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Abstract

Ascorbate peroxidases (APXs) are heme peroxidases involved in the control of hydrogen peroxide levels and signal 
transduction pathways related to development and stress responses. Here, a total of 238 APX, 30 APX-related 
(APX-R), and 34 APX-like (APX-L) genes were identified from 24 species from the Poaceae family. Phylogenetic 
analysis of APX indicated five distinct clades, equivalent to cytosolic (cAPX), peroxisomal (pAPX), mitochondrial 
(mitAPX), stromal (sAPX), and thylakoidal (tAPX) isoforms. Duplication events contributed to the expansion of this 
family and the divergence times. Different from other APX isoforms, the emergence of Poaceae mitAPXs occurred 
independently after eudicot and monocot divergence. Our results showed that the constitutive silencing of mitAPX 
genes is not viable in rice plants, suggesting that these isoforms are essential for rice regeneration or development. 
We also obtained rice plants silenced individually to sAPX isoforms, demonstrating that, different to plants double 
silenced to both sAPX and tAPX or single silenced to tAPX previously obtained, these plants do not show changes 
in the total APX activity and hydrogen peroxide content in the shoot. Among rice plants silenced to different isoforms, 
plants silenced to cAPX showed a higher decrease in total APX activity and an increase in hydrogen peroxide levels. 
These results suggest that the cAPXs are the main isoforms responsible for regulating hydrogen peroxide levels in 
the cell, whereas in the chloroplast, this role is provided mainly by the tAPX isoform. In addition to broadening our 
understanding of the core components of the antioxidant defense in Poaceae species, the present study also provides 
a platform for their functional characterization.
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Introduction
Hydrogen peroxidase and other reactive oxygen species 

(ROS) are recognized as signaling molecules or secondary 
messengers participating in multiple signal transduction 
pathways, including environmental stimuli perception. In 
recent decades, many studies have supported the role of ROS 
in plant stress response pathways. The types of ROS and 
production sites allow flexibility and efficiency in many events 
related to the plant stress response, as well as in developmental 
processes, such as growth, cell cycle, programmed cell 
death, and hormone signaling (Mittler et al., 2004; Foyer 
and Noctor, 2005; Gadjev et al., 2006; Shigeoka and Maruta, 
2014; Vaahtera et al., 2014; Mittler, 2017). Due to their 
high reactivity, ROS also act as cytotoxic molecules, able to 
oxidize different biomolecules, such as proteins, lipids, and 
nucleic acids. Thus, during evolution, the development of 
efficient antioxidant systems has been essential for survival 
under changes in environmental conditions, particularly for 

plants, which due to their sessile lifestyle, are susceptible to 
a significant variety of biotic and abiotic stresses.

In addition to preventing the oxidative stress induced 
by ROS accumulation, the different antioxidant systems 
maintain the cellular concentration of ROS to a physiologic 
level necessary for events related to normal plant growth 
and development (Asada, 1999; Mittler, 2002; Mittler et al., 
2004). In photosynthetic organisms, the ascorbate peroxidase 
(APX) family (APX; EC 1.11.1.11) is the major component of 
the enzymatic antioxidant system. In plant cells, APX occurs 
in different subcellular compartments, such as peroxisomes, 
chloroplasts, mitochondria, and the cytosol, efficiently 
eliminating even very low levels of hydrogen peroxide using 
ascorbate as an electron donor. The mechanism of catalysis by 
ascorbate peroxidase is achieved using an oxidized Compound 
I intermediate, which is a transient species and contains a 
high-valent iron species (known as ferryl heme, Fe IV) and a 
porphyrin pi-cation radical. The compound I is subsequently 
reduced by reduced ascorbate in two sequential single electron 
transfer steps (Patterson et al., 1995; Jones et al., 1998). The 
APX activity is accomplished via the ascorbate-glutathione 
cycle, which uses the reduction potential of reduced glutathione 
to restore the oxidized ascorbate (Noctor and Foyer, 1998). 
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Over the years, many studies have provided important 
insights into the relevance of different APX enzymes in the 
control of hydrogen peroxide levels and signal transduction 
pathways related to developmental stages and stress responses 
(Zhang et al., 1997; Yoshimura et al., 2000; Sato et al., 2001; 
Agrawal et al., 2003; Fryer et al., 2003; Menezes-Benavente 
et al., 2004; Teixeira et al., 2006; Rosa et al., 2010; Gill and 
Tuteja 2010; Bonifacio et al., 2011, 2016; Caverzan et al., 
2012, 2014, 2019; Wang et al., 2015, Jardim-Messeder et al., 
2018). Besides its central role in the antioxidant metabolism 
in photosynthetic organisms, an additional function of APX 
has emerged. Using a combination of biochemical and genetic 
approaches, it was demonstrated that cytosolic APX from 
Arabidopsis and Brachypodium distachyon display coumarate 
3-hydroxylase activity, participating in lignin biosynthesis 
(Barros et al., 2019).

Evolutionary studies have demonstrated that APX and 
cytochrome c peroxidase (CCP, EC 1.11.1.5) emerged from 
ancient bacterial catalase-peroxidases (KatGs, EC 1.11.1.21) 
(Zámocký et al., 2015), which exhibit both catalase and 
peroxidase activities. In eukaryotic organisms, APX and CCP 
families were independently acquired through endosymbiosis 
events that originated the chloroplast and mitochondria 
organelles (Lazarotto et al., 2015). 

Ancient APX emerged in chlorophytes as a soluble 
enzyme target to chloroplast stroma. During land life 
adaptation, cytosolic and peroxisomal isoforms originated 
from duplication events. Additionally, the chloroplastic APX 
acquired an alternative splicing mechanism that originates 
both a soluble enzyme dual targeted to chloroplast and 
mitochondrion, as well as a thylakoid membrane-bound 
enzyme. Later, in some angiosperm groups such as Poales, 
Brassicales and Salicaceae, independent duplication and 
neofunctionalization events resulted in individual genes 
encoding soluble and membrane-bound isoforms (Qiu et al., 
2020; Jardim-Messeder et al., 2022).

Considering the important role of APX in the control 
of hydrogen peroxide steady-state levels, the identification 
and characterization of APX-encoding genes are essential 
for understanding the different signal transduction pathways 
related to plant development and stress response. APX family 
members have been characterized in different species. In rice 
(Oryza sativa), there are eight members of the APX family 
encoding two cytosolic (cAPX), two peroxisomal (pAPX), 
two mitochondrial (mitAPX), and two chloroplastic (chlAPX) 
isoforms. In the chloroplast, there is one APX located in the 
stromal (sAPX) and another in the thylakoid (tAPX) (Teixeira 
et al., 2004, 2006; Xu et al., 2013; Wu et al., 2016). 

Rice is a monocot species, a member of the Poaceae 
family. The Poaceae, commonly referred to as grasses, is 
recognized as the most economically important plant family, 
providing more than 50% of all human dietary energy from 
cereal consumption (Shavanov, 2021). In addition, some 
Poaceae species have important roles as biofuel or building 
material sources. The cereal cultures, similar to the other crops, 
are highly threatened by environmental stresses, which are 
becoming increasingly frequent due to climate change events. 
Despite the economic and social importance of the Poaceae 
family, APX genes have only been identified and annotated 

in rice (Teixeira et al., 2004), maize (Zea mays) (Liu et al., 
2012), sorghum (Sorghum bicolor) (Akbudak et al., 2018), 
and wheat (Triticum aestivum) (Tyagi et al., 2020). 

Previous work has demonstrated that the manipulation 
of APX gene expression alters plant development and stress 
response pathways. Among the Poaceae species, the APX 
family has been manipulated mainly in rice. Knocking out 
OsAPX1 in rice results in normal development but increased 
seed abortion (Kim et al., 2015). OsAPX2 knockout leads to 
a semidwarf phenotype and increased sensitivity to drought, 
salt, and cold stresses (Zhang et al., 2013). Similarly, the 
individual silencing of OsAPX1 or OsAPX2 genes impairs 
plant development. On the other hand, a normal phenotype 
and enhanced tolerance to toxic aluminum concentration have 
been verified in double-silenced plants to OsAPX1 and OsAPX2 
(Rosa et al., 2010). In these plants, the altered expression 
of several genes associated with the photosynthetic process 
and antioxidant defense (Ribeiro et al., 2012) and altered 
antioxidant response under salinity and osmotic stresses 
have also been verified (Cunha et al., 2016). In maize, the 
overexpression of cAPX (ZmAPX1) confers resistance to 
southern corn leaf blight in a jasmonic acid-mediated defense 
signaling pathway (Zhang et al., 2022).

The double silencing of rice pAPX isoforms (OsAPX3 
and OsAPX4) led to early senescence (Souza et al., 2015; 
Ribeiro et al., 2017), whereas the double silencing of sAPX 
and tAPX genes (OsAPX7 and OsAPX8, respectively) impairs 
the protection of photosystem II (PSII) under MV-induced 
oxidative stress (Caverzan et al., 2014). The individual 
silencing of rice tAPX increased hydrogen peroxide led to 
closer stomata, and delayed germination in plants silenced to 
OsAPX8 (Jardim-Messeder et al., 2018; Cunha et al., 2019). 
On the other hand, overexpression lines exhibited increased 
tolerance to bacterial pathogens (Jiang et al., 2016). In wheat, 
the silencing of the tAPX lowered photosynthetic carbon 
assimilation and reduced growth rate and seed production 
(Danna et al., 2003).

Despite different APX isoforms having been functionally 
characterized, the physiological role of mitAPX isoforms 
remains understudied. Previous works demonstrated that in 
rice plants, salt exposure increases the expression of mitAPX 
isoforms (OsAPX5 and OsAPX6) (Lázaro et al., 2013), and 
similarly, a salt-tolerant wheat cultivar showed increased 
mitochondrial APX activity (Sairam and Srivastava 2002). 
Until the last decade, the contribution of mitochondrial 
respiration as a source of ROS production in plant cells was 
largely unexplored. In mitochondria, the respiratory complexes 
I, II, and III are regarded as the main sites of superoxide anion 
production (Møller, 2001; Jardim-Messeder et al., 2015), which 
is rapidly dismuted to hydrogen peroxide by mitochondrial 
superoxide dismutase. Due to the absence of catalase in plant 
mitochondria, the peroxidase isoforms, such as mitAPX, 
glutathione peroxidase (GPX; EC 1.11.1.9) and peroxiredoxins 
(Prx; EC 1.11.1.15) isoforms may have an important role in 
mitochondrial antioxidant defense. Indeed, the silencing of 
mitochondrial OsGPX3 impairs H2O2 homeostasis and root 
and shoot development (Passaia et al., 2013). 

A comparative study between the genes encoding 
different APX isoforms in different species of Poaceae and 
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how these genes evolved in this group of plants has not yet 
been performed. Furthermore, little is known about the function 
of mitochondrial APX isoforms. Therefore, the present work 
aims to address these two aspects in the understanding of this 
enzyme family of the plant antioxidant system. To determine 
the diversity and evolutionary history of the APX in Poaceae 
species, we performed a genome-wide characterization. We 
also carried out the functional characterization of rice mitAPX 
isoforms and compared the impact of silencing the different 
rice APXs on total APX activity and hydrogen peroxide 
levels. Our analysis revealed 238 APX genes in 24 species 
from Poaceae. In addition, we identified 30 APX-related 
(APX-R) and 34 APX-like (APX-L) genes, proteins closely 
related to APX. The phylogenetic relationship among these 
genes, as well as the duplication events that contributed to 
the expansion of these families, were evaluated. Different 
from other APX isoforms, the emergence of Poaceae mitAPX 
occurred independently after eudicot and monocot divergence. 
The analysis of rice plants silenced to different APX isoforms 
showed that the double silencing of cAPX and chlAPX 
isoforms led to decreased total APX activity and increased 
hydrogen peroxide content. On the other hand, the silencing 
of pAPX isoforms did not alter these parameters. In contrast 
to the other APX isoforms, the constitutive silencing of the 
mitAPX isoforms in rice was not viable, indicating that 
these isoforms are essential for plant development and their 
silencing is lethal. This study broadens our understanding of the 
structural and functional core components of the antioxidant 
defense in Poaceae species.

Material and Methods

Retrieval of APX, APX-R and APX-L amino acid 
sequences

APX, APX-R and APX-L amino acid sequences of 
Brachypodium distachyon (v3.2), Panicum virgatum (v5.1), 
Setaria italica (v2.2), Zea mays (RefGen_V4), Sorghum bicolor 
(v3.1.1), Saccharum spontaneum (v20190103), Miscanthus 
sinensis (v7.1), Oryza brachyantha (v1.4), Brachypodium 
stacei (v1.1), Brachypodium mexicanum (v1.1), Brachypodium 
hybridum (v1.1), Brachypodium sylvaticum (v1.1), Panicum 
hallii (v3.2), Paspalum vaginatum (v3.1), Urochloa fusca 
(v1.1), Setaria viridis (v2.1), Pharus latifolius (v1.1), Eleusine 
coracana (v1.1), Oropetium thomaeum (v1.0), Triticum 
aestivum (IWGSC), Lolium perenne (v1.4), Triticum turgidum 
(v1.0) and Cenchrus americanus (v1.0) were retrieved from 
Phytozome v12.1.6 and Dicot Plaza 4.5 databases through 
BLASTp tool using sequences from rice as bait, and a minimum 
threshold cutoff of e−20. Sequences were checked by reverse 
BLASTp in NCBI, and Pfam analysis was used to confirm 
the presence of conserved domains (El-Gebali et al., 2018).

Phylogenetic and exon-intron analyses

For phylogenetic analysis, amino acid sequences of 
APX, APX-R and APX-L proteins were aligned using Multiple 
Sequence Comparison by Log Expectation tool (MUSCLE) 
(Edgar, 2004). The phylogenetic tree was made using the 
maximum likelihood method under the best model selection in 
MEGA 7.1 software (Tamura et al., 2013) with 1000 replicates 

of bootstrap statistics. The exon-intron structures of the APX, 
APX-R and APX-L genes from Oryza sativa, Brachypodium 
distachyon, Panicum virgatum, Setaria italica, Zea mays, 
Sorghum bicolor and Saccharum spontaneum were examined 
using the online Gene Structure Display Server (GSDS: http://
gsds.cbi.pku.edu.ch) (Guo et al., 2007).

Calculation of Ka/Ks and divergence time

The nucleotide and amino acid sequences of duplicated 
gene pairs were aligned and were estimated the number of 
non-synonymous substitutions per non-synonymous site (Ka), 
synonymous substitutions per synonymous site (Ks) and Ka/
Ks ratio using KaKs_Calculator 2.0 software (Wang et al., 
2010). The divergence time between the duplicated genes was 
calculated through the formula T=Ks/2r, where T represents 
the divergence time and r represents divergence rate. The 
divergence rate for monocots was previously presumed to 
be 6.5 x 10-9 (Gaut et al., 1996)

Structural analysis of APX, APX-R and APX-L 
proteins

The molecular weight (MW), isoelectric point (pI) and 
GRAVY (grand average of hydropathy) of the APX, APX-R 
and APX-L proteins were investigated using the the ProtParam 
tool (Gasteiger et al., 2005). The conserved motifs in amino 
acid sequences were analyzed using MEME (Multiple Em for 
Motif Elicitation) software (http://meme-suite.org/) using the 
following parameters: number of motifs 1–15 and motif width 
of 5–50 (Bailey et al., 2009). Prediction of three-dimensional 
models was performed by AlphaFold software (Jumper et al., 
2021), and visualized in Chimera UCSF software. To compare 
the primary sequence among Oryza sativa, Brachypodium 
distachyon, Panicum virgatum, Setaria italica, Zea mays, 
Sorghum bicolor and Saccharum spontaneum APX proteins, 
the translated sequences from their coding regions were aligned 
with Clustal Omega and analyzed by boxshade interface.

Prediction of potential cis-regulatory elements

The upstream genomic sequences (1000 bp upstream 
from the translation start codon) of candidate genes were 
retrieved, and the presence of cis-regulatory elements was 
identified by Plant Promoter Analysis Navigator from the 
PlantPAN 3.0 database (Chow et al., 2019).

Plant material and growth conditions

Rice (Oryza sativa L. japonica cv. Nipponbare) seeds 
were germinated in MS medium (Sigma-Aldrich) at 150 
μmol.m−2.s−1 photosynthetic photon flux density (PPFD), 
25 °C, 80% relative humidity and a 12 h photoperiod) One 
week after being sown, the rice seedlings were transferred to 
hydroponic growth in 200-mL plastic cups (three seedlings 
per cup) filled with Hoagland–Arnon’s nutritive solution 
(Hoagland and Arnon, 1950).

Quantitative PCR (RT-qPCR)

Real-time PCR experiments were carried out using 
cDNA synthesized from total RNA purified with TRIzol 
(Invitrogen®). The samples were treated with DNAase 
(Invitrogen®) to remove the eventual genomic DNA 

http://gsds.cbi.pku.edu.ch)
http://gsds.cbi.pku.edu.ch)
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contamination and complementary DNA (cDNA) was obtained 
using the SuperscriptTMII (Life Technologies®) reverse 
transcriptase system and a 24-polyTV primer (Invitrogen®). 
After synthesis, cDNAs were diluted 10–100 times in sterile 
water for use in PCR reactions. All reactions were repeated 
four times, and expression data analyses were performed after 
comparative quantification of the amplified products using 
the 2-ΔΔCt method (Livak and Schmittgen, 2001; Schmittgen 
and Livak, 2008). RT-qPCR reactions were performed in an 
Applied Biosystems StepOne plus Real Time PCR system 
(Applied Biosystems®).

APX enzymatic assays 

Shoots (approximately 1g) from non-transformed 
(NT), RNAiOsAPX1/2, RNAiOsAPX4, RNAiOsAPX7/8, 
RNAiOsAPX7 and RNAiOsAPX8 plants were immersed 
in liquid nitrogen, finely ground to a powder with a mortar 
and pestle, and 2 mL of 100 mM K-phosphate buffer, pH 
6.8, containing 0.1 mM EDTA, were added to allow protein 
extraction. After centrifugation at 12,000 × g, 15 min, 4 °C, the 
soluble protein content of the supernatant was quantified using 
the method described by Bradford (1976) and, subsequently, 
used to evaluate APX enzymatic activity. The activity of 
ascorbate peroxidase (APX) was measured by following the 
ascorbate oxidation by the decrease in absorbance at 290 nm, 
as previously described by Koshiba (1993).

Quantitative measurement of H2O2

Measurements of hydrogen peroxide content were 
performed by extracting from leaves according to Rao et al. 
(2000) using Ampliflu Red (Sigma-Aldrich) oxidation (Smith 
et al., 2004). Fluorescence was monitored using a fluorometer 
at excitation and emission wavelengths of 563 nm and 587 
nm, respectively. Calibration was performed by the addition 
of known quantities of H2O2.

Vector construction and plant transformation

A chimeric gene producing mRNA with a hairpin 
structure (hpRNA) was constructed based on the sequence 
of the OsAPX5, OsAPX6 and OsAPX7 (LOC_Os12g07830, 
LOC_Os12g07820, and LOC Os04g35520) genes. The 
following primer pairs were used to amplify a 204 bp sequence 
common to OsAPX5 and OsAPX6 (5’ – CATACTCGAGG 
GAGTTGAGTTAG-3’ and 5’ – CTATACTAGTAGGTG 
GGCATTCT-3’) and a 220 bp fragment from the OsAPX7 
(5’ – CTCCGAGCAATCTGGGTGCAAAAAT-3’ and 5’ – 
GGTACCTCGAGGACTCGTGGTCAGGAAAAGC-3’). 
PCR product was cloned into the Gateway vector pANDA, in 
which hairpin RNA is driven by the maize ubiquitin promoter 
and an intron placed upstream of the inverted repeats (Miki 
and Shimamoto, 2004). The construct was denominated 
RNAiOsAPX5/6. Agrobacterium tumefaciens-mediat 
ed transformation was performed as described previously 
(Upadhyaya et al., 2002).

Analysis of the subcellular location of OsAPX5 and 
OsAPX6 proteins in rice protoplast

The subcellular localization of OsAPX5 and OsAPX6 
proteins was experimentally determined in rice protoplasts. 

The translational fusion of OsAPX5 and OsAPX6 with YFP 
protein was driven by the CaMV 35S promoter. Protoplast 
isolation was performed as described by Chen et al. (2006) 
and protoplast transformation as described by Tao et al. 
(2002). After transformation, protoplasts were incubated for 
24–48 h in the dark at 28 °C before imaging. Fluorescence 
was monitored using an Olympus FluoView 1000 confocal 
laser scanning microscope (Olympus, Japan) equipped with 
a set of filters capable of distinguishing between green and 
yellow fluorescent protein (GFP and YFP, respectively) and 
plastid autofluorescence. The images were captured with a 
high-sensitivity photomultiplier tube detector.

Statistical analysis

Data were plotted with GRAPHPAD PRISM 5.0 
(GraphPad Software Inc., La Jolla, CA, USA) and analyzed 
by one-way ANOVA and a posteriori Tukey’s test. P-values 
of 0.05 were considered statistically significant.

Results

Identification and phylogenetic analysis of APX 
family in Poaceae species

The use of the OsAPX, OsAPX-R, and OsAPX-L genes 
as bait against the genome of 24 species from the Poacea 
family, distributed into 16 genera, allowed us to identify 238 
APX, 30 APX-R, and 34 APX-L genes. Phylogenetic analyses 
revealed a clear divergence among these APX, APX-R, and 
APX-L genes (Figure 1). Among the APX sequences, there are 
two main phylogenetic groups resultant of a first dichotomous 
branching. One branch contains sequences from cAPX and 
pAPX isoforms, and another one includes the mitAPX and 
chlAPX sequences. 

The analysis of cAPX sequences, here named as group 
I, revealed a subsequent and specific duplication event that 
resulted in two branches of cAPX, named as groups Ia and 
Ib. Except for Lolium perenne and Urochloa fusca, which 
have only one cAPX gene, all analyzed species showed at 
least one cAPX gene from each phylogenetic subgroups Ia 
and Ib. Similarly, two branches of pAPX were also observed, 
here named groups IIa and IIb. These groups are possibly 
due to a duplication event of an ancestral pAPX. In all 
analyzed species, pAPX sequences belonging to both groups 
were found. The sequences of mitAPX, sAPX, and tAPX 
isoforms are grouped in individual branches, named groups 
IIIa, IIIb, and IIIc, respectively. In all species, members of 
each group are present. Among the groups IIIa, IIIb, and IIIc, 
mitAPX appears to be the more divergent, whereas sAPX 
and tAPX are possibly resultants of more recent duplication 
and neofunctionalization events. Here, the APX-R group is 
named group IV and APX-L as group V. In contrast to APX 
genes, typically only one APX-R gene is present in most of 
the plant species, being absent in Cenchrus americanus and 
Saccharum spontaneum genomes.

The APX, APX-R, and APX-L genes identified in 
Poacea species classified into each phylogenetic group 
are indicated in Table 1. The genes were named following 
the rice APX nomenclature, considering the phylogenetic 
subgroups. Because APX genes from Zea mays (Liu et al., 
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Figure 1 – Phylogenetic analysis of APX, APX-R and APX-L proteins. The phylogenetic relationship between APX, APX-R, APX-L was reconstructed 
using the maximal-likelihood method under the best model selection in IQ-TREE software with 1000 replicates of rapid bootstrap and aLRT statistics. 
A total of 334 protein sequences were included in the analysis, and ambiguous positions were removed from the alignment. The protein sequences 
separated in five well-supported clusters: Group I – cytosolic APX (cAPX); Group II – peroxisomal APX (pAPX); Group IIII – mitochondrial/chlroplastic 
APX (mit/chlAPX); Group IV – APX-related (APX-R); Group V – APX-Like (APX-L). The posterior probabilities are discriminated above each branch.
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2012), Sorghum bicolor (Akbudak et al., 2018), and Triticum 
aestivum (Tyagi et al., 2020) were identified previously, we 
kept the names earlier indicated. Among the analyzed species, 
Panicum virgatum, Saccharum spontaneum, Miscanthus 
sinensis, Brachypodium mexicanum, Brachypodium hybridum, 

Eleusine coracana, Triticum aestivum, and Triticum turgidum 
have multiples genomes. The gene haplotypes were named 
indicating their respective subgenome: Panicum virgatum 
(K and N), Saccharum spontaneum (A, B, C and D), Miscanthus 
sinensis (A and B), Brachypodium mexicanum (P and U), 
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Table 1 – List of APX, APX-R and APX-L genes identified in Poaceae species classified into phylogenetic groups.

Species name
Genes identified

Total
Ia Ib IIa IIb IIIa IIIb IIIc IV V

Brachypodium distachyon 1 1 1 1 1 1 1 1 1 9

Brachypodium stacei 1 1 1 1 1 1 1 1 1 9

Brachypodium sylvaticum 1 1 1 1 1 1 1 1 1 9

Cenchrus americanus 1 1 1 1 1 1 1 – 1 8

Lolium perenne – 1 1 1 1 1 1 1 1 8

Oropetium thomaeum 1 1 1 1 1 1 1 1 1 9

Oryza brachyantha 1 1 1 1 1 1 1 1 1 9

Oryza sativa 1 1 1 1 2 1 1 1 1 10

Panicum hallii 1 1 1 1 1 1 1 1 1 9

Paspalum vaginatum 1 1 1 1 1 1 1 1 1 9

Pharus latifolius 1 1 1 2 1 1 1 1 1 10

Setaria italica 1 1 1 1 1 1 1 1 1 9

Setaria viridis 1 1 1 1 1 1 1 1 1 9

Sorghum bicolor 1 1 1 1 1 1 1 1 1 9

Urochloa fusca 1 – 1 1 1 1 1 1 1 8

Zea mays 2 1 1 1 1 1 1 1 1 10

Brachypodium hybridum
D 1 1 1 1 1 1 1 1 1 9

S 1 1 1 1 1 1 1 1 1 9

Brachypodium mexicanum
P 1 1 1 1 1 1 1 1 1 9

U 1 1 1 1 1 1 1 1 1 9

Eleusine coracana
A 1 1 1 – 1 1 1 1 1 8

B 1 1 2 1 1 1 1 1 1 10

Miscanthus sinensis
A 1 1 1 1 1 1 1 1 1 9

B 1 1 1 1 1 1 1 1 1 9

Panicum virgatum
K 1 – 1 1 1 1 1 1 1 8

N 1 1 1 1 1 1 1 1 1 9

Triticum turgidum
A 1 1 1 1 1 1 1 1 1 9

B 1 1 1 1 1 1 1 1 1 9

Triticum aestivum

A 1 1 1 1 1 1 1 1 1 9

B 1 1 1 1 1 1 1 1 1 9

D 1 1 1 1 1 1 1 1 1 9

Saccharum spontaneum

A – 1 1 1 1 1 1 – – 6

B – 1 1 1 1 1 1 – 1 7

C 2 – 1 – 1 1 1 – 1 7

D – 1 1 1 – – – – 1 4

Total 33 32 36 34 35 34 34 30 34 302

Brachypodium hybridum (D and S), Eleusine coracana (A and 
B), Triticum aestivum (A, B and D), and Triticum turgidum 
(A and B) (Table 1). The APX2 genes from Brachypodium 
mexicanum (Brame.U002700 and Brame.U006600) were 
found in scaffolds; consequently, we could not identify the 
subgenomes in these haplotypes. 

Structural organization of APX, APX-R, and APX-L 
genes in Poacea species

To investigate the relationships among the different genes 
encoding the APX, APX-R, and APX-L isoforms in Poaceae 
species, we compared their chromosomal locations and 

structural organization, among Oryza sativa, Brachypodium 
distachyon, Panicum virgatum, Setaria italica, Zea mays, 
Sorghum bicolor, and Saccharum spontaneum orthologs. 
The chromosomal location of APX, APX-R, and APX-L 
genes in these species, the paralogous genes resultant from 
duplication events, and the collinearity among the orthologs 
from the species indicate a close evolutionary relationship 
among the APX, APX-R, and APX-L orthologous genes 
of Poaceae species and a variable distribution on different 
chromosomes (Figure 2, Figure S1). The study of paralogous 
genes indicates that the pairs of cAPX, pAPX, and chlAPX 
genes in each species are due to segmental duplication events, 
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Figure 2 – Chromosomal distribution of APX, APX-R and APX-L genes in Oryza sativa, Brachypodium distachyion, Panicum virgatum (subgenomes K and N), Setaria italica, Zea mays, Sorghum bicolor and 
Saccharum spontaneum (subgenomes A, B, C and D). Chromosome numbers are displayed next to each bar. Red lines indicate segmental duplications and gene duplicated in tandem are indicated in green.
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whereas the mitAPX genes from Oryza sativa (OsAPX5 and 
OsAPX6) are the unique duplicated APX gene pair resultant 
of an in tandem duplication event. The Ka/Ks ratios of each 
duplicated gene pair were <0.1, suggesting the occurrence of 
purifying selection (Figure 3A).

Our analysis also indicates that the duplication events 
possibly occurred at different times (Figure 3B; Table 2). 
Among the different paralogous genes, the duplication of 
pAPX (groups IIa and IIb) appears to be more ancestral, 
around 110 million years ago (MYA). Posteriorly, mitAPX 
(IIIa) branched off from chlAPX approximately 80 MYA. 
Finally, the duplication events of cAPX (groups Ia and Ib) 
and chlAPX (groups IIIb and IIIc) are more recent, possibly 
occurring around 45 MYA. Additionally, in some species, 
specific duplication events occurred. The in tandem duplication 
of Oryza sativa mitAPX may have occurred around 16 
MYA. In Zea mays and Saccharum spontaneum, segmental 
duplications of cAPX from group Ia probably occurred around 
14 and 1 MYA, respectively. As expected, these paralogous 
genes are very similar, and the physiological importance of 
these duplication events remains unknown. In APX-R and 
APX-L groups, duplication events were not observed. It was 
already demonstrated that gene duplication among APX-R is 

uncommon, and these genes faced strong negative selection 
pressure (Dunand et al., 2011; Lazzarotto et al., 2011)

The analysis of the structural organization of APX, 
APX-R, and APX-L genes reveals a high degree of conservation 
in exon-intron structure among the sequences belonging to the 
same phylogenetic group (Figure 4). The cAPX and pAPX 
subfamilies show a similar exon-intron structure, except for 
exon 2 from cAPX and the last exon from pAPX genes. The 
cAPX exon 2 is equivalent to exons 2 and 3 from pAPX, and 
the last exon of pAPX genes encodes the pAPX transmembrane 
domain and the peroxisome sorting signal, which is absent 
in cAPX genes (Figure 4A). In both groups, the APX active 
site is encoded by exons 1 and 2, and the heme-binding site is 
encoded by exon 5 from cAPX and exon 6 from pAPX genes. 
Although the exon-intron structure is highly conservated 
among different species, BdAPX3 has a longer exon 3, which 
is most likely due to a fusion of equivalents to exon 3 and 4 
from other species. In addition, the equivalent to exon 4 from 
the SsAPX4 gene appears to be not present.

The exon-intron structure is also highly conserved 
among tAPX, sAPX, and mitAPX genes (Figure 4B). In these 
groups, the chloroplast and mitochondria sorting signals are 
found in exon 1, the APX active site is encoded by exons 2 

Figure 3 – Ratios of non-synonymous to synonymous substitutions (Ka/Ks) and estimated divergence time in APX genes from Poaceae species. (A) 
Ka/Ks ratios of intraspecific duplicated gene pairs from group I (group Ia x group Ib), group II (group IIa x group IIb) and group III (group IIIa and 
IIIc; group IIIb and IIIc); (B) estimated divergence time of duplicated gene pairs from group I, group II and group III. These parameters are determined 
for 24 Poaceae species and the values for Oryza sativa, Brachypodium distachyon, Panicum virgatum, Setaria italica, Zea mays, Sorghum bicolor and 
Saccharum spontaneum are indicated in colored symbols.
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and 3, and the heme-binding site is encoded by exon 7. tAPX 
genes have a longer exon 11 and an additional exon 12, which 
contain the coding sequence to the chlAPX transmembrane 
domain, responsible for anchoring tAPX in the thylakoid 
membrane. Despite this general similarity, some singularities 
were observed. Exon 1 from PvAPX7_K, PvAPX7_K, and 
SiAPX7 appears to be a fusion of the equivalents to exons 1 
and 2 from other species. In ZmAPX7, the equivalents to exons 
11 and 12 appear to be fused as a unique and longer exon 11. 
On the other hand, in SbAPX3, SsAPX7_A, SsAPX7_B, and 
SsAPX7_C, exon 11 is divided into two exons. The exon-
intron structure of the APX-R and APX-L genes displays 
more divergency in comparison to the APX genes (Figure S2). 
The analysis of the putative promoter regions of the Poaceae 
APX, APX-R, and APX-L genes identified many putative cis-
acting elements responsive to phytohormone signaling and 
environmental stresses (Table S1 – https://1drv.ms/u/s!aihfil
iuspreg8ysv9pqxjfrohju8w?e=hrviil, Figure S3).

Protein sequence analyses of APX, APX-R, and 
APX-L in Poaceae species

The Poaceae APX, APX-R, and APX-L genes encode 
polypeptides of 155–1521 amino acid residues, 27.35–98.75 
Kda, and 5.75–9.60 PI values (Table S2, https://1drv.ms/u/s!
aihfiliuspreg8ysv9pqxjfrohju8w?e=hrviil). The sequence 
variations are correlated with their respective subfamilies 
and, in part, can be explained by the presence of transit 
peptides and transmembrane domains. Among the analyzed 
APX, sequences from groups IIIa, IIIb, and IIIc displayed the 
highest instability index. The lability of chlAPX proteins has 
been previously demonstrated in different species, and high 
levels of endogenous ascorbic acid are necessary to prevent 
their inactivation (Shikanai et al., 1998; Miyagawa et al., 
2000; Yoshimura et al., 2000; Shigeoka et al., 2002; Liu et 
al., 2008). Further, APX, APX-R, and APX-L sequences show 
low GRAVY values, suggesting better interactions with water 
due to their hydrophilic nature.

To compare the motifs shared within APX, APX-R, and 
APX-L sequences, the MEME motif search tool was employed. 
This analysis identified 15 distinct conserved motifs (Figure 5). 
Among the APX sequences, the cAPX (groups Ia and Ib), 
pAPX (groups IIa and IIb), mitAPX (group IIIa), and chlAPX 
(groups IIIb and IIIc) isoforms show almost the same motif 
composition pattern. Motif 11 is found only in the pAPX 
subfamily and is equivalent to a peroxisomal targeting signal. 
In groups IIIa, IIIb, and IIIc, an N-terminal extension was 
found, which corresponds to the chloroplast/mitochondrial 
transit peptide. Among these groups, the sequences of group 
IIIc show a C-terminal extension with the transmembrane 
domain related to thylakoid membrane anchoring (motif 
12). As expected, the APX-R and APX-L sequences (groups 
IV and V) show a distinct motif composition. The sequence 
logos for the 15 conserved motifs of APX, APX-R, and APX-L 
proteins are shown in Figure S4.

Because APX protein sequences are highly conserved 
among different species, the protein structure prediction was 
performed for the rice APX, APX-R, and APX-L sequences, 
using Swiss-Model software to construct three-dimensional 
models. Figure 6 shows the structural models of Oryza 
sativa OsAPX1, OsAPX2, OsAPX3, OsAPX4, OsAPX5, 

OsAPX6, OsAPX7, OsAPX8, OsAPX-R, and OsAPX-L 
proteins with the indication of amino acids residues related 
to catalytic activity and ascorbate binding. As expected, 
the APX models show high structural conservation with 
similar helices and strands (Figures 6A-D). On the other 
hand, the APX-R and APX-L structural models are more 
divergent (Figures 6E , F). We also analyzed APX, APX-R, 
and APX-L amino acid sequences, comparing Oryza sativa, 
Brachypodium distachyon, Panicum virgatum, Setaria italica, 
Zea mays, Sorghum bicolor and Saccharum spontaneum 
orthologs. The alignments of cAPX, pAPX, mitAPX, 
sAPX, tAPX, APX-R, and APX-L amino acid sequences 
are indicated in Figures S5, S6, S7, S8, S9, S10, and S11. 
The sequence logos for the active site, heme-binding, 
cation-binding organellar signature domains of cAPX, 
pAPX, mitAPX, sAPX, tAPX, and APX-R are provided in 
Figure 6G. Our analysis showed that the amino acid residues 
related to catalytic activity and ascorbate binding, as well as 
the active site, heme-binding, and cation-binding domains, 
are conserved in cAPX, pAPX, mitAPX, sAPX, and tAPX 
sequences. The analysis of APX-R and APX-L demonstrated 
several divergences in comparison to APX. Despite the 
divergent motif composition and the low conservation of the 
APX active site, the APX-R protein shows high conservation 
in the heme-binding site and the presence of all amino acid 
residues described as essential to peroxidase activity (Figures 
6E, G, and S10). On the other hand, APX-L sequences 
demonstrated distinct motif patterns, low conservation in 
the heme-binding and active sites, as well as the absence of 
catalytic residues described to APX or other enzymes with 
peroxidase activity (Figures 6F and S11). 

Comparative analysis of rice plants silenced to 
OsAPX1, OsAPX2, OsAPX3, OsAPX4, OsAPX7, and 
OsAPX8 genes

Plants silenced for the different rice APX genes were 
previously obtained. This knock-down collection represents 
an important tool for functional analysis that is not available 
for other species. The phenotypic effect of the knockdown 
of each of these genes differs significantly (Rosa et al., 2010; 
Caverzan et al., 2014; Souza et al., 2015; Ribeiro et al., 
2017; Jardim-Messeder et al., 2018). However, to date, no 
comparative analysis has been performed with all of these 
plants. Here, in addition to the analysis of RNAi plants 
previously generated, namely RNAiOsAPX1/2 (Rosa et al., 
2010), RNAiOsAPX4 (Ribeiro et al., 2017), RNAiOsAPX7/8 
(Caverzan et al., 2014), and RNAiOsAPX8 (Jardim-Messeder 
et al., 2018), we attempted to produce knockdown plants for 
the mitochondrial isoforms OsAPX5, OsAPX6, and OsAPX7 
individually (single mutants). 

Due to the high similarity among OsAPX5 and OsAPX6 
genes, it was not possible to design individual RNAi for single 
silencing. Hence, the RNAi was projected to silence both 
genes simultaneously. After several rounds of transformation 
experiments, we were not able to obtain embryogenic callus 
transformed with RNAiOsAPX5/6 construction, indicating that 
the double knockdown is lethal and leads to Calli necrosis. On 
the other hand, we generated different lines single silenced to 
the OsAPX7 gene. Two independent lines of RNAiOsAPX7 
plants, named “line a” and “line b”, were analyzed.

https://1drv.ms/u/s!aihfiliuspreg8ysv9pqxjfrohju8w?e=hrviil,
https://1drv.ms/u/s!aihfiliuspreg8ysv9pqxjfrohju8w?e=hrviil,
https://1drv.ms/u/s!aihfiliuspreg8ysv9pqxjfrohju8w?e=hrviil)
https://1drv.ms/u/s!aihfiliuspreg8ysv9pqxjfrohju8w?e=hrviil)
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Figure 5 – Conserved motifs of APX, APX-R and APX-L proteins from Chlamydomonas reinhardtii (Chrei), Physcomitrella patens (Phpat), Amborella 
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The RT-qPCR analysis confirmed the knockdown of 
the selected genes, with different levels of reduction: 96% for 
APX1 and 92% for APX2 in RNAiOsAPX1/2; 91% to APX3 
and 96% to APX4 in RNAiOsAPX4; 55% to APX7 and APX8 
in RNAiOsAPX7/8; 82% to APX8 in RNAiOsAPX8 plants. 
In the single-silenced RNAiOsAPX7 plants, the OsAPX7 
transcript was reduced by 71% and 76% in lines a and b, 
respectively. In both lines, the OsAPX8 transcript levels were 
not altered, confirming that only OsAPX7 was silenced in 
these plants (Figure 7A).

The biochemical analysis of the shoot of transformed 
plants shows that the double silencing of OsAPX1, OsAPX2, 
OsAPX7, and OsAPX8, and the individual silencing of OsAPX8 
decreased total APX activity. In RNAiOsAPX1/2 plants, the 
APX activity was reduced by approximately 35%, whereas 
in RNAiOsAPX7/8 and RNAiOsAPX8 plants, the reduction 
was 22% and 26%, respectively. On the other hand, APX 
activities in RNAiOsAPX4 and RNAiOsAPX7 plants were 
not altered (Figure 7B). In all analyzed plants, the reduction 
of APX activity was accompanied by an increase in hydrogen 
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Figure 6 – Structure and protein sequence analysis of APX, APX-R and APX-L in Poaceae species. The tertiary structure of OsAPX1 and OsAPX2 
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Figure 7 – APX activity and hydrogen peroxide content in shoots from rice plants silenced to cAPX, pAPX and chlAPX isoforms. (A) Quantitative 
determination of APX expression in shoots from RNAi OsAPX1/2, RNAi OsAPX4, RNAi OsAPX7/8, RNAi OsAPX7 and RNAi OsAPX8 plants. The 
values are expressed relatively to NT plants. (B) Measurement of APX activity in shoots from NT and silenced plants. (C) Hydrogen peroxide content 
in shoots from NT and silenced plants. (D) The relationship among the APX activity and hydrogen peroxide content in shoots from all plants analyzed. 
The values represent the media ± SE of at least three independent experiments.
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peroxide levels. The RNAiOsAPX1/2 plants showed the 
highest hydrogen peroxide levels, by approximately 2 folds 
compared to NT plants. In RNAiOsAPX7/8 and RNAiOsAPX8 
plants, the hydrogen peroxide levels were increased by about 
31% and 54%, respectively, but no changes were found in 
RNAiOsAPX4 and RNAiOsAPX7 plants (Figure 7C). These 
results demonstrated that the reduction of APX activity is 
directly related to increased hydrogen peroxide in shoots from 
rice plants (Figure 7D), despite that, we should not discard a 
compensatory mechanism involving other antioxidant enzymes 
in response to the alterations in the APX expression levels. 
These plants were previously evaluated phenotypically (Rosa 
et al., 2010; Caverzan et al., 2014; Souza et al., 2015; Ribeiro 
et al., 2017; Jardim-Messeder et al., 2018). The relationship of 
these results with the phenotypic data will be discussed later. 

Characterization of mitochondrial APX isoforms in rice

In each Poaceae genome analyzed in this work, at least 
one predicted mitAPX isoform was found. The exception was 

rice, which has two APX isoforms generated by a recent in 
tandem duplication (Figure 2; Table 2). The alignment of the 
predicted N-terminal mitochondrial transit peptide is shown 
in Figure 8A, indicating a high conservation among the 
orthologous of mitAPX. This analysis revealed the presence 
of positively charged residues and at least one amphipathic 
α-helix, important for the import of proteins into mitochondria 
but not chloroplasts (Ge et al., 2014). 

The subcellular localization of OsAPX5 and OsAPX6 
were analyzed by YFP fusion in rice protoplasts. Confocal 
analysis of protoplasts expressing 35S-OsAPX5::YFP and 
35S-OsAPX6::YFP fusions revealed that OsAPX5 and OsAPX6 
were localized exclusively in mitochondria (Figure 8B). 

We also compared the expression pattern of mitAPX 
with chlAPX isoforms during the initial development. Our 
results show that the expression patterns of the OsAPX5 
and OsAPX6 genes are highly similar (Figure 8C), with 
substantial expression in the early stages and then decreasing 
throughout development. In 3-day-old plants, the expression 

Table 2 – Ka/Ks analysis and divergence time between the duplicated APX gene pairs in Oryza sativa, Brachypodium distachyion, Panicum virgatum, 
Setaria italica, Zea mays, Sorghum bicolor and Saccharum spontaneum. Ka. Non-synonymous substitution rate; Ks. Synonymous substitution rate; 
MYA. Million years ago.

Group Gene 1 Gene 2 Type Ka Ks Ka/Ks Date (MYA)

Group I

OsAPX1 OsAPX2 segmental 0.101 0.640 0.158 39.50

BdAPX1 BdAPX2 segmental 0.121 0.706 0.171 43.59

PvAPX1_N PvAPX2_N segmental 0.079 0.731 0.108 45.13

SiAPX1 SiAPX2 segmental 0.089 0.823 0.108 50.82

ZmAPX1.1 ZmAPX2 segmental 0.088 0.882 0.099 54.46

ZmAPX1.2 ZmAPX2 segmental 0.151 0.882 0.171 54.45

SbAPX1 SbAPX2 segmental 0.080 0.909 0.088 56.12

ZmAPX1.1 ZmAPX1.2 segmental 0.011 0.228 0.047 14.06

SsAPX1.1_C SsAPX1.2_C segmental 0.002 0.017 0.104 1.04

Group II

OsAPX3 OsAPX4 segmental 0.183 1.652 0.111 101.97

BdAPX3 BdAPX4 segmental 0.189 1.523 0.124 94.01

PvAPX3_K PvAPX4_K segmental 0.175 1.784 0.098 110.12

PvAPX3_N PvAPX4_N segmental 0.172 1.774 0.097 109.50

SiAPX3 SiAPX4 segmental 0.168 2.156 0.078 133.08

ZmAPX3 ZmAPX4 segmental 0.187 2.251 0.083 138.93

SbAPX4 SbAPX7 segmental 0.177 1.462 0.121 90.24

SsAPX3_A SsAPX4_A segmental 0.166 1.790 0.093 110.52

SsAPX3_B SsAPX4_B segmental 0.164 1.835 0.089 113.27

SsAPX3_D SsAPX4_D segmental 0.168 1.882 0.089 116.19

Group III

OsAPX5 OsAPX6 tandem 0.057 0.275 0.208 16.95

OsAPX7 OsAPX8 segmental 0.165 0.800 0.206 49.41

BdAPX6 BdAPX7 segmental 0.122 0.668 0.182 41.26

PvAPX6_K PvAPX7_K segmental 0.118 0.718 0.165 44.31

PvAPX6_N PvAPX7_N segmental 0.124 0.711 0.174 43.86

SiAPX6 SiAPX7 segmental 0.141 0.658 0.214 40.60

ZmAPX6 ZmAPX7 segmental 0.113 0.731 0.155 45.10

SbAPX5 SbAPX3 segmental 0.133 0.678 0.196 41.87

SsAPX6_A SsAPX7_A segmental 0.128 0.715 0.180 44.12

SsAPX6_B SsAPX7_B segmental 0.132 0.777 0.170 47.96

SsAPX6_C SsAPX7_C segmental 0.129 0.769 0.167 47.49
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of OsAPX5 and OsAPX6 genes was at least 10–20 folds higher 
compared with 2-month-old plants. These results suggest that 
the mitAPX isoforms can play an important role during the 
initial development, potentially explaining the non-viability 
of embryonic calli transformed with the RNAiOsAPX5/6 
construction. Different from mitAPX isoforms, chlAPXs show 
a different pattern of expression. OsAPX8 appears to increase 
during development, whereas the expression of OsAPX7 is 
more constant.

Discussion
In the present study, we demonstrated a high analogy 

in the number and high evolutionary conservation in APX, 
APX-R, and APX-L in different Poaceae species, with seven 
APX, one APX-R, and one APX-L gene in most of the diploid 
plants analyzed. In tetraploid genomes, such as Brachypodium 
hybridum, Brachypodium mexicanum, Miscanthus sinensis, 
and Triticum turgidum, twice the number of genes were 
identified, with 14 APX, two APX-R, and two APX-L. In 
Triticum aestivum, which has a hexaploid nature, three times 
the number of APX, APX-R, and APX-L genes were observed, 
whereas in Saccharum spontaneum, which has an octaploid 
genome, the number of identified genes was almost quadruple. 

In addition to the ploidy level of each species analyzed, 
the expansion of APX families occurred due to gene duplication 
events, which are important for genetic diversity. The 
phylogenetic analysis showed two main branches of APX 
sequences, confirming the hypothesis that APX isoforms 
diverged through a duplication event in an ancestral APX, 
generating the non-organellar and organellar isoforms (Teixeira 
et al., 2004). Later, other duplications and neofunctionalization 
events allowed the divergence of cAPX and pAPX in one 
branch and the divergence of mitAPX and chlAPX in the 
second branch. As suggested by Lazzarotto et al. (2021a) 
and the localization of APX-R and APX-L sequences as basal 
groups, the divergence of APX, APX-R, and APX-L genes 
possibly occurred before the APX isoform specializations.

More recent duplication and neofunctionalization events 
in APX genes have allowed the emergence of at least two 
cAPX and pAPX isoforms and new chlAPX genes encoding 
proteins exclusively soluble in the stroma (sAPX) or bound 
to the thylakoid membrane (tAPX). The phylogenetic tree 
indicates that this duplication event occurred exclusively 
in Poaceae species. In addition, it has been proposed that 
monocots branched from eudicots at least 140–150 MYA in the 
late Jurassic–early Cretaceous period (Chaw et al., 2004) and, 
thus, before the proposed divergence time of cAPX, pAPX, and 
chlAPX genes (45, 110, and 46 MYA, respectively). Based on 
these data and the phylogenetic analysis, we propose that these 
duplication events of APX paralogous genes are specific to 
monocot species. Despite different duplication events in APX 
sequences, only one APX-R and APX-L gene were found in all 
of the analyzed species. Indeed, previous works demonstrated 
that APX-R duplication is not acceptable, being attributed to 
gene loss during evolution (Lazzarotto et al., 2011, 2015).

The intron-exon organization of the APX, APX-R, and 
APX-L genes from Poaceae species is highly similar to that 
previously verified in eudicots, such as Arabidopsis thaliana 

(Ozyigit et al., 2016) and Gossypium hirsutum (Tao et al., 
2018), suggesting a conserved gene architecture in higher 
plants, including monocots and eudicots species.

The APX structure and catalytic mechanism have been 
extensively studied, demonstrating the existence of two typical 
domains of heme peroxidases: the active site and the heme-
binding site (Patterson and Poulos, 1995; Mandelman et al., 
1998; Raven, 2003; Sharp et al., 2003). These sites contain two 
pivotal histidine residues essential for APX activity, referred 
to as proximal and distal histidines. The proximal histidine 
is involved in heme binding, and the distal is present in the 
active site functioning in the reaction with hydrogen peroxide 
(Henrissat et al., 1990). This structure is highly conserved 
among APX proteins but divergent in APX-R and APX-L, 
where the active and heme-binding sites are degenerated. 
These data are consistent with the observation that these 
proteins do not show ascorbate peroxidase activity (Granlund 
et al., 2009; Lundberg et al., 2011; Lazzarotto et al., 2021b). 

Despite the divergent motif composition and low 
conservation of the APX active site, the APX-R proteins 
show a significant level of conservation in the heme-binding 
site and the presence of all amino acid residues described 
as essential for peroxidase activity. These data indicate that 
APX-R can be a heme peroxidase but may not recognize 
ascorbate as a substrate, as already demonstrated for the 
APX-R from arabidopsis (AtAPX6) that can reduce hydrogen 
peroxide in the presence of pyrogallol and guaiacol, as 
described for other heme peroxidases, but not in the presence of 
ascorbate (Lazzarotto et al., 2021b). In addition, the functional 
characterization of arabidopsis knockout mutants (apx6-1) 
(Chen et al., 2014) and overexpression lines (Lazzarotto et 
al., 2021b) suggests that APX-R plays an important role in 
oxidative protection, mainly during seed development and 
germination. 

Structural and biochemical analysis have showed that 
while CCP catalysis relies on the formation of a protein-based 
radical, APX display enzymatic activity through a porphyrin-
based radical, exhibiting therefore significant differences in 
catalytic mechanisms. Sequence analysis indicate that APX-R 
might also display enzymatic activity through a porphyrin-
based radical, similarly to what has been observed for APX 
(Lazzarotto et al., 2015, 2021b). Despite APX-R real substrate 
is still unknown, the capacity of APX-R oxidase cytochrome 
C is unlikely.

The analysis of APX-L sequences shows distinct motif 
patterns, low conservation in the heme-binding and active 
sites, as well as the absence of catalytic residues described to 
APX or other enzymes with peroxidase activity. These data 
corroborate the hypothesis that APX-L is possibly neither an 
APX nor a peroxidase (Lazzarotto et al., 2021b). Previous 
works demonstrated that in arabidopsis, APX-L (AtAPX4, also 
termed TL29) is a luminal protein associated with photosystem 
II (PSII) that does not present peroxidase activity (Granlund 
et al., 2009; Lundberg et al., 2011). Because arabidopsis apx4 
knockout mutants show an increase in hydrogen peroxide 
accumulation, it has been proposed that the heme group in 
APX-L proteins scavenges the high-energy electrons derived 
from photosystem II or the oxygen-evolving complex, acting 
in the antioxidant defense (Wang et al., 2014). 
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Rice plants double silenced to both cAPX genes (OsAPX1 
and OsAPX2) exhibited the highest decrease in shoot APX 
activity and the highest increase in hydrogen peroxide levels 
among the different transgenic lines silenced for OsAPX genes, 
indicating that these isoforms exert an important role in the 
control of hydrogen peroxide levels. Nevertheless, previous 
work has demonstrated that RNAiOsAPX1/2 plants show a 
normal phenotype and development (Rosa et al., 2010) and no 
changes in the responses to salt and osmotic stresses (Cunha 
et al., 2016). This normal phenotype can be explained by a 
compensatory mechanism promoted by the altered expression 
of several genes associated with antioxidant defense and 
photosynthesis, as well as increased CAT and SOD activities 
(Ribeiro et al., 2012). 

The analysis of RNAiOsAPX4 plants, which display 
both OsAPX4 and OsAPX3 knocked down, do not show 
changes in the shoot APX activity and hydrogen peroxide 
content. These plants exhibit an early senescence phenotype 
compared to NT plants (Souza et al., 2015; Ribeiro et al., 
2017). Indeed, in a rice early senescence leaf mutant (esf), the 
early senescence phenotype is associated with the repressed 
expression of OsAPX4 and increased hydrogen peroxide 
production in peroxisomes (Li et al., 2014). 

The analysis found that the knockdown of stromal 
OsAPX7 did not impair the total APX activity and plant 
development. In addition, these plants did not exhibit changes 
in hydrogen peroxide content. These data contrast with the 
previous results of the double silencing of OsAPX7 and 
OsAPX8 in RNAiOsAPX7/8 and single-silenced OsAPX8 in 
RNAiOsAPX8 plants, which show a decrease in shoot APX 
activity and an increased hydrogen peroxide content. However, 
these data indicate that the OsAPX8 exerts the main role in 
the chloroplast antioxidant defense under normal conditions. 
Indeed, the hydrogen peroxide reduction by tAPX is considered 
the first layer of antioxidant defense in chloroplasts, whereas 
its removal by sAPX in the stroma constitutes a second 
defense layer (Maruta et al., 2016; Caverzan et al., 2019). As 
demonstrated by Jardim-Messeder et al. (2018), under stress 
conditions, OsAPX7 is induced, whereas OsAPX8 is repressed. 
These data indicate that the sAPX and tAPX isoforms can 
exert differential roles under stress response.

Although the silencing of cAPX, pAPX, and chlAPX 
isoforms produces viable plants, the regeneration of rice 
plants from embryogenic callus transformed with RNAi to 
mitAPX isoforms led to an extensive process of necrosis of 
calli. These results indicated that the silencing of mitAPX is 
not possible, and these isoforms may exert a central role in 
the control of mitochondrial hydrogen peroxide levels during 
plant development. In addition, these results may be related to 
the fact that mitochondria are key regulators of programmed 
cell death in plants and that increasing the level of ROS in 
mitochondria can lead to programmed cell death (Mittler 
et al., 2002; Scandalios, 2002). The analysis of subcellular 
localization of OsAPX5 and OsAPX6 indicates that the mitAPX 
genes encode proteins targeted exclusively to mitochondria 
and not to chloroplasts. The alignment of the predicted 
N-terminal mitochondrial transit peptide in all analyzed mitAPX 
orthologous genes suggested that this localization is also verified 
in all investigated Poaceae species. These results are different 

from those observed in Arabidopsis, in which the sAPX isoform 
is dual targeted to mitochondria and chloroplasts (Chew et al., 
2003; Xu et al., 2013). In Populus tomentosa, a dual-targeted 
APX and a second isoform specifically targeted to mitochondria 
were also experimentally demonstrated (Yin et al., 2019). 
Despite mitAPX also being observed in eudicot species, our 
phylogenetic and duplication analyses demonstrated that the 
emergence of Poaceae mitAPX occurred independently after 
eudicot and monocot divergence.

This work reinforces the knowledge regarding the 
phylogenetic, syntenic, structural, and molecular relationships 
of APX, APX-R, and APX-L genes from Poaceae species, 
particularly in rice, leading to a foundation for further functional 
exploration and possible biotechnological application of APX 
genes. The Poaceae species are responsible for most calories 
consumed by the world’s population, and compressive analyses 
of gene families related to ROS metabolism and stress response 
are essential for understanding how different cultures respond 
appropriately to environmental stresses.
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Supplementary material
The following online material is available for this article:

Figure S1 – Collinearity among APX, APX-R and APX-L 
genes in Oryza sativa, Brachypodium distachyion, Panicum 
virgatum (subgenomes K and N), Setaria italica, Zea mays, 
Sorghum bicolor and Saccharum spontaneum (subgenomes 
A, B, C and D).

Figure S2 – Exon-intron structure APX-R and APX-L genes 
from Oryza sativa, Brachypodium distachyion, Panicum 
virgatum, Setaria italica, Zea mays, Sorghum bicolor and 
Saccharum spontaneum.

Figure S3 – Organization of cis-regulatory elements related 
to hormone responsiveness and environmental stress in APX, 
APX-R and APX-L genes from Oryza sativa, Brachypodium 
distachyon, Panicum virgatum, Setaria italica, Zea mays, 
Sorghum bicolor and Saccharum spontaneum. 

Figure S4 – Sequence logos for the conserved motifs of APX, 
APX-R and APX-L proteins. 

Figure S5 – Protein sequence alignment of cytoplasmatic APX 
(groups Ia and Ib) from Oryza sativa (Os), Brachypodium 
distachyion (Bd), Panicum virgatum (Pv), Setaria italica 
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(Si), Zea mays (Zm), Sorghum bicolor (Sb) and Saccharum 
spontaneum (Ss). 
Figure S6 – Protein sequence alignment of peroxisomal APX 
(groups IIa and IIb) from Oryza sativa (Os), Brachypodium 
distachyion (Bd), Panicum virgatum (Pv), Setaria italica 
(Si), Zea mays (Zm), Sorghum bicolor (Sb) and Saccharum 
spontaneum (Ss). 
Figure S7 – Protein sequence alignment of mitochondrial 
APX (group IIIa) from Oryza sativa (Os), Brachypodium 
distachyion (Bd), Panicum virgatum (Pv), Setaria italica 
(Si), Zea mays (Zm), Sorghum bicolor (Sb) and Saccharum 
spontaneum (Ss).
Figure S8 – Protein sequence alignment of stromal APX (group 
IIIb) from Oryza sativa (Os), Brachypodium distachyion 
(Bd), Panicum virgatum (Pv), Setaria italica (Si), Zea mays 
(Zm), Sorghum bicolor (Sb) and Saccharum spontaneum (Ss).
Figure S9 – Protein sequence alignment of thylakoid APX 
(group IIIc) from Oryza sativa (Os), Brachypodium distachyion 
(Bd), Panicum virgatum (Pv), Setaria italica (Si), Zea mays 
(Zm), Sorghum bicolor (Sb) and Saccharum spontaneum (Ss). 

Figure S10 – Protein sequence alignment of APX-related 
(group IV) from Oryza sativa (Os), Brachypodium distachyion 
(Bd), Panicum virgatum (Pv), Setaria italica (Si), Zea mays 
(Zm), Sorghum bicolor (Sb) and Saccharum spontaneum (Ss). 
Figure S11 – Protein sequence alignment of APX-like (group 
V) from Oryza sativa (Os), Brachypodium distachyion (Bd), 
Panicum virgatum (Pv), Setaria italica (Si), Zea mays (Zm), 
Sorghum bicolor (Sb) and Saccharum spontaneum (Ss).
Table S1 – Cis-regulatory elements in the regulatory region 
of APX, APX-R and APX-L genes from Poaceaes species. 
Table S2 – Physicochemical parameters and subcellular 
predictions from APX, APX-R and APX-L genes in 
Poaceae species.
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