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Abstract

The utility of genetic risk scores (GRS) as independent risk predictors remains inconclusive. Here, we evaluate the
additive value of a multi-locus GRS to the Framingham risk score (FRS) in coronary artery disease (CAD) risk predic-
tion. A total of 2888 individuals (1566 coronary patients and 1322 controls) were divided into three subgroups accord-
ing to FRS. Multiplicative GRS was determined for 32 genetic variants associated to CAD. Logistic Regression and
Area Under the Curve (AUC) were determined first, using the TRF for each FRS subgroup, and secondly, adding
GRS. Different models (TRF, TRF+GRS) were used to classify the subjects into risk categories for the FRS 10-year
predicted risk. The improvement offered by GRS was expressed as Net Reclassification Index and Integrated Dis-
crimination Improvement. Multivariate analysis showed that GRS was an independent predictor for CAD (OR = 1.87;
p<0.0001). Diabetes, arterial hypertension, dyslipidemia and smoking status were also independent CAD predictors
(p<0.05). GRS added predictive value to TRF across all risk subgroups. NRI showed a significant improvement in all
categories. In conclusion, GRS provided a better incremental value in intermediate subgroup. In this subgroup, inclu-

sion of genotyping may be considered to better stratify cardiovascular risk.
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Introduction

The most important Traditional Risk factors (TRF)
for Coronary Artery Disease (CAD) include dyslipidemia,
arterial hypertension, diabetes, obesity, smoking, lack of
physical activity and stress (Chan and Boerwinkle, 1994).
However, some patients can develop vascular disease with-
out conventional risk factors.

Although the familial nature of CAD has been docu-
mented for many years (Marenberg et al., 1994; Lloyd-
Jones et al., 2004; Murabito et al., 2005) and the addition of
family history has been shown to improve risk prediction
(Ridker et al., 2007; Ridker ef al., 2008), the genetic vari-
ants responsible for the increased familial risk were, until
recently, unknown. Genome-Wide Association Studies
(GWAS) have uncovered several common genetic variants
(single nucleotide polymorphisms, or SNPs) that are ro-
bustly associated with CAD and have been replicated in
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multiple independent samples (Welter et al., 2014). The
identification of these genetic variants provides an opportu-
nity to evaluate whether addition of a genetic risk score
(GRS) to risk models may improve predictive power (Gan-
na et al., 2013).

There is an increasing interest in the potential use of
GRS in cardiovascular disease, because this could increase
the number of preventive and therapeutic interventions in
individuals and groups with high genetic risk that are not
obvious candidates to these interventions using the current
standard stratification. Usual cardiovascular risk stratifica-
tion uses family history, TRF evaluation, and is quantified
into scores like Framingham risk score and EuroSCORE
(Pencina et al., 2011). However, due to the potential finan-
cial and medical costs associated with measuring these new
markers like GRS, their ability in improving the prediction
of CAD outcomes over existing risk models needs to be rig-
orously accessed. Effective statistical tools for evaluating
the incremental value of the novel markers over the routine
clinical risk factors are crucial in the field of outcome pre-
diction.
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Here, we evaluate whether a GRS, based on 33 SNPs
associated to CAD, is independent of the vascular risk ex-
plainable by conventional risk factors and can improve the
predictive capacity of TRF in the assessment of CAD risk,
according to FRS subgroups (low risk<10%, intermediate
risk 10-20% or high risk>20%). Using the Net Reclassifica-
tion Index (NRI) and Integrated Discrimination Index
(IDI), we investigate the performance of combined stratifi-
cation including TRF and GRS in CAD risk assessment.

Subjects and Methods
Study population

A case-control study was performed with 2888 indi-
viduals (mean age of 53.0 £ 7.9 years), including 1566 con-
secutive coronary patients and 1322 controls. These were
divided into three subgroups according to FRS: low risk
(FRS<10, n = 1312, 68.7% male), intermediate risk
(10<FRS<20, n = 1049, 83.1% male) and high risk
(FRS>20, n = 527, 90.1% male). Cases and controls were
matched for age and gender.

Determination of CAD was adjucated by a dedicated
intervention cardiologist. Angiographically proven CAD
was considered significant if >1 coronary lesions of >70%
stenosis in >1 major coronary artery or its primary bran-
ches. Absent or non-flow limiting CAD was excluded from
this study. The control group consisted of healthy volun-
teers selected from the same population with no symptoms
or history of CAD. All controls underwent clinical and phe-
notype assessment of TRF, an electrocardiogram, and, if
needed, complementary exercises stress tests or a Stress
Echocardiography. Population stratification analysis was
performed in our population set to account for possible ge-
netic admixture and no significant genetic outliers (<5%)
were identified with Principal Component Analysis (PCA)
(Abdi and Williams, 2010).

The study was conducted according to the Declara-
tion of Helsinki, the protocol was reviewed and approved
by the Hospital ethics committee, and all patients provided
written informed consent.

Data collection

Data was collected from all subjects in a standardized
file comprising demographic, clinical characteristics and
TRF (gender, age, level of exercise, smoking status, arterial
hypertension, dyslipidemia, diabetes, and family history of
CAD, body mass index (BMI), heart rate and pulse wave
velocity (PWV). ‘Smoking status’ refers to current smokers
or subjects with less than 5 years of smoking cessation
(Mons et al., 2015).

Arterial Hypertension was considered when patients,
at the entry into this study, were already diagnosed and/or
had been on antihypertensive medication for more than 3
months, or newly diagnosed hypertensives with systolic
blood pressure (SBP)/diastolic blood pressure (DBP)
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>140/90 mmHg measured on at least 3 occasions (Cho-
banian et al., 2003).

Subjects with LDL>100 mg/dL, HDL<40 mg/dL for
men, and<45 mg/dL for women, non HDL (Total choles-
terol — HDL)>130 mg/dL, triglycerides>150 mg/dL or Apo
B>100 mg/dL were classified as having dyslipidemia (Ex-
pert Panel on Detection Evaluation and Treatment of High
Blood Cholesterol in adults, 2001). Subjects were classi-
fied as having diabetes if taking oral anti-diabetic medica-
tion or insulin or if fasting plasma glucose was higher than
7.0 mmol/l or 126 mg/dL (Genuth et al., 2003).

Family history of CAD was considered if a female
relative (mother or sister) had presumed CAD disease be-
fore 65 years, or a male relative (father or brother) had
CAD disease before 55 years old. The definition of other
traditional risk factors was based on standard criteria, as
previously reported (Asmar ef al., 1995; National Institute
of Health, National Heart, Lung, and Blood Institute North
American Association for the Study of Obesity, 2000).

Biochemical analysis

Blood samples were extracted after 14-16 hours fast-
ing. Biochemical analyses were performed at the Central
Laboratory of the Hospital, according to standard tech-
niques. For measurement of total cholesterol, HDL, LDL,
triglycerides and glucose, blood samples were placed in dry
tubes, centrifuged half an hour late at 3500 xg and subse-
quently quantified by an enzymatic technique using an AU
5400 autoanalyzer (Beckman Coulter). Biochemical mark-
ers such as lipoprotein-a (Lp(a)), apolipoprotein B (Apo B),
and high sensitivity C-Reactive Protein (hs-CRP) were
quantified by Immunoturbidimetry using an AU 5400 auto-
matic system (Beckman Coulter).

SNP selection

SNPs were selected either from GWAS or candidate
gene association studies (Coronary Artery Disease Consor-
tium, 2011; Schunkert ef al., 2011). These SNPs were ei-
ther previously tested in a sample of our population, or in a
genetically similar southern European cohort. Entering cri-
teria included genes described in previous studies with an
Odds Ratio (OR) for CAD > 1.1 and, simultaneously, with a
Minor Allele Frequency (MAF)>5%. Genes with low
Hardy-Weinberg equilibrium p<0.002 (after Bonferroni
correction) were excluded.

According to their possible CAD-related function, we
have included 32 genes associated to cell cycle, cellular mi-
gration and inflammation (rs1333049 (9p21.3), rs4977574
(CDKN2B), 15618675 (GJA4), rs17228212 (SMAD3),
rs17465637 (MIA3), rs12190287 (TCF21), 1s3825807
(ADAMTS7), 1511556924 (ZC3HCI1), 1s12526453
(PHACTR1); genes involved in pro-oxidative status
(rs1801133 (MTHFR 677), rs1801131 (MTHFR 1298),
rs705379 (PON 1), rs662 (PON192), rs854560 (PON 55),
1s6922269 (MTHFDI1L); genes associated with modifiable
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risk factors such as lipids metabolism, hypertension and di-
abetes/obesity (rs2114580 (PCSK9), rs20455 (KIF6),
1s7412/rs429358 (APOE), rs964184 (ZNF259), rs599839
(PSRC1), rs5186 (ATI1R), rs699 (AGT), rs4340 (ACE),
rs4402960 (IGF2BP2), rs1326634 (SLC30AS8), rs266729
(ADIPOQ), rs7903146 (TCF7L2), rs17782313 (MC4R),
rs1801282 (PPARG), rs1884613 (HNF4A), rs8050136
(FTO) and rs1376251 (TAS2R 50).

Further SNP inclusion was not performed at this time
due to low expectation of improvement in overall risk re-
classification and cost effectiveness limitations.

Details of SNPs used in GRS model are presented in
Supplementary Table S1.

Genotype analysis

Genetic analysis was performed at the Human Genet-
ics Laboratory of the University of Madeira. Genomic
DNA was extracted from 80 uL of peripheral blood using a
standard phenol-chloroform method. A TagMan allelic dis-
crimination assay for genotyping was performed using la-
beled probes and primers pre-established by the supplier
(TagMan SNP Genotyping Assays, Applied Biosystems).
All reactions were done on an Applied Biosystems 7300
Real Time PCR System and genotypes were determined us-
ing the 7300 System SDS Software (Applied Biosystems)
without any prior knowledge of the individual’s clinical
data. Quality check of genotyping techniques was main-
tained by the inclusion of one non-template control (NTC)
in each plate of 96 wells. All SNPs TagMan assays had
blind duplicates accounting for 20% of all samples. Some
SNP genotypes were randomly confirmed by conventional
direct DNA sequencing, as 10-15% of all samples were
re-amplified for sequencing.

Statistical analysis

Deviation from Hardy-Weinberg equilibrium for the
33 genotypes at individual loci were assessed using the
Chi-square test and p<0.002 with Bonferroni correction for
all SNPs included. LPA gene variant was excluded for fur-
ther analyses due to its low Hardy-Weinberg equilibrium
(p<0.002).

Comparisons of baseline characteristics and bioche-
mical data of cases and controls were analyzed by Chi-
square tests for categorical variables, and Student’s #-test or
Mann- Whitney tests were performed for continuous vari-
ables, as appropriate. Genotypic frequencies were deter-
mined from observed counts and compared by Chi-square
analysis.

To evaluate the impact of genotype frequencies and
Odds Ratios (OR) on the overall discriminative accuracy of
genetic risk models, we assessed the AUC. SNPs associ-
ated with p-values less than or equal to 0.05 entered the
race-specific GRS with a coding value of 2 for the mutated
genotype (risk), 1 for the heterozygote, and 0 for the homo-
zygous wild-type genotype. The GRS was constructed un-
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der a multiplicative model (multiplying the odds ratio of
each genotype for all the 32 genetic variants). The maxi-
mum number of risk alleles possessed by one individual
was 36 and the minimum was 13 (mean + standard devia-
tion (SD) = 23.96 + 3.63). The increasing loci were
assumed to have an additive effect, and the GRS was nor-
mally distributed.

ROC curves based on the GRS + Framingham model
were compared to a Framingham model alone (Figure 1).
For each risk subgroup, the GRS was included in a ROC
model containing the TRF. A new combined risk score was
calculated for each individual (TRF + GRS) by multiplying
each model coefficient by the associated risk variable and
then summing the products. The AUC equals the probabil-
ity that a classifier will rank a randomly chosen positive in-
stance higher than a randomly chosen negative one. ROC
curve analysis was performed using the MedCalc software.
Non-parametric methods developed by Delong et al.
(1988) were used to test for significant differences between
ROC curves.

NRI was computed according to the continuous
method and applied to the case- control studies (Pencina et
al., 2011). We further calculated categorical NRI for each
Framingham subgroup. In each risk group the number of in-
dividuals reclassified intohigher and lower risk categories
is presented (Supplementary Table S2). NRI was defined as
the percentage of subjects changing categories in each sub-
group when adding the new markers and IDI as the
improvement of the difference in average of predicted
probabilities between cases and controls. Both measures
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Figure 1 - ROC curves based on the GRS + Framingham model compard
to Framingham model alone. The two curves are based on logistic regres-
sion models incorporating Framingham risk with and without GRS. AUC
indicates area under curve. The DeLong test compares the difference be-
tween the two AUCs and showed statistical significance.
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were obtained with the PredictABEL package available in
R software (version 3.2.0). Discriminative capacity (AUC)
was accessed for evaluation of specificity and sensitivity
with MedCalc version 13.3.3.0, and other statistics were
analyzed by the Statistical Package for the Social Sciences,
SAS Software version 19.0). All p-values were two-sided,
and statistically significant for p<0.05.

Results

Table 1 compares baseline characteristics between
CAD and control groups. According to the selection crite-
ria, age and gender did not differ significantly between the
two groups. In contrast, CAD patients were more likely to
have a higher prevalence of modifiable risk factors, such as
dyslipidemia, tobacco use, hypertension, and diabetes

Table 1 - Baseline characteristics for both CAD patients and controls.
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(»<0.05). Also BMI, PWV, family history of CAD and
lower level of exercise were significantly more frequent
among cases (p<0.05). Lower heart rates among patients
potentially reflect a better heart rate control (»<0.0001).
Across all Framingham score subgroups, the GRS was sig-
nificantly lower in controls that CAD patients (p<0.0001).

A logistic regression under a Forward Wald method
was performed including GRS and TRF (Table 2). In this
multivariable analysis, GRS was an independent predictor
for CAD (OR = 1.87; 95%CI: 1.58 — 2.21), with statistical
significance (p<0.0001). Even after a Bonferroni Correc-
tion, GRS remained significant at a p<0.01 (0.05/5) level.
Furthermore, smoking status (OR = 3.44; 95%CI: 2.89 —
4.10); diabetes (OR = 3.19; 95% CI: 2.61 — 3.91); arterial
hypertension (OR =2.10; 95% CI: 1.77 — 2.48) and dyslipi-

Variables Total Cases Controls p-value
(n = 2888) (n = 1566) (n=1322)

Male sex, 7 (%) 2248 (77.8) 1238 (79.1) 1010 (76.4) 0.087
Age, years 53+7.9 533+£8 52.7+7.8 0.053
Dyslipidemia®, 7 (%) 2344 (81.2) 1414 (90.3) 930 (70.3) <0.0001
Total Cholesterol, mg/dl 193 (77-437) 180 (77-437) 205 (92-360) <0.0001
HDL, mg/dl 44 (12-116) 41 (18.2-115.8) 48 (12-116) <0.0001
LDL, mg/dl 114.8 (9.6-298) 104.6 (15.6-298) 127.2 (9.6-251) <0.0001
Lipoprotein (a), mg/dl 15.1 (0.5-241) 20.4 (0.5-241) 12.8 (0.6-236) <0.0001
Apolipoprotein B, mg/dl 93.2 (2.9-256.9) 93.9 (4.9-256.9) 92.5(2.9-212.7) <0.0001
Triglycerides, mg/dl 132 (30-2500) 141 (31-2500) 121 (30-1361) <0.0001
Smoking status’, 7 (%) 1039 (36) 730 (46.6) 309 (23.4) <0.0001
Hypertension, 7 (%) 1814 (62.8) 1114 (71.1) 700 (53) <0.0001
SBP, mmHg 137.1+£19.6 137.9 £20.8 1362+ 18.1 0.024
DBP, mmHg 832115 82.6+11.8 83.9+11.1 0.002
PWV, m/s 85+19 8.6+19 83+1.7 <0.0001
Diabetes, 7 (%) 708 (24.5) 533 (34) 175 (13.2) <0.0001
Fasting glucose, mg/dl 102 (53-458) 106 (53-458) 99 (71-393) <0.0001
BMLI, kg/m’ 284+44 28.6+4.2 28.1+45 0.007
Level of exercise”, n (%) 1334 (46.2) 573 (36.6) 761 (57.6) <0.0001
Family history of CAD, n (%) 540 (18.7) 373 (23.8) 167 (12.6) <0.0001
Heart rate, bpm 704+ 12.2 68.8+12.5 723+11.5 <0.0001
FRS<10, 1 (%) 1312 (45.4) 629 (40.2) 683 (51.7) *
GRS 0.58+0.7 0.69+0.8 0.49+0.6 <0.0001
10< FRS< 20, 7 (%) 1049 (36.3) 583 (37.2) 466 (35.2) *
GRS 0.56+0.6 0.62+0.7 0.48 0.4 <0.0001
FRS>20, 1 (%) 527 (18.2) 354 (22.6) 173 (13.1) *
GRS 0.62+0.6 0.70+0.7 0.47+0.4 <0.0001

TLDL>100, HDL<40 for men and <45 for women, Triglycerides>150 and Apo B>100; HDL, High-density lipoprotein; LDL, Low-density lipoprotein;
‘Current smokers or<5 years of cessation; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; PWV, Pulse wave velocity; BMI, Body mass in-
dex; #More than 40min/week; CAD, Coronary Artery Disease; bpm, beat per minute; FRS — 10-year Framingham risk score in %; *Comparison of the 3
subgroups of FRS, p<0.0001; GRS, Genetic risk score; Biochemical variables are presented by median (minimum - maximum) and other continuous vari-

ables with mean + standard deviation. Statistically significant for p<0.05.
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Table 2 - Logistic Regression*model for CAD in subgroups of Framingham 10-year risk (< 10; 10-20%;>20%) and in total population.

Variables FRS<10% FRS 10%-20% FRS>20% Total

OR p-value OR p-value OR p-value OR p-value

(95% CI) (95% CI) (95% CI) (95% CI)

Hypertension 3.25(2.52-4.18) <0.0001 1.88(1.39-2.56) <0.0001 --- - 2.10(1.77-2.48)  <0.0001
Diabetes 2.93(1.90-4.52)  <0.0001 434 (3.14-6) <0.0001  3.56(2.34-54) <0.0001 3.19(2.61-3.91) <0.0001
Dyslipidemia 1.71 (1.28 -2.29)  <0.0001 --- - --- - 1.30 (1.03 - 1.65) 0.030
Smoking status 492 (3.66 - 6.62)  <0.0001  3.57 (2.65-4.8)  <0.0001 3.11(2.04-4.73) <0.0001 3.44(2.89-4.1) <0.0001
GRS 1.76 (1.41-2.2)  <0.0001 1.86(1.39-2.49) <0.0001 2.49(1.54-4.05) <0.0001 1.87(1.58-2.21) <0.0001
Constant 0.16 <0.0001 0.24 <0.0001 0.342 <0.0001 0.21 <0.0001

*Using Forward Wald Conditional Regression method (SPSS v. 19.0). FRS, Framingham risk score; OR, Odds ratio; CI, Confidence interval; GRS, Ge-
netic risk score; Dashed points represent co-variables not significant after adjusted multivariate analysis; Statistically significant for p<0.05.

demia (OR = 1.30; 95% CI: 1.03 — 1.65) were independ-
ently and significantly associated to CAD risk (p<0.05)
(Table 2).

We compared the AUC for the Framingham + GRS
model with the basal AUC for the Framingham model, as
shown in Figure 1. Framingham yielded an AUC of 0.586
(95% CI: 0.568 — 0.605), predicting CAD moderately well.
The model including the GRS was more discriminative
than Framingham alone (AUC = 0.626; 95% CI: 0.608 —
0.644; DeLong test p<0.0001). The increase in predictive
accuracy for the Framingham + GRS model was 4% (95%
CI: 2.6% - 5.4%).

For each subgroup of Framingham, we found that in-
cluding the GRS to the model with TRF only, the AUC in-
creased significantly (Table 3), showing that GRS adds pre-
dictive value to TRF in all the 3 risk subgroups.
Specifically, in individuals within the low risk subgroup,
the AUC was 0.72 for the TRF model and 0.75 for the TRF
+ GRS model (»<0.0001). The increase in predictive accu-
racy in this subgroup was 2.5% (95% CI: 1.4 — 3.6%). This
difference was small, but significant (DeLong test for cor-
related ROC curves p<0.0001). Similarly, in individuals
within intermediate FRS subgroup, the AUC was 0.70 for
the TRF model and 0.73 for the TRF + GRS model. The in-

Table 3 - Reclassification table comparing predicted CAD risk with and without GRS.

FRS
Total <10% 10-20% >20%
(n = 2888) (n=1312) (n=1049) (n=527)
CAD patients (n) 1566 629 583 354
Controls (n) 1322 683 466 173
NRI (%) 31.7 323 30.4 29.8
(25.0-38.4) (22.4-42.3) (19.0-41.8) (13.1-46.6)
(95% CI) »<0.0001 »<0.0001 »<0.0001 p=0.0005
IDI (%) 23 2.4 2.1 33
(95% CI) (1.8-2.9) (1.6-3.2) (1.3-2.9) (1.9-4.7)
»<0.0001 »<0.0001 »<0.0001 £<0.0001

AUC
TRF 0.716 0.724 0.701 0.676
(95% CI) (0.699-0.732) (0.699-0.748) (0.672-0.728) (0.634-0.716)
TRF+GRS 0.741 0.749 0.726 0.720
(95% CI) (0.724-0.757) (0.725-0.772) (0.698-0.753) (0.680-0.758)
p-value for the difference <0.0001 0.0001 0.0002 0.003
Nagelkerke R Square
TRF 0.190 0.213 0.166 0.138
TRF+GRS 0.219 0.242 0.191 0.184

FRS, 10-year Framingham risk score; CAD, Coronary Artery Disease; NRI, Net Reclassification Improvement continuous NRI); CI, Confidence Inter-
val; IDI, Integrated Discrimination Improvement; AUC, Area Under the receiver operating characteristic Curve; TRF, Traditional Risk Factors

(Dyslipidemia, Smoking, Diabetes and Hypertension); GRS, Genetic risk score.
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crease in the predictive accuracy for the AUC model in this
subgroup was 2.6% (95% CI: 1.2 —3.9%) at a significant p
level (»p = 0.0002). Finally, a surprising significant
(DeLong’s test for correlated ROC curves p = 0.003) addi-
tion to the model’s predictive accuracy was seen in the
higher risk of FRS group with an AUC increasing from
0.68 to 0.72. The increase in predictive accuracy for the
AUC model (TRF + GRS model) in this group was 4.4%
(95% CI: 1.5 —7.3%). For all subgroups, the 95% CI of the
increase did not include zero, suggesting that the increase in
AUC caused by the GRS inclusion is statistically signifi-
cant. The addition of GRS to TRF improved the risk classi-
fication of the models. The new marker provided a continu-
ous NRI of 32.3% (95%CI: 22.4-42.3%; p<0.0001) in the
low risk group; 30.4% (95%CI: 19.0-41.8%; p<0.0001) in
the intermediate FRS group and 29.8% (95%ClI:
13.1-46.6%; p = 0.0005) in the high risk subgroup (Table
3). Furthermore, the inclusion of GRS to TRF also provided
an IDI of 2.4% (95%CI: 1.6-3.2%; p<0.0001) in the low
risk group; 2.1% (95%CI: 1.3-2.9%; p<0.0001) in the inter-
mediate risk group and 3.3% (95%CI: 1.9-4.7%; p<0.0001)
in the high-risk group. Full reclassification results are pro-
vided in Table 3.

The Nagelkerke R square value increased in each
FRS subgroup with inclusion of GRS, that is, this new vari-
able improved the proportion of variation explained in the
model. Therefore, it can be stated that the disease is ex-
plained at 19.1% by the independent variables in the inter-
mediate risk group. The values presented in Table 3
confirm that the selected variables present a significant ex-
planatory degree about the dependent variable.

A complementary study of categorical NRI is shown
in Supplementary Table S2. In the Framingham low risk
subgroup (< 10%), a 27.5% NRI was found in the control
population and a -7.8% NRI in CAD subgroup. In interme-
diate Framingham risk subgroup (10-20%), the opposite re-
sult was found with 18% of CAD patients being reclassified
into higher risk whereas 0.6% of controls into lower risk.
Finally, for the higher risk subgroup (> 20%), both patients
and controls were reclassified into higher risk groups (5.9%
and - 1.7%, respectively). Overall reclassification for each
Framingham subgroup (case- control) was positive and ex-
pressed as a categorical NRI of 19.7%, 18.7% and 4.2%, re-
spectively.

Discussion

We have downgraded our expectations after an unful-
filled enthusiastic time of expecting genes to account for
hidden heritability in CAD, not meant for generalized use
in the actual guidelines for cardiovascular prevention. For
1-5% of allelic frequencies and ORs for CAD/MI at GWAS
level from 1.1- 1.5 reported in the literature will produce
moderate risk improvement if added to standard risk strati-
fication models, such as Framingham (Morrison et al.,
2007; Van der Net et al., 2009). These models have reason-
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able to good risk prediction curves, as modeled with C-
statistics ranging from 68-72% (Humphries et al., 2008;
Paynter et al., 2010). Nevertheless improved accuracy is
expected when gene-gene inter-mapping and the impact of
some epigenetic factors are accounted for in CAD risk.

The current case-control study assesses the contribu-
tion of genetic risk for CAD in a southern European popula-
tion controlled for age and sex. In the multivariate model,
GRS presents a cardiovascular risk independent of the risk
conferred by TRF. Thus, it can improve the predictive ca-
pacity of TRF scores. According to the results, standard
risk Framingham evaluation states good AUC levels across
all risk subgroups, with an AUC ranging from 0.676 to
0.749. Apart from its mathematical calculation, the inter-
mediate risk subgroup represents the vast majority of pa-
tients followed at the outpatient clinics. The low-age
patient with one or two risk factors and low calculated car-
diovascular risk is frequently left out of intensive preven-
tion, such as statin introduction, active measures for
tobacco eviction, or inclusion in exercise program.

Here, we report that a GRS based on 32 CAD risk al-
leles, identified previously in GWAS databases, independ-
ently and significantly predicts CAD with an increased risk
of 80% (1.8 times). Our observations line up with several
reports already addressing the impact of adding GRS to
standard risk stratification. Recently, Iribarren et al. (2016)
have reported, in a large scale cohort living in the US, im-
proved predictive capacity and discrimination index for
four GRS starting from just 8 or 12 and up to 36 to 51 ge-
netic variants. Likewise Tada et al. (2016) also reported
that in a panel of 23,595 participants followed-up for 14
years, two GRS of 27 and 50 SNPs improved all measures
of discrimination and reclassification.

Despite the modest predictive ability, our genetic risk
model seems useful in preventive health care and disease
prevention to correctly identify individuals at intermediate
and high-risk groups. We observed a general tendency for
both measures of reclassification improvement, the NRI
and IDI, to increase after addition of the GRS to the basic
risk function. The continuous NRI was 30.8% for the entire
cohort (95% CI: 24.0%-37.5%). However, reclassification
improvement was more noticeable in the intermediate risk
group, where it was statistically significant (NRI: 33.7%,
95%CI 25.6%-41.8%; IDI: 1.8%, 95%CI 1.2%-2.3%). It is
important to note that the constructed reclassification tables
follow clinically relevant strata of 5, and 20 percent 10-year
risk, in order to have direct clinical application. But limita-
tions in the interpretation of data apply, because the preva-
lence of CAD in any patient study population is much
higher than in a normal population, and thus, frequencies
and risks are highly overestimated. The feasibility and clin-
ical application of the GRS approach strategy will depend
not only on the predictive capacity of the risk model, but
also on the threshold level that is chosen.
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We believe that genetic information will improve pre-
ventive strategies targeting individuals at very high genetic
risk even though this may be a small subgroup. Neverthe-
less, an issue that deserves remarks relates to genetic infor-
mation, adverse events, and even cardiovascular mortality.
It is irrefutable that GRS is associated with worse prognosis
and outcomes. Several GRS, including SNPs associated
with CHD, have been associated with incident events in
distinct cohorts (CARDIoGRAMplusC4d Consortium,
2013).

These studies have been conducted in both primary
and secondary prevention subpopulations. Long-term pro-
spective cohorts have validated GRS as a marker for inci-
dent events across all risk categories in primary care
(Voight et al., 2012; Krarup et al., 2015). Mega et al.
(2015) have also analyzed GRS orientated therapy with
statins reporting interesting number needed to treat reach-
ing just 20 to 25 patients with high GRS to avoid one inci-
dent adverse outcome. Also, Voight et al. (2012) have
already tested GRS in a Mendelian randomization design
trial, and thus, GRS has been pointed out as an effective
tool for early statin introduction in patients with a concor-
dant genotypic score and phenotypic LDL elevation
(Voight et al., 2012). Similarly, in a secondary prevention
setting, our group has reported, in 1555 patients with docu-
mented CAD, significantly higher cardiovascular mortality
in patients with higher GRS (Pereira et al., 2017).

Considerably disparate numbers of gene variants and
different population settings have been validated in these
trials, ranging from 13 to a few hundred genes. Not in all of
these studies with positive association with adverse out-
comes at the long-term follow-up, the NRI was statistically
significant (Ripatti et al., 2010). But this was not a justifica-
tion for its clinical uses (Pencina et al., 2009). Furthermore,
Pencina ef al. (2011) have already addressed this limitation
of comparing NRI, stating that continuous NRI may not be
adequate in case-control studies. Similarly, distinct risk
cut-offs and the number of risk categories in categorical
NRI make inter-study comparisons rather difficult. Never-
theless, and apart from the limitation of using NRI to im-
prove models that already perform well (Pencina et al.,
2011), in this study, both continuous and categorical metric
formulas can be of sufficient discrimination power to be
useful in clinical settings, especially regarding the interme-
diate risk group, where classical and standard risk stratifi-
cation seems to be open to sampling errors.

Irrespective of their role in preventive strategy con-
trol and relative mortality reduction, classical risk factors
can change over time with lifestyle and drug interventions.
Also, many biochemical and phenotypic biomarkers, like
hs-CRP and PWV, are powerful predictors of disease risk
for short-term concern, but less accurate in assessing life-
time risk. Screening for risk stratification is an important is-
sue. Genetic information is an attractive measure for risk
prediction with a number of advantages over classical risk

GRS and CAD risk prediction

stratification. Though its true predictive power in different
clinical scenarios can be quite disparate, by being self-
tailored and highly stable over time its use may gain prefer-
ence over classical measures. Furthermore, as It is expected
that financial cost related to genome sequencing will fur-
ther decline in the near future and, already in short-term,
additional genetic prediction will become available as reg-
ular biomarker determinations and, in this way, can reach
larger population coverage. Our findings confirm the im-
portance of genetic contributions to CAD disease even
when adjusting for traditional risk stratification.

Strengths and limitations of the study

A significant strength was the use of a genetically iso-
lated population. This has been especially valuable for
mapping rare recessive disorders, but many researchers be-
lieve that this could be a solution for more complex disor-
ders as well, because of the relatively uniform genetic
background of the population. Some culturally and geneti-
cally isolated populations have a more similar lifestyle and
share eating habits and a natural environment, thus reduc-
ing environmental variation. Often, these populations have
been founded by a small number of individuals, followed
by a period of genetic isolation, during which genetic drift
might have been seen, and population expansion mainly oc-
curred by population growth and not by immigration (Jorde
and Wooding, 2004). Another strength of this study is the
use of a gold standard of angiography for CAD phenotype
assignment, which refines the group of interest.

Our study has included a limited number of genetic
variants associated with CAD. Although there is no estab-
lished minimal number of genes to include in a genetic
score, and this number may depend on allele frequencies
specific to the population under analysis, the inclusion of
more SNPs into our score could increase the predictive
power for CAD and other outcomes. Further studies evalu-
ating the clinical utility of adding a GRS in very large sam-
ples of individuals are underway.

Continuous and categorical NRI may have improved
our prediction performance for each category risk. Never-
theless, as previously stated, critical issues about the limita-
tion of using NRI, either as a continuous or categorical
variable, are still under debate and not conclusively solved.
In clinical settings, additional stratification strategies for
CAD, such as biomarkers, imaging modalities, or genetic
profiles, will have to be calculated individually or for the
intermediate risk group.

Conclusions

Overall, our findings demonstrate that GRS is inde-
pendent of TRF in a single-center cohort with adequate
population stratification. GRS improved the predictive risk
of FRS across all subgroups in 10-year risk estimates ac-
cording to the Framingham risk prediction function. A mar-
ginal increase in reclassifications measures was found, with
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a similar pattern across all subgroups. Further debate is
warranted about the incorporation of genetic data in sub-
groups known to be subestimated with respect to standard
stratification.
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