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Abstract

Colossoma macropomum is the second largest scaled fish of the Amazon. It is economically important for commer-
cial fisheries and for aquaculture, but few studies have examined the diversity and genetic structure of natural popu-
lations of this species. The aim of this study was to investigate the levels of genetic variability and connectivity that
exist between three natural populations of C. macropomum from the Amazon basin. In total, 247 samples were col-
lected from the municipalities of Tefé, Manaus, and Santarém. The populations were genotyped using a panel of 12
multiplex microsatellite markers. The genetic diversity found in these populations was high and similar to other popu-
lations described in the literature. These populations showed a pattern of high gene flow associated with the lack of a
genetic structure pattern, indicating that the number of migrants per generation and recent migration rates are high.
The values of the FST, RST, and exact test of differentiation were not significant for pairwise comparisons between pop-
ulations. The Bayesian population clustering analysis indicated a single population. Thus, the data provide evidence
for high genetic diversity and high gene flow among C. macropomum populations in the investigated region of the
Amazon basin. This information is important for programs aiming at the conservation of natural populations.
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Colossoma macropomum (Cuvier, 1818), commonly

known as tambaqui in Brazil and as gamitana in Peru, is the

largest characid fish of the Amazon basin, belonging to the

family Characidae, subfamily Serrasalminae. C. macro-

pomum is a tropical fish species found in the Orinoco and

Amazon River basins as well as in their major tributaries. It

reaches an average length of 1 m and weight of 30 kg

(Araújo-Lima and Goulding, 1998). Tambaqui is a fru-

givorous fish and a key seed disperser for many plant spe-

cies in the Amazon floodplain (Anderson et al., 2011).

C. macropomum, one of the most widely sold fish in

regional markets in the Amazon, has been exploited com-

mercially since the late 19th century (Santos et al., 2007).

Additionally, it is the most cultivated Neotropical fish in

Brazil. There are strong indications, including reduction in

supplies at Amazonian markets and continual reduction in

the size of fish caught, that the natural populations of

tambaqui are suffering from overexploitation (Araújo-

Lima and Ruffino, 2004).

Due to its economic importance in the Amazon, it is

essential to understand the levels of genetic variability and

genetic structure patterns present in natural populations to

develop management strategies that can keep in check the

loss of genetic diversity among natural populations (Aguiar

et al., 2013).

Microsatellite DNA is one of the best molecular

markers for estimating the genetic diversity of natural pop-

ulations and the genetic differentiation between closely re-

lated populations (Putnam and Carbone, 2014). The only

previous study using microsatellite markers to evaluate the

genetic variability and population structure of natural pop-

ulations of C. macropomum in the Amazon basin is that of
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Aldea-Guevara et al. (2013). Hence, the aim of this investi-

gation was to determine the level of genetic variability and

population differentiation among samples of C. macro-

pomum along the Amazon River using microsatellite

markers.

A total of 247 samples of C. macropomum were

caught with the support of artisanal fishermen in the munic-

ipalities of Tefé (95), Manaus (89) and Santarém (63) (Fig-

ure 1) in the Amazon Basin, Brazil. A sample of 2 g of

muscle tissue was collected from each individual, pre-

served in 95% ethanol, and stored at 4 °C. Total genomic

DNA was extracted from tissue digested in a proteinase

K/sodium dodecyl sulfate solution at 54 °C for 4 h. DNA

was purified using the standard phenol/chloroform method

(Sambrook and Russell, 2001) and quantified using a

NanoDropTM ND-1000 spectrophotometer (Thermo Scien-

tific).

The genotyping protocol was described in Hamoy

and Santos (2012), including the multiplex panel of 12

microsatellite markers for C. macropomum (Table 1). To

identify possible genotyping errors, such as stuttering

bands, which are common in dinucleotide microsatellites,

the program Micro-Checker (van Oosterhout et al., 2004)

was used.

Allele frequencies of each marker in the different

populations were calculated using Fstat 2.9.3.2 (Goudet,

2001). The observed (HO) and expected (HE) heterozygo-

sity and possible deviations from Hardy-Weinberg equilib-

rium (HWE) were calculated with the program Arlequin

3.5.1.3 (Excoffier and Lischer, 2010), followed by Bonfer-

roni correction (Rice, 1989) of the p-values found (adjusted

p-value < 0.0041). Other parameters of genetic variability,

such as the number of alleles per locus (NA) and allelic rich-

ness (AR) (El Mousadik and Petit, 1996), were estimated

using Fstat 2.9.3.2 (Goudet, 2001). Polymorphism infor-

mation content (PIC) was estimated using the program

Cervus 3.0 (Kalinowski et al., 2007).

To investigate how genetic variability is distributed

across different populations, populations from Tefé and

Manaus were randomly grouped, with the population from

Santarém forming another group, and analysis of molecular

variance (AMOVA) (Excoffier et al., 1992) was performed

using Arlequin 3.5.1.3 (Excoffier and Lischer, 2010).

Inter-population genetic differentiation was assessed

using the RST (Slatkin, 1995) and FST (Weir and
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Figure 1 - Populations of Colossoma macropomum in the Amazon studied. (A) Map illustrating the localization of Colossoma macropomum populations

in the Amazon basin. (B) Nonsignificant asymmetry of migration rates at k = 3, arrows indicate direction and rate of recent migration rates; estimates were

obtained with BIMr and Bar plots from Structure (below) without clustering of the data (C) Population assignment test done in GenAlEx to determine the

likelihood of inclusion of the individuals in each population.



Cockerham, 1984) parameters, as well as the exact test of

population differentiation (Raymond and Rousset, 1995),

which has not previously been used to compare popula-

tions. These analyses were performed using Arlequin

3.5.1.3 software (Excoffier and Lischer, 2010).

Structure 2.2 software (Pritchard et al., 2000) was

used in this study. This program uses Bayesian analysis to

infer the number of genetically homogeneous populations

(K) most likely (mean of Ln prob) to occur in the database

analyzed. The actual value for K (that most likely explains

the population database) is obtained after performing a

Markov Chain Monte Carlo (MCMC) analysis with multi-

ple simulations between the clusters assigned by the pro-

gram and the variation in K entered in the program; our

analysis used 100,000 simulations. The number of struc-

tured populations (K) was estimated based on 10 replica-

tions for each K (from 1 to 3). The logarithm of the

probability of the data (lnP(D K); Pritchard et al., 2000) and

estimates of �k (Evanno et al., 2005) were evaluated using

Structure Harvester (Earl and Von Holdt, 2012). The pro-

gram Clumpp v.1.1.2 (Jakobsson and Rosenberg, 2007)

was used to align the 10 repetitions of the best K.

The gene flow between populations was inferred by

calculating the Nm (number of migrants per generation) us-

ing the private alleles method (Slatkin, 1985), which was

implemented using the Genepop 4.0.10 program (Rousset,

2008). The number of private alleles (only present in one

population) that show a linear correlation with Nm was de-

termined for all markers in the four populations investi-

gated here, and the average frequency of private alleles

between paired populations was estimated. The population

assignment from the program GenAlEx 6.5 (Peakall and

Smouse, 2012) was used to determine the likelihood of in-

clusion of the individuals in each population.

The software BIMr 1.0 was used to detect the recent

migration rates (m) and the possibility of asymmetrical

rates based on the Bayesian assignment test (Faubet and

Gaggiotti, 2008); this allows for departures from HWE

within populations and uses the F-model and MCMC anal-

ysis. The F-model improves estimation of allele frequen-

cies when genetic differentiation is weak, which allows

BIMr to estimate rates of migration between populations

that are weakly differentiated. We ran 20 replicates, with a

total of 100,000 iterations each, and then collected 20,000

samples. For each replicate, we first performed MCMC

analysis for 20 short pilot runs of 1000 iterations each.

The Micro-Checker program did not detect evidence

of genotyping errors at any of the loci. Only the Cmacr�02

locus differed significantly from the HWE after Bonferroni

correction in the three populations analyzed, all of which

showed an excess of homozygotes, suggesting the presence

of null alleles in this marker. In total, 145 alleles were de-

tected among the 12 loci analyzed, with HO values ranging

from 0.43 (Cmacr�02) to 0.88 (Cmacr�09, Cmacr�04 and

Cmacr�13), NA values ranging from 6 (Cmacr�01,

Cmacr�06, Cmacr�10) to 17 (Cmacr�07) alleles, AR val-

ues ranging from 5.7 (Cmacr�01) to 15.9 (Cmacr�07), and

PIC values ranging from 0.63 Cmacr�10 to 0.87

(Cmacr�07) (Table 1). Based on these results, Cmacr�07

was the most informative marker in this study. AMOVA re-

vealed that 92% of all genetic variation found in the hierar-
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Table 1 - Statistics for individual loci and combined genotype among Colossoma macropomum populations in the Amazon basin.

Loci Tefé Manaus Santarém

(N=95) (N=89) (N=63)

HO HE NA AR PIC HO HE NA AR PIC HO HE NA AR PIC

Cmacr�01 0.64 0.75 7 6.3 0.70 0.63 0.72 6 5.7 0.67 0.57 0.71 8 7.3 0.67

Cmacr�02* 0.59 0.79 10 8.9 0.76 0.56 0.85 12 10.6 0.83 0.43 0.83 7 7.0 0.68

Cmacr�03 0.75 0.78 11 9.4 0.74 0.67 0.78 10 9.4 0.75 0.69 0.83 12 11.5 0.75

Cmacr�04 0.79 0.82 8 7.9 0.79 0.82 0.81 11 9.7 0.78 0.88 0.83 7 6.9 0.72

Cmacr�05 0.83 0.79 8 7.5 0.75 0.78 0.80 7 6.9 0.76 0.82 0.80 9 8.5 0.77

Cmacr�06 0.73 0.73 7 6.3 0.68 0.68 0.76 7 6.2 0.72 0.77 0.78 6 5.7 0.67

Cmacr�07 0.76 0.88 17 15.8 0.86 0.85 0.88 15 13.9 0.87 0.84 0.86 14 13.4 0.82

Cmacr�08 0.75 0.79 9 8.8 0.75 0.69 0.79 10 9.2 0.74 0.68 0.81 8 7.9 0.69

Cmacr�09 0.88 0.80 9 8.7 0.77 0.75 0.77 9 8.5 0.73 0.85 0.76 9 8.9 0.78

Cmacr�10 0.81 0.77 6 5.9 0.73 0.71 0.76 6 5.9 0.71 0.75 0.80 6 5.9 0.63

Cmacr�12 0.75 0.87 10 9.9 0.85 0.77 0.88 11 10.5 0.86 0.75 0.86 11 10.7 0.83

Cmacr�13 0.81 0.78 11 9.2 0.75 0.80 0.80 8 7.9 0.77 0.88 0.81 9 8.5 0.83

Average 0.75 0.79 9.4 8.7 0.76 0.72 0.80 9.3 8.7 0.76 0.74 0.80 8.8 8.5 0.73

N - number of individuals, HO - observed heterozygosity, HE - expected heterozygosity, NA - number of alleles per locus, AR - allelic richness, PIC - poly-

morphism information content, * - statistical significance after Bonferroni correction for Hardy–Weinberg equilibrium.



chy was between individuals, independent of the

populations or groups, 7% was between individuals within

populations, 0.8% between populations within groups, and

0.2% between groups, showing that most of the genetic

variation does not form distinct groups.

The RST and FST values between paired populations

were equal to zero and not significant (P-value > 0.05). The

results of the exact test of population differentiation were

also not significant at a level of 5% when we compared the

populations, this indicating the absence of genetic differen-

tiation between pairs of populations. The results of the

Structure program showed that the highest average likeli-

hood was a single cluster K=1 (Figure 1) in these situations,

so there was no need to perform the Evanno test.

The Nm values between populations were high for

Tefé/Santarém (11.7), Tefé/Manaus (11.1) and Mana-

us/Santarém (8.3). The studied populations had few private

alleles, with four in Tefé, two in Manaus and five in Santa-

rém, among the total of 145 alleles found. The average fre-

quency of private alleles between populations was also

small, with values close to 0.1. The m values between popu-

lations were high and very similar, with all values close to

31%. In addition, the Bayesian approach implemented in

BIMr did not identify significant asymmetric gene flow be-

tween populations (Figure 1). The population assignment

test showed that only 35% of samples are outcomes of

self-population, whereas 66% are outcomes of other popu-

lations (Figure 1).

For an intensively exploited species such as the tam-

baqui, the discovery of the level of genetic diversity within

natural populations is critical to the prognosis of the viabil-

ity of the species. The values for genetic diversity found in

the populations analyzed with these microsatellite markers

were high (HO mean > 0.70) and similar to data reported in the

literature for these same markers used for different popula-

tions in the Amazon region (Hamoy et al., 2011, Hamoy

and Santos, 2012; Aldea-Guevara et al., 2013). Other stud-

ies have evaluated the levels of genetic variability in natural

populations of tambaqui in the Amazon basin using differ-

ent microsatellite and mtDNA markers and have also ob-

served high levels of genetic variability (Santos et al., 2007,

2009; Molecular Ecology Resources Primer Development

Consortium et al., 2013). Genetic studies of other Amazo-

nian fish species that have been intensely exploited, such as

Arapaima gigas, have shown a similar pattern of high ge-

netic variability, including studies reported by Hrbek et al.

(2005, 2007) and Hamoy et al. (2008), that used both

microsatellite and mtDNA markers.

The present results indicate that the populations stud-

ied are genetically homogeneous. Similarly, Aldea-Gue-

vara et al. (2013) employed the same microsatellite

markers used in this study, and a Bayesian approach did not

detect population differentiation in four lakes from the Am-

azon basin in Peru. However, the Bayesian approach using

thermodynamic integration revealed non-panmictic popu-

lations with a stepping-stone migration pattern among

those lakes.

The results showing high gene flow are similar to

those found by Santos et al. (2007) using a control region of

mtDNA in natural populations of C. macropomum from the

Amazon basin. That study also found little genetic differen-

tiation and high gene flow between populations, leading the

authors to propose that these populations form a large

panmictic population in the tributary system of the Amazon

River. Using mtDNA control regions, Farias et al. (2010)

showed that the tributaries of the Madeira River, which sep-

arate Bolivia’s Amazon basin, do not represent an effective

barrier against gene flow of C. macropomum populations

from these basins, although genetic differences were found

to exist between them

These results seem consistent with the biology of C.

macropomum, which is a species that exhibits migratory

behavior in search of food, protection, and reproduction. C.

macropomum, which is a frugivorous species, is an impor-

tant long-distance seed disperser for various species of

plants in the Amazon floodplain, and overexploitation of C.

macropomum can be considered a threat to the diversity of

these plants (Anderson et al., 2009, 2011).

Our results suggest the absence of a genetic structure

in C. macropomum, with high genetic variability and high

gene flow in the Amazon basin. However, this current sce-

nario does not guarantee the maintenance of this diversity

over time. Only the maintenance and improvement of pub-

lic policies regulating capture and management can ensure

the viability of this important species. Another needed ap-

proach includes an examination of the levels of genetic

variability in unstudied populations of C. macropomum to

determine whether the maintenance of this pattern of ge-

netic structure is coupled to high genetic diversity and high

gene flow.
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