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Abstract

Eigenfunction analyses have been widely used to model patterns of autocorrelation in time, space and phylogeny. In
a phylogenetic context, Diniz-Filho et al. (1998) proposed what they called Phylogenetic Eigenvector Regression
(PVR), in which pairwise phylogenetic distances among species are submitted to a Principal Coordinate Analysis,
and eigenvectors are then used as explanatory variables in regression, correlation or ANOVAs. More recently, a new
approach called Phylogenetic Eigenvector Mapping (PEM) was proposed, with the main advantage of explicitly in-
corporating a model-based warping in phylogenetic distance in which an Ornstein-Uhlenbeck (O-U) process is fitted
to data before eigenvector extraction. Here we compared PVR and PEM in respect to estimated phylogenetic signal,
correlated evolution under alternative evolutionary models and phylogenetic imputation, using simulated data. De-
spite similarity between the two approaches, PEM has a slightly higher prediction ability and is more general than the
original PVR. Even so, in a conceptual sense, PEM may provide a technique in the best of both worlds, combining the
flexibility of data-driven and empirical eigenfunction analyses and the sounding insights provided by evolutionary
models well known in comparative analyses.
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Eigenfunction analyses have been widely used to

model patterns of autocorrelation in time, space and phy-

logeny (Peres-Neto, 2006; Dray et al., 2006; Kuhn et al.,

2009; Safi and Pettorelli, 2010; Peres-Neto and Legendre,

2010; Peres-Neto et al., 2012). In general, these analyses

start with a Principal Coordinate Analysis (PCoA; see

Legendre and Legendre, 2012) of pairwise distance or con-

nectivity matrices between observations (e.g., species in

the case of phylogenetic analysis). After, selected eigen-

vectors from PCoA are used to detect the magnitude of

(temporal, spatial or phylogenetic) patterns in data, both in

univariate and multivariate domains. In a phylogenetic con-

text, Diniz-Filho et al. (1998) proposed what they called

Phylogenetic Eigenvector Regression (PVR), in which

eigenvectors are used as explanatory variables in a multiple

regression to model trait evolution. The coefficient of de-

termination (R2) of PVR was interpreted as the amount of

phylogenetic signal (see Diniz-Filho et al., 2012a,b,c;

Münkemüller et al., 2012). The method was later expanded

to estimate a phylogenetically corrected correlation and

variance partitioning modeling (Martins et al., 2002; Des-

devises et al., 2003).

However, PVR was criticized by Rohlf (2001), who

showed that if not all phylogenetic eigenvectors are used to

model the trait, then there would be a missing part of the

phylogeny in the model and, as a consequence, the esti-

mated phylogenetic signal for a trait evolving under

Brownian motion would be underestimated. Also, correla-

tion between traits, after accounting for phylogenetic rela-

tionships given by the eigenvectors, would be biased and

possess and inflated Type I error rates (as shown by Martins

et al., 2002). More recently, Freckleton et al. (2011; see

also Martins et al., 2002; Laurin, 2010) also criticized the

statistical performance of PVR and favored the Phylogen-

etic Generalized Least-Squares (PGLS) because this last

one is formally based on evolutionary models (e.g.

Brownian motion, Ornstein-Uhlenbeck (O-U)), whereas

PVR is a purely statistical, data-driven approach.

Diniz-Filho et al. (2012a) recently expanded the PVR

method by relating the coefficients of determination (R2) of

successive PVR models (i.e., with the consecutive addition

of phylogenetic eigenvectors as explanatory variables of a

trait) to the cumulative eigenvalues of the eigenvectors

used in the models. This approach to explore phylogeneti-

cally structured patterns of trait variation was called Phylo-

genetic Signal-Representation (PSR) curve. They showed

that different models of trait evolution generate different

patterns of relationship between the coefficients of determi-

nation (R2) and the cumulative eigenvalues (i.e., different

PSR curves). For instance, under a Brownian motion model

of trait evolution, the PSR curve is linear, so the R2 esti-

mated will depend on which eigenvectors are used [sup-

porting Rohlf’s issue (Rohlf, (2001) that missing even a
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few eigenvectors with very small eigenvalues will cause an

inflation in Type I error]. However, if evolution is not

Brownian and the PSR is not linear, some of the eigen-

vectors can describe trait evolution and will be useful for

modeling purposes.

Guénard et al. (2013) recently proposed a new phylo-

genetic eigenfunction analysis called Phylogenetic

Eigenvector Mapping (PEM, akin to Moran’s Eigenvector

Mapping – MEM – proposed for spatial analyses – see Dray

et al., 2006; Griffith and Peres-Neto, 2006; Peres-Neto and

Legendre, 2010). They proposed PEM particularly to

model and predict species traits from phylogenetic related-

ness, recently called “phylogenetic imputation” (see also

Penone et al., 2014; Swenson, 2014). The main advance of

PEM in respect to the original PVR is the explicit incorpo-

ration of a model-based approach in which an O-U process

is fitted to data and used to warp the edge lengths of the

phylogeny accordingly, before extracting eigenvectors us-

ing a PCoA. Our purpose here is to empirically compare the

original PVR and the new PEM approach in respect to esti-

mated phylogenetic signal and correlated evolution under

alternative evolutionary models.

We generated random phylogenies as coalescent

(ultrametric) trees with the same numbers of tips (species)

as those in Guénard et al. (2013): ranging from 50 to 400

(50, 100, 200, and 400). Subsequently, we simulated the

evolution of two independent traits (Y1 and Y2) on these

trees according to an O-U processes with four restraining

forces: � = 0 (pure diffusion or Brownian Motion), � = 0.5

(weak selection), � = 1 (medium selection), and � = 10

(strong selection), creating more complex curvilinear evo-

lutionary models (see Diniz-Filho et al., 2012c), and analo-

gous to the simulations performed in Guénard et al. (2013).

We used 100 simulations of each combination of number of

species and � values. The phylogenies generated in the first

step of our analyses were back transformed to distance ma-

trices, which in turn were used to calculate the phylogenetic

eigenvectors using either PVR (as revised by Diniz-Filho et

al., 2012a) or PEM (as proposed by Guénard et al., 2013).

We compared PVR and PEM for different sample

sizes and O-U models based on four criteria: similarity of

eigenvectors (estimated by Procrustes analysis), estimates

of phylogenetic signal (R2 of models), correlation between

model residuals (used to estimate correlated evolution), and

phylogenetic imputation ability.

Our first comparison between PVR and PEM con-

sisted in evaluating the similarity between the eigenvectors

(containing the scores of the n tips) generated by these

methods. Thus, for each simulation, we used a Procrustes

analysis (Legendre and Legendre, 2012) to measure the

match between the configurations (“species ordinations”

along the phylogenetic axes) generated by PVR and PEM

considering increasingly number of eigenvectors. The m2

values (the badness-of-fit statistic that measures the level of

congruence between two ordination configurations) were

transformed to Procrustes correlation (r) by calculating the

square root of their complements (Oksanen et al., 2013). A

high value of r, say � 0.75, would indicate that the configu-

rations generated by PVR and PEM, for a given eigenvector

dimensionality, are strongly concordant.

Second, we modeled traits Y1 and Y2, separately, as a

function of the eigenvectors generated by PVR and PEM.

For each method and before modeling, eigenvector selec-

tion was done with a forward stepwise procedure (Blanchet

et al., 2008). This step is necessary to circumvent the prob-

lem of a perfect fit when all eigenvectors are used (see

Rohlf, 2001). The coefficients of determination of the re-

gression of a trait (Y1 or Y2) on the selected eigenvectors,

derived from PVR and PEM, were interpreted as the

amounts of phylogenetic signal given by each method. We

then compared these amounts (R2
PVR and R2

PEM) across the

100 simulations obtained under the different evolutionary

models (i.e., O-U with different restraining forces).

Third, we used the residuals derived from the PVR

models or from the PEM models (see above) to estimate the

partial correlation between the two traits after accounting

for phylogenetic relatedness among species (see Martins et

al., 2002). A partial correlation estimated by each of these

methods should then give the input correlation between the

traits, defined as “the correlation of the bivariate normal

distribution from which the evolutionary changes in the

two traits were drawn” or a “measure of the nonhistorical

correlation between the two characters, corrected for phy-

logenetic interdependences” (Martins, 1996). For each

method, the correlation between the phylogenetically cor-

rected traits or specific components (i.e., residuals) should

not be significantly different from zero. Thus, type I error

rates of correlation coefficients were estimated by the ratio

between the number of coefficients that differed signifi-

cantly from zero and the number of simulations (Martins,

1996; Martins et al., 2002).

Our last comparison between PVR and PEM was

based on phylogenetic modeling and the prediction of un-

known trait values for species, as proposed in Guénard et

al. (2013). That is, we compared the ability of eigenvectors

derived from PVR and PEM to predict unknown trait val-

ues for one or several species (‘target species’), based on

their relative phylogenetic positions, in phylogenies for

which trait values were already estimated for a reduced set

of species (‘model species’) (Guénard et al., 2013). Simply

put, such prediction is based on a regression model built us-

ing the loadings of the ‘model species’ from the selected

eigenvectors derived from PVR or PEM to estimate the trait

values of the ‘target species’. We followed this procedure

to predict trait values for each species at a time as if it were

missing from the original set of species (for each combina-

tion of species numbers and restraining forces in our simu-

lations). We removed one species (‘target species’) at a

time from the original set of species and then calculated the

scores of the remaining species (‘model species’) to use
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them in the regression model to estimate the trait value of

the missing species. We then evaluated the predictive

power of PVR and PEM and calculated the prediction coef-

ficient proposed by Guénard et al. (2013), which can attain

values of 1 when all predictions perfectly match the obser-

vations, or below 1 indicating imperfect predictions, and

values close to 0 (positive or negative) when predictions are

no better than expected by chance (see also Penone et al.,

2014 for a recent discussion on “imputation” methods).

Phylogenies and simulations of trait evolution were,

respectively, done using the functions rcoal and rTraitCont

from the ape package (Analyses of Phylogenetics and Evo-

lution; see Paradis, 2012). Eigenvectors from PVR and

PEM were respectively extracted using the packages PVR

(Santos et al., 2013) and MPSEM (Modelling Phylogenetic

Signals using Eigenvector Maps; Guénard and Legendre,

2013), available in the R environment for statistical com-

puting (R Development Core Team, 2012).

Our results show that, in general, PVR and PEM are

very similar according to the four criteria we devised for

comparison. The Procrustes correlations between the two

sets of eigenvectors tend to decrease when more eigen-

vectors (i.e., with smallest eigenvalues) are used in the

comparison, even under a Brownian motion model, where

the parameter a of PEM (analogous to �) is set to zero (sto-

chastic fluctuations revealing that PEM probably cause the

deviations in the last eigenvectors) (Figure 1). Correlations

between the first two eigenvectors derived from PVR and

PEM are as high as 0.95, and decrease to no less than 0.5

when all eigenvectors are used in the Procrustes analysis.
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Figure 1 - Procrustes correlation between eigenvectors from PEM and PVR, for a successive set of eigenvectors extracted from phylogenies of (A) 50

species, (B) 100 species, (C) 200 species, and (D) 400 species and traits evolving under alternative O-U models (open circles: � = 0; open squares: � = 0.5;

open triangle point-up: � = 1; open triangle point-down: � = 10).



This is expected as PEM warps the edge lengths to take into

account patterns of evolutionary deviations (even slightly)

from Brownian motion. Thus, it will tend to give more

weight to edges close to the tips, producing the differences

between the eigenvectors of PVR and PEM with the small-

est eigenvalues (see Diniz-Filho and Nabout, 2009; Diniz-

Filho et al., 2012c). There is a small, albeit consistent, ten-

dency that when PEM is fitting traits evolving under O-U

processes with higher restraining forces, the correlation be-

tween the two sets of eigenvectors is slightly lower (Figu-

re 1).

The average amounts of phylogenetic signal and

Type I errors estimated by PVR (R2
PVR) and PEM (R2

PEM)

were highly similar, independently of the sample size and

evolutionary models (Table 1). Nevertheless, both methods

were unable to provide a consistent type I error of 5% (aver-

age for PVR and PEM was around 9%, respectively, see

Table 1) (see Rohlf, 2001; Martins et al., 2002; Freckleton

et al., 2011), and these increase with sample sizes. On the

other hand, the correlation across tips between the specific

components of the simulated traits (residuals from PVR

and PEM or the expected values of the traits that are inde-

pendent of phylogenetic structure) was also high, but

mainly when the restraining forces were low or equal to

zero.

Prediction coefficients were also highly congruent

between PVR and PEM, with both coefficients having val-

ues of less than 1 in all cases and varying in the same man-

ner with the different number of species (sample size) and

restraining forces (evolutionary models) used in our simu-

lations (Table 1). PEM values are slightly larger than those

from PVR, and prediction coefficients from both PVR and

PEM tend to increase with sample size within a single re-

straining force, and to decrease altogether with higher re-

straining forces. At low or no restraining forces (� = 0,

� = 0.5), prediction coefficients of both methods were simi-

larly high, indicating the higher phylogenetic signal pro-

duced by those evolutionary models.

We understand that, despite similarity between the

two approaches, PEM has a slightly higher prediction abil-

ity, especially when there is strong phylogenetic signal

(low � values - see Table 1). Also, it is more general than

the original PVR because it allows incorporating explicit

evolutionary models. Thus, it may solve, perhaps with fur-

ther improvements in the process of eigenvector selection,

some of the problems raised by Freckleton et al. (2011) in

respect to poorer (in comparison with PGLS) statistical per-

formance of PVR. Our results show that PEM, however,

does not provide entirely accurate Type I errors under

Brownian motion and so does not perform better than

PGLS (according to the previous analyses from the litera-

ture; e.g., Freckelton et al. [2011]). This also reinforce the

issues on phylogenetic eigenvectors theoretically pointed

out by Rohlf (2001; see also Diniz-Filho et al., 2012a,b,c

for the same argument in the context of PSR curve). How-

ever, notice that recent papers still support the use of phylo-

genetic eigenvector methods, such as PEM or PVR, in the
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Table 1 - Comparison of PEM and PVR for phylogenies with different sample sizes (n), simulating trait evolution with distinct restraining forces of an

O-U process (�, in which � = 0 indicates Brownian motion). The comparison includes the phylogenetic signal estimated by the two methods (R2), the cor-

relation between model residuals (r), the prediction coefficient used in phylogenetic imputation and the Type I errors of correlated evolution.

n � R2
PVR R2

PEM r Prediction coefficient Type I error

PVR PEM PVR PEM

50 0 0.982 0.982 0.87 0.516 0.525 0.06 0.07

0.5 0.977 0.976 0.759 0.475 0.481 0.11 0.07

1 0.969 0.969 0.86 0.177 0.295 0.04 0.1

10 0.889 0.889 0.53 0.116 0.196 0.09 0.08

100 0 0.983 0.983 0.933 0.591 0.586 0.07 0.09

0.5 0.981 0.98 0.908 0.293 0.39 0.03 0.05

1 0.979 0.979 0.894 0.29 0.436 0.08 0.11

10 0.955 0.942 0.54 0.029 -0.103 0.04 0.06

200 0 0.977 0.977 0.954 0.83 0.853 0.06 0.07

0.5 0.974 0.974 0.942 0.753 0.67 0.11 0.09

1 0.972 0.972 0.896 0.681 0.77 0.1 0.1

10 0.955 0.954 0.853 -0.057 -0.023 0.08 0.08

400 0 0.975 0.975 0.948 0.927 0.907 0.19 0.19

0.5 0.971 0.971 0.936 0.926 0.933 0.19 0.14

1 0.965 0.965 0.946 0.877 0.915 0.18 0.17

10 0.933 0.93 0.935 -0.039 -0.215 0.15 0.15



context of “phylogenetic imputation” (see Guénard et al.,

2013; Swenson, 2014; Penone et al., 2014)

Despite the similarities between PEM and PVR, from

a conceptual point of view we understand that PEM may

provide an alternative to the original PVR method, being

more effective in taking into account phylogenetic signal in

trait evolution. This is because PEM may be viewed as

technique in the best of both worlds, combining the flexibil-

ity of data-driven and empirical eigenfunction analyses (see

Griffith and Peres-Neto, 2006) and the sounding insights

provided by evolutionary models well known in compara-

tive analyses.
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