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Abstract

Different types of water bodies, including lakes, streams, and coastal marine waters, are often susceptible to fecal
contamination from a range of point and nonpoint sources, and have been evaluated using fecal indicator microor-
ganisms. The most commonly used fecal indicator is Escherichia coli, but traditional cultivation methods do not allow
discrimination of the source of pollution. The use of triplex PCR offers an approach that is fast and inexpensive, and
here enabled the identification of phylogroups. The phylogenetic distribution of E. coli subgroups isolated from water
samples revealed higher frequencies of subgroups A, and B2, in rivers impacted by human pollution sources, while
subgroups D, and D, were associated with pristine sites, and subgroup B1 with domesticated animal sources, sug-
gesting their use as a first screening for pollution source identification. A simple classification is also proposed based
on phylogenetic subgroup distribution using the w-clique metric, enabling differentiation of polluted and unpolluted

sites.

Keywords: E. coli, phylogenetic groups, pollution sources, interaction networks, social network analysis.

Received: February 26, 2014; Accepted: June 27, 2014.

Introduction

The microbiological quality of water is usually evalu-
ated by means of fecal indicator microorganisms, and Esch-
erichia coli has often been used because it is a normal
inhabitant of the intestinal tracts of most warm-blooded an-
imals. However, the traditional methods used hitherto have
not allowed differentiation among host sources. Reliable
and accurate source identification methods are extremely
important for the control of fecal contamination from rele-
vant animal origins, to protect recreational water users from
waterborne pathogens, and to preserve the integrity of drin-
king water supplies (Roslev and Bukh, 2011; USEPA,
2005).
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Clermont et al. (2000) developed a method for the as-
signment of E. coli isolates to four major phylogenetic
groups: A, B1, D, and B2. Because of its simplicity and ra-
pidity, it has been widely used for purposes including eco-
logical niche differentiation, propensity to cause diseases,
and fecal source tracking (Johnson et al., 2004; Esco-
bar-Paramo et al., 2004; Orsi et al., 2007,2008; Walk et al.,
2007; Gordon et al., 2008; Carlos et al., 2010; Ratajczak et
al., 2010; Figueira et al., 2011). The technique is based on
triplex PCR and uses a combination of three loci (chuA,
yjaA, and TspE4.C2). In order to improve the discri-
minative power of analyses when several isolates per sam-
ple were considered, Escobar-Paramo et al. (2006) pro-
posed the use of all the combinations of genetic markers,
resulting in the definition of seven subgroups (Ao, Aj, B1,
B2,, B23, Dy, and D).
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Algorithms, metrics, and computational resources for
analyzing interaction networks can be used as important
tools to systematically measure interdependencies among
molecular markers and water bodies. The conceptual foun-
dations of these tools are the same as in Social Network
Analysis (SNA), which provides algorithms and metrics to
characterize the network structure and to identify cohesive
subgroups.

The aim of this work was to develop a classification
of E. coli strains isolated from water bodies, based on
phylogenetic subgroups, and to try to associate it with the
pollution sources by means of the w-cligue metric.

Materials and Methods

Sample collection

Water samples from twelve rivers and reservoirs with
different pollution levels in the State of Sdo Paulo (Figure 1
and Table 1) were collected in sterilized bottles according
to Standard Methods (APHA, 2010). The sampling loca-
tions belonged to the surface water monitoring network es-
tablished by CETESB (the Sao Paulo State environmental
agency), whose Surface Water Monitoring (SWM) pro-
gram includes physical, chemical, and biological analysis
of water in the twenty-two Watershed Management Units
(WMU) located in the State of Sdo Paulo, Brazil. Two indi-
ces are currently used for the evaluation of domestic efflu-
ent dilution and the trophic state of the water bodies. The
water quality index (WQI) is derived from a combined set
of variables including pH, dissolved oxygen, biological ox-
ygen demand, E. coli, water temperature, total nitrogen, to-
tal phosphorus, total suspended matter, and turbidity. The
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trophic state index (TSI), on the other hand, is based on the
concentrations of chlorophyll and phosphorus. The WQI
values range from 0 to 100, with five intervals to indicate
the water quality: 0-19 (very bad); 20-36 (bad); 37-51 (ac-
ceptable); 52-79 (good); and 80-100 (very good). The TSI
ranges from <47 to > 67, with five intervals indicating the
condition of the environment: < 47 (ultraoligotrophic);
48-52 (oligotrophic); 53-59 (mesotrophic); 60-63 (eutro-
phic); and > 67 (hypereutrophic). The SWM program has
been operated by CETESB since 1974, and all the measure-
ments since that time have been recorded. Point pollution
sources are recorded in the Sdo Paulo State Point Source
Pollution Inventory. Furthermore, events that could influ-
ence the analysis (such as animals at the sampling site, or il-
legal sewage discharges) are reported in the sample
collection form and then recorded in the water-monitoring
database. The present study used all the historical data in
order to identify the main pollution source at each site. The
samples were collected bimonthly between July 2009 and
April 2010 (CETESB, 2010, 2011).

Isolation of strains

Samples were analyzed using the membrane filter
technique according to U.S. Environmental Protection
Agency Method 1603 (USEPA, 2002). Briefly, 0.01-
100 mL volumes of water were filtered onto a 0.45 um
membrane and incubation was performed using modified
mTEC agar (at 35 + 0.5 °C for 2 h and at 44.5 £ 0.2 °C for
22-24 h). Approximately ten typical colonies (red to ma-
genta in color) from each sample (12 sites and five collec-
tions) were streaked onto Endo agar LES (Difco), incu-
bated for 24 h at 35 °C, and tested for citrate utilization,
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Figure 1 - Locations of sampling sites in the WMU (grey areas).
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lactose fermentation, oxidase, L-lysine decarboxylase, mo-
tility, glucose and sucrose fermentation, tryptophan dea-
mination, indole production, urea hydrolysis, and sulfide
production. A typical E. coli profile was re-isolated on nu-
trient agar, incubated for 24 h at 35 °C, and kept at -70 °C in
tryptic soy broth (Difco) with 10% (v/v) glycerol prior to
further analysis (ATCC, 2010).

Phylogenetic grouping

Genomic DNA from the strains was isolated with the
Wizard Genomic DNA Purification Kit (Promega), used
according to the manufacturer’s instructions, and the
phylogenetic grouping of E. coli strains was determined as
previously described by Clermont et al. (2000). The strains
were assigned to the seven phylogenetic subgroups accord-
ing to the combination of PCR products of the genes chuA,
yjaA, and DNA fragment TspE4.C2, as follows: A (-/-/-);
Ay (-/+/-); B1 (-/-/+); B2, (+/+/-); B23 (+/+/+); Dy (+/-/-);
and D, (+/-/+) (Escobar-Paramo et al., 2006).

Statistical analysis

A chi-square test was used to determine whether dif-
ferences in the distributions of phylogenetic subgroups
among rivers and reservoirs were significant. Correlation
analysis was performed using the Mantel test, by compar-
ing two dissimilarity matrices, calculated with the vegdist
function (with Bray-Curtis index as parameter). These
analyses were performed using the community ecology
package Vegan for R (Oksanen, 2011). The similarity ma-
trices were then prepared as a complement to the dissimi-
larity matrices (1-vegdist (matrix, “Bray”)). Phylogenetic
subgroups were clustered by their similarity matrices using
the UPGMA (unweighted pair group method with arithme-
tic mean) algorithm, and a dendrogram was constructed us-
ing the DendroUPGMA computational tool (Garcia-Vallve
etal., 1999).

Social Network Analysis metric

The SNA metric w-cligue has been used to identify
cohesive subgroups (clusters) in network structures (Arau-
jo et al., 2008). A clique is composed of a set of three or
more vertices totally connected to each other (Nooy et al.,
2005). The w-clique considers vertex groups in which all
the vertices are connected to each other by “strong” interac-
tions (the weights of which are higher than the average net-
work weight).

Data analysis

The data used in the present study were obtained from
a bipartite microbiological interaction database, composed
of a weighted matrix (isolates abundance), in which the
rows corresponded to water bodies and the columns corre-
sponded to phylogroups (Table 1). In order to identify co-
hesive subgroups in a weighted interaction network we
used the program “Dietal” which is based on the complex
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network theory (Aratjo et al., 2008). In this analysis, the
data type used was integers, Monte Carlo bootstrapping
employed 1000 replications, the diet proportion calculation
used numerical sums, and the weight factor was five. A bi-
nary matrix (0/1) was obtained in which cells containing
the number one represented interactions whose weights
were higher than the average network weight (w-cligues).
The Pajek program was used to transform the net-
work from arcs to edges (Batagelj and Mrvar, 1998). The
matrix was submitted to the Ucinet program for identifying
w-cliques. Two output files were generated, one showing
the cliques found (identification of the individual member-
ships) and the other with the cluster diagram (dendrogram)
(Everett and Borgatti, 1998; Borgatti ef al., 2002).

Results

A total of 543 strains were isolated from twelve rivers
and reservoirs (Figure 1 and Table 1), and were classified
according to the phylogenetic subgroups. By selecting 10
colonies from 12 sites in five sampling events we would ex-
pect 600 isolated strains. However, for some sites and sam-
pling events, it was not possible to obtain 10 strains because
either 10 typical colonies were not grown or 10 typical
strains were not obtained in the confirmatory tests.

The observed distribution of the phylogenetic sub-
groups among rivers (Figure 2) was significantly different
from the expected frequencies (x2 = 217.22, df = 66,
p <0.005). The majority of environmental strains belonged
to subgroup A, even though river and reservoir sites had
different sources of pollution.

Only seven strains isolated from different sites
(TIET2050, TIET3120, TGDE0900, JAMI02100,
PTEI02900, and BILL2801) presented a chuA-, yjaA+,
TspE4.C2+ profile (data not shown), and in accordance
with Rodrigues-Siek et al. (2005) were assigned as group
B1. The lower frequency observed here indicates a rare oc-
currence of this profile, as was also observed by Higgins et
al. (2007), who found it in only one out of 68 strains iso-
lated from surface water samples. Gordon et al. (2008)
characterized 662 E. coli strains, including those from dif-
ferent hosts and environmental strains and did not observe
any strain matching this profile.

Although most human strains belong to group A, Orsi
et al. (2007) and Carlos et al. (2010) suggested the use of
group B2 as an indicator of human pollution sources, due to
its recurrence in this host. In agreement with these results,
the present data also revealed a high prevalence of this
group for the sites strongly impacted by human sources
(BILL2801, BILL2251, GUAR0502, and GUAR0601).

Ten years ago, group A was the most frequent in the
Billings and Guarapiranga Reservoirs, followed by groups
B1, D, and B2 (Orsi et al., 2007). The present results also
showed a predominance of group A, but a decrease of Bl
and a significant increase of the frequency of group B2.
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Figure 2 - Distribution of E. coli phylogenetic subgroups in rivers and reservoirs. The circle size is proportional to phylogenetic subgroup frequency.

This group seemed to be associated with human pollution
sources, which have increased in recent years. In the last
decade, the populations living in the areas surrounding the
dams of the Billings and Guarapiranga Reservoirs have in-
creased by 24% and 30%, respectively. Part of this popula-
tion has no access to either sewage collection or wastewater
treatment, which could explain the observations. Further-
more, at these sites the WQI has changed from good to bad
in the last ten years.

The sites where domesticated animal pollution
sources were expected did not present similar phylogroup
distribution patterns. TIET3120 and TGDE0900 were lo-
cated downstream of cities that discharge untreated waste-
water, as a result of which the phylogroups distribution was
analogous to the sites with human pollution sources. Mean-
while, AGUA2800 and JAMI2100 were located in areas
with agricultural activities and the seasonal presence of cat-
tle, and the most frequent subgroups were Ay and B1, as ob-
served by others (Higgins ef al., 2007; Ishii et al., 2007;
Carlos et al., 2010).

Two of the pristine sites (IPIR0018 and PBAL0014)
showed a high frequency of group D, as also observed by
Higgins et al. (2007) for an unpolluted site, suggesting an
association with wildlife. Surprisingly, the other sites in
more natural areas (TIET2050 and PTEI2900) showed
higher frequencies of groups A and B2, similar to the hu-
man source sites. Sites [IPIR0018 and PBAL0014 were lo-
cated inside an environmental protection area (from source
to mouth) and were truly pristine, while sites TIET2050 and
PTEI2900 might have received some input from anthro-
pogenic sources, despite the good water quality indices ob-

tained for these sites during the study period (Table 1)
(CETESB, 2010, 2011). As these sites were not located in-
side protected areas, they could have been affected by
nonpoint pollution sources, or even illegal discharges.

The most abundant subgroup, A, was not used for
classification of the water samples, as a high frequency of
incorrect assignments was observed for strains that failed to
yield any PCR product in a previous study (Gordon et al.,
2008). Higher frequencies of the subgroups A and B2; evi-
denced human contamination, while B1 reflected domesti-
cated animal contamination, and D; and D, were character-
istic of pristine environments.

The Mantel test for correlation between the quality in-
dices, WQI and TSI, showed only a weak correlation
(r=0.36, p=0.014), while the phylogenetic subgroup dis-
tribution showed no correlation with the WQI and TSI indi-
ces (r=0.2537, p = 0.074). This observation indicates that
both indices may have missed important information for
pollution evaluation. Since the phylogenetic subgroup dis-
tribution seemed to be a suitable tool for identification of
sources of pollution, it could be adopted for pollution clas-
sification of water bodies.

In an attempt to cluster the rivers according to the
source and degree of pollution, the data were evaluated us-
ing correspondence analysis; however, a spread distribu-
tion was observed (data not shown). A matrix of similarity
among the isolates was calculated and clustered by
UPGMA, and showed two groups (Figure 3). The first clus-
ter contained two pristine sites (IPIR0018 and PBAL0014)
and one animal site (AGUA2800), which was unexpected
since these sites did not share similar characteristics. This
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Figure 3 - Dendrogram obtained by the UPGMA cluster analysis method.

was also observed in the second group, where sites with dif-
ferent degrees and sources of pollution were clustered, sug-
gesting that this tool was not appropriate for this biological
enquiry.

The influence of geographical location appeared to be
an important factor in the distribution of phylogenetic sub-
groups. The w-cligue metric clustered the water bodies in
two groups (Figure 4). The first group contained the water
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bodies belonging to the Sdo Paulo Metropolitan Area, and
the other clustered those located far from the metropolitan
region. The geographical location reflected the degree of
pollution, since for many years the Sdo Paulo Metropolitan
Area has suffered from air and water pollution. Interest-
ingly, at the sites where nonpoint animal pollution sources
were expected (TGDE0900, JAMI2100, and AGUA2800),
no specific distribution was observed, suggesting that ani-
mal sources were of lesser importance. Similar cluster re-
sults were observed when the strains belonging to subgroup
Ay were removed (data not shown).

Discussion

The distribution of the phylogenetic subgroups in en-
vironmental samples has shown dissimilar patterns. For in-
stance, group B1 was the most common (over 70%) for
beaches in California and for environmental waters sur-
rounding sewage treatment plants in Australia (Hamilton ez
al.,2010; Anastasi et al., 2012). Previous studies of surface
waters (lakes and rivers) found that half of the isolates be-
longed to phylogroup B1, suggesting that this was the most
frequent group in environmental media (Power et al., 2005;
Hamelin ef al., 2007; Walk et al., 2007). Importantly, the
structure of an E. coli population in water can be influenced
by other factors, such as the hydrological conditions in the
watershed and the geographical location (Ratajczak et al.,
2010; Tenallion et al., 2010). Some studies reported that
subgroup A, was more environmentally adapted (Higgins
etal.,2007; Walk et al., 2009; Figueira et al., 2011), while
B2, was the least common subgroup found in rivers and

1.000

0.267 0.089

Figure 4 - Dendrogram obtained using the w-clique metric, showing water body clusters.
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reservoirs (Figueira ef al., 2011), in line with the results ob-
tained here.

The two water quality indices, WQI and TSI, were
unable to reveal the occurrence of contamination, suggest-
ing that other tools should also be used for pollution evalua-
tion. On the other hand, phylogenetic subgroups could be
used as a first screening for pollution source identification
(subgroups A; and B2; for human contamination, B1 for
domesticated animal contamination, and D, and D, for pris-
tine environments).

A new phylotyping method was recently proposed by
Clermont et al. (2013). The most important improvement
of the new quadruplex PCR-based method is the ability to
detect E. coli strains belonging to phylogroups C, E, F, and
clade I. This could have improved the discrimination power
of the present analysis. However, the use of network met-
rics showed that the origin of the samples could be as-
signed, even without the information for phylogroups C, E,
F, and clade 1. W-clique subclusters might be obtained by
including rare phylogroups.

Gordon et al. (2008) demonstrated that 15-20% of
Australian E. coli isolates typed as Ay, Dy, or D, using the
triplex PCR method were incorrectly assigned. They
showed that most of the incorrect assignments were ob-
served for strains that failed to yield any PCR products us-
ing the triplex method (Clermont et al., 2000). To
circumvent this problem, in the present work the isolates
classified as Ay were excluded from the downstream analy-
sis. In the case of the D phylogroups, it is possible that there
was a pool of rare strains. However, this would not invali-
date the results. As argued by Gordon e? al. (2008), the tri-
plex method (Clermont et al., 2000) is still an excellent and
cost-effective method for assigning strains of E. coli to
phylogroups, because the fraction of strains that cannot be
assigned to a phylogroup and are incorrectly assigned is
very low.

Using clique identification, it was therefore possible
to discover new patterns in a simple interaction database,
such as clustering of water bodies (in unpolluted and pol-
luted environments) based on phylogroup abundance. This
clustering was not revealed using traditional methods, illus-
trating the innovative contribution of the proposed ap-
proach.

The results demonstrated that the commonly used wa-
ter quality indices could not address all aspects of the evalu-
ation of domestic effluent dilution and the trophic state of
the water bodies, since the TIET2050 and TGDE00900
samples presented good average scores (Table 1), but had
phylogenetic group distributions that were more related to
polluted sites, according to the w-clique classification.
These findings suggest that the w-clique metric could be
used as a complementary tool in pollution classification
and evaluation of the degree of contamination of inland wa-
ters.

Phylogroups w-clique water clusters
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