on the validity of the partial

Mantel test already pointed out). Thus, a PCoA was used to

map distances of matrix E and retaining the two axes ac-

cording to the broken-stick criterion. The RDA also re-

vealed a significant relationship between G and E (with an

R2 = 0.215; p < 0.01). By using the partial RDA it is possi-

ble to test if the genetic and environmental matrices are ac-

tually correlated after the spatial structure of both matrices

is taken into account. When defining space by geographical

coordinates, in the mTSA approach, the partial R2 between

G and E was equal to 0.199 (p < 0.01), thus correlation be-

tween genetic and environment remained even when spatial

structure (i.e., the linear trend) was taken into account.

However, using SEA, the R2 between G and E (controlling

for spatial interdependence) decreased to 0.083, which was

not statistically significant (p = 0.23). Thus, when geo-

graphic space is modeled in a more appropriate way, the re-

sult from ordination was similar to that obtained by the

Mantel test, which is also consistent with the fact that neu-

tral markers, such as microsatellites, are not expected to be

correlated with climatic or environmental variation.

Thus, results from RDA were similar to those pro-

vided by Mantel tests, both when comparing two matrices

and when testing partial relationships (Table 2). Notice,

however, that the relationship between G and E is higher

for RDA than for the Mantel test (and this relationship actu-

ally disappears when D is taken into account). Of course,

this particular example does not solve the controversies on

partial Mantel tests, and other studies, using simulations,

have been performed to better establish the statistical per-

formance of these (and other) techniques. These studies

concluded that, although SEA and RDA approaches may

have more accurate type I and II errors, under certain condi-

tions they can behave as badly as Mantel tests. Moreover,

SEA has a more difficult component, which is the selection

of eigenvectors (both in response and explanatory, in our

case) to be used in the analyses. A Mantel test is simpler

and can be interpreted more directly, and thus may be still

valid in many cases. We believe that our empirical results

reinforce that when patterns are strong and clear, tech-

niques tend to give comparable results. In all cases, results

of partial analyses should be interpreted with caution and,

more likely, using the different alternatives to search for a

robust and consistent outcome.

Concluding Remarks

Despite recent discussions and criticisms, we believe

that the Mantel test can be a powerful approach to analyze
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Table 2 - Summary of Mantel and partial Mantel tests applied to “Baru”

populations, comparing effects of geographic distance (D), environmental

variables (E) and natural remnants (R) into genetic divergence (G) esti-

mated by pairwise FST. Results include Mantel’s correlation r (and r2, for

facility of comparison with RDA results). Also provided are the R2 of Re-

dundancy Analysis (RDA), incorporating geographic space by spatial

eigenfunction analysis (SEA) and linear multivariate trend surface

(mTSA).

Comparison Mantel RDA

r r2 R2 (SEA) R2 (mTSA)

GD 0.499** 0.249 0.360** 0.250**

ED 0.838** 0.702 0.607** 0.913**

RD 0.075ns 0.005 0.337** 0.349**

GE|D -0.248ns 0.061 0.083ns 0.199**

GR|D -0.223ns 0.049 0.018ns 0.034ns

**: p < 0.01; ns: non-significant at 5%.



multivariate data, mainly if the ecological or evolutionary

hypotheses are better (or only) expressed as pairwise dis-

tances or similarities, as pointed out by Legendre and Fortin

(2010). Even though, an important guideline is to always

check the assumptions of linearity and homoscedasticity in

the relationships between genetic divergence and other ma-

trices (i.e., geographic distances), because such violations

are actually expected under theoretical models, such as

IBD. If these violations occur, a global Mantel test may be a

biased description of the amount of spatial variation in the

data. Mantel correlograms may be useful to overcome these

problems and, at the same time, may provide a more accu-

rate and visually appealing description of the spatial pat-

terns in the data. Partial Mantel tests can still be applied, but

using a more conservative critical level for defining their

significance and, if possible, coupled with ordination and

spatial eigenfunction analyses.

Finally, because of the ongoing discussions, it is im-

portant that researchers are aware of other possibilities for

analyzing data, such as performed here. Although our em-

pirical example with genetic variation in the “Baru” tree

does not allow a deep evaluation of the statistical perfor-

mance of these techniques and comparison with simula-

tion-based studies, it reveals that, as is common in empiri-

cal applications, results usually converge. Thus, all these

different approaches gave similar estimates of the magni-

tude of spatial variation in genetic variation in the “Baru”

tree in the Cerrado biome, when compared with Mantel

test. More importantly, the results are expected based on

previous knowledge of the ecological and evolutionary

processes underlying such variation.
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