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A B S T R A C T

Objective

Iron deficiency and vitamin A deficiency are two of the main micronutrient deficiencies. Both micronutrients are essential 
for human life and children’s development. This study aimed to investigate the effects of vitamin A deficiency on ferritin 
and transferrin receptors’ expression and its relationship with iron deficiency.

Methods

Five diets with different vitamin A-to-iron ratios were given to thirty five 21-day-old male Wistar rats (separated in 
groups of seven animals each). The animals received the diet for six weeks before being euthanized. Serum iron and 
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retinol levels were measured as biochemical parameters. Their duodenums, spleens, and livers were analyzed for the 
expression of ferritin and transferrin receptors by Western Blotting. 

Results

Regarding biochemical parameters, the results show that when both vitamin A and iron are insufficient, the serum iron 
content (74.74µg/dL) is significantly lower than the control group (255.86µg/dL). The results also show that vitamin A 
deficiency does not influence the expression of the transferrin receptor, but only of the ferritin one. 

Conclusion

Vitamin A deficiency regulates the expression of ferritin in young male Wistar rats.

Keywords: Ferritin. Iron deficiency. Receptors, transferrin. Vitamin A deficiency.

R E S U M O

Objetivo

A deficiência de ferro e de vitamina A são duas das principais deficiências de micronutrientes, sendo que ambos são 
essenciais para a vida humana e o desenvolvimento das crianças. O objetivo deste estudo foi investigar o efeito da 
deficiência de vitamina A na expressão de ferritina e o receptor de transferrina e sua relação com a deficiência de ferro. 

Métodos

Cinco dietas com diferentes proporções de vitamina A para ferro foram administradas a 35 ratos Wistar machos de 21 
dias de vida (sete animais por grupo). Os animais receberam a dieta por seis semanas antes de serem eutanasiados. Os 
níveis séricos de ferro e retinol foram medidos como parâmetros bioquímicos. Duodeno, baço e fígado foram analisados 
quanto à expressão de ferritina e o receptor de transferrina por Western Blotting. 

Resultados

Em relação aos parâmetros bioquímicos, os resultados mostram que quando a vitamina A e o ferro são insuficientes, 
o teor de ferro sérico (74.74µg/dL) é significativamente menor do que no grupo controle (255.86µg/dL). Os resultados 
também mostram que a deficiência de vitamina A não influencia a expressão do receptor da transferrina, mas da 
ferritina.

Conclusão

A deficiência de vitamina A regula a expressão de ferritina em ratos Wistar machos jovens.

Palavras-chave: Ferritinas. Deficiência de ferro. Receptores da transferrina. Deficiência de vitamina A.

I N T R O D U C T I O N

Hidden hunger, also known as Micronutrient Malnutrition (MNM), occurs when the intake of 
micronutrients is below the recommended quantities. MNM is common in both developing and developed 
countries and is specifically described for deficiencies of iron, iodine, folate, zinc, and vitamin A, all of 
which are considered critical nutrients for adequate development [1]. MNM is understood to have a more 
significant effect on cognitive and physical development than calorie restriction [2]. Both iron and vitamin A 
are essential for human life and children’s development, so authorities around the world are vigilant about 
Iron Deficiency (ID) and Vitamin A Deficiency (VAD) [3].

Iron sources are divided into heme (from animal sources) and non-heme (from vegetable sources) 
and their absorption pathways are different – heme iron is absorbed better than non-heme iron [4].  The 
absorption of iron in the intestine is highly regulated in response to the level of iron body stores and by 
the amount of iron needed for erythropoiesis [5]. Hepcidin, an antimicrobial peptide discovered in 2000, 
regulates intestinal iron absorption and affects iron release from hepatic stores and from macrophages 
involved in the recycling of iron from hemoglobin [6]. Other proteins as ferroportin (strongly regulated by 
hepcidin), ferritin, transferrin, transferrin receptors, and hemojuvelin are highly related to iron metabolism [7]. 
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The main biomarkers of iron metabolism are acute-phase proteins, which means that they are influenced by 
infection and inflammation, so markers as Interleukin-6 (IL-6), C-Reactive Protein (CRP) must be considered 
when iron homeostasis is studied [8-10].

Iron deficiency is diagnosed based on serum ferritin levels (<12μg/L) and is considered the main 
cause of nutritional anemia [11-13]. Anemia could be a consequence of nutritional causes, as micronutrient 
deficiencies and anti-nutritional factors affect iron absorption. Some studies and reviews explored the 
relationship between other micronutrient deficiencies and anemia, like vitamin D, vitamin B12 and folate, 
and vitamin A [14,15].

Vitamin A deficiency is diagnosed based on Serum Retinol Levels (SLR), clinical (<0.35mmol/L), 
subclinical (0.36-0.70mmol/L), suboptimal (0.71-1.04mmol/L), and normal (>1.05mmol/L) [16]. Some of the 
consequences of VAD are, for example, that it is considered the leading cause of blindness in children and 
a risk factor of disease and death from severe infections [17]. VAD also causes night blindness in pregnant 
women and may increase the risk of maternal mortality.

The relationship between iron and vitamin A has been suggested since the early 20th century [18]. 
Vitamin A is considered a nutrient that could regulate iron use, iron metabolism, and erythropoiesis. VAD 
should be considered a risk factor for ID, even though it is well known that the precise relationship depends 
on many factors [19-21]. Still, the mechanism of that effect is not well-established. The little evidence 
available suggests that VAD affects iron metabolism and not its absorption or transport [22,23]. In situations 
of iron overload and regular vitamin A levels, retinol has an antioxidant activity stimulating ferritin synthesis, 
thus reducing the circulating iron to avoid oxidative stress [24].

The studies of Saraiva, Soares, and Santos [23] and of Arruda, Siqueira, and Valencia [25] proposed 
that the effect of VAD upregulated the expression of hepcidin and reducing the efflux of iron from the 
enterocyte as a consequence of the internalization of ferroportin induced by hepcidin. That effect of the 
axis VAD:hepcidin:ferroportin were validated by the work of and Citelli et al, [26], that employed in vitro 
(Caco-2) and in vivo (BALB/c male mice and Wistar male rats) models; however, the mechanism is not clear; 
the same study revealed that the expression of other proteins related to iron metabolism, such as Divalent 
Metal Transporter 1 (DMT1), Duodenal Cytochrome B (DcytB), and Transferrin Receptor (TfR), were not 
affected [26].

The present research hypothesizes that vitamin A somehow regulates iron metabolism in young 
male Wistar rats, so both must be administered together. Our study analyzed the expression of ferritin 
and transferrin receptors by Western Blotting under five diets with different vitamin A-to-iron ratios to 
identify how VAD is related to iron homeostasis in young male Wistar rats. We choose a murine model 
because research with animal models has been valuable in advancing the knowledge of nutrition, and the 
murine model has been widely used to study iron metabolism and its disorders [27-29]. The absorption and 
metabolism of heme iron are known to occur in the rats’ mucosa like that in humans, even if the absorption 
of heme iron is lower in rodents [30].

M E T H O D S

We followed the methods described by Restrepo-Gallego and Díaz for animal housing, diets, and 
procedures [31]. Briefly, thirty-five 21-day-old male Wistar rats were housed in polycarbonate cages with 
polycarbonate water dispensers. Five groups of seven animals each were randomly assigned different diets, 
one group per cage. Table 1 shows the composition and nutritional profile of the diets.

After six weeks of feeding, the animals were anesthetized with isoflurane inhalation (Piramal Critical 
Care, Mumbai, India) and cardiac punctures were used to collect 2mL of whole blood in serum tubes 
(Vacutest gel with a cloth activator, Vacutest Kima, Arzegrande, Italy) to analyze the iron and retinol levels.
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The fraction of blood was separated after its complete clotting using centrifugation (448 to 700×g/
min for 15 to 20min). The supernatant was divided into 2 fractions to determine serum iron and serum 
retinol levels. Serum iron concentrations were determined using atomic absorption spectrometry (Analyst 
3100 Analyzer, Perkin Elmer Life Sciences, Wellesley, MA). Serum retinol concentrations were measured 
using a HPLC–UV apparatus (model PU-2080 plus chromatography pump, UV-2075 UV detector, and 807-IT 
integrator; Jasco, Tokyo, Japan).

After extracting the blood, the animals were euthanized with 70% CO2 and their livers, spleens, and 
small bowels were kept at -80ºC for further Western Blot analysis. The Ethical Committees of Antioquia’s 
University (#108.090217) and La Sabana University (#55.170516) approved the entire procedure following 
the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines [32].

Cell lysates were obtained from the tissues using a lysis buffer (NaCl 150mM, PMSF 1mM, Triton X-100 
1%, Tris-HCl 50mM, DTT 200mM, EDTA 1mM) and protease inhibitor (Complete™ ULTRA Tablets, Roche 
Diagnostics GmbH, Mannheim, Germany).  The extraction was carried in a BeadBug D1030 homogenizer 
(Benchmark Scientific, Edison, NJ, USA) at 4000rpm with 1mM glass beads. The cell extracts’ total protein 
content was quantified in the equipment Qiaxpert 200,630 (Qiagen, Hilden, Germany).

Samples (50μg of total protein) were subjected to 12% SDS-PAGE, transferred to polyvinylidene 
membranes (PVDF Inmobilion-P, Millipore, Burlington, MA, USA), and blocked with skimmed milk powder 
at 5% in tris-buffered saline and polysorbate 20 (TBST). The primary and secondary antibodies used were 
obtained from Novus Biologicals (Centennial, CO, USA) and are detailed in Table 2.

The secondary antibodies used were anti-mouse IgG1 [HRP] NB7511 (1:2000), and anti-Rabbit 
IgG (H+L) [HRP] NB7160 (1:500), both with goat as host and were also obtained from Novus Biologicals. 
Immunoreactive proteins were visualized by 3,3’-diaminobenzidine staining (Sigma, St. Louis, MO, USA).

Table 1 – Ingredient composition and nutritional profile for each diet.

Ingredient Control Fes/vAd Fes/vAi Fei/vAs Fei/vAi

Corn starch 397.5 397.5 397.5 397.5 397.5

Casein 200.0 200.0 200.0 200.0 200.0

Maltodextrin 10 132.0 132.0 132.0 132.0 132.0

Sucrose 100.0 100.0 100.0 100.0 100.0

Vegetable oil 70.0 70.0 70.0 70.0 70.0

Cellulose 50.0 50.0 50.0 50.0 50.0

Mineral mixa 35.0 35.0 35.0 0 0

Mineral mixb 0 0 0 35 35

Vitamin mixc 10.0 0 0 10.0 0

Vitamin mixd 0 10 10 0 10

l-Cysteine 3.0 3.0 3.0 3.0 3.0

Choline bitartrate 2.5 2.5 2.5 2.5 2.5

Ferric citrate (17.4% Fe) 0.03 0.03 0.03 0.07 0.07

t-Butylhydroquinone 0.014 0.014 0.014 0.014 0.014

Vitamin A palmitate (500.000IU/g) 0 0 0.0008 0 0.0008

Protein (%) 20 20 20 20 20

Fat (%) 7 7 7 7 7

Fiber (%) 5 5 5 5 5

Carbohydrate (%) 64 64 64 64 64

Iron (mg/kg) 45 45 45 15 15

Vitamin A (µg/kg) 1200 0 120 1200 120

Note: aAIN-93G-MX; bAIN-93G-MX deficient in iron; cAIN-93G-VX; dAIN-93G-VX without vitamin A; d: deficient; i: insufficient; s: sufficient; Ingredients 
are listed as g/kg except when noted. Fes/vAd: Sufficient in iron and deficient in vitamin A; Fes/vAi: Sufficient in iron and insufficient in vitamin A; Fei/vAs: 
Insufficient in iron and sufficient in vitamin A; Fei/vAi: Insufficient in both nutrients.
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Data from biochemical parameters were presented as mean ± standard deviation. Continuous variables 
were compared between groups with a one-way analysis of variance with a post hoc least-significant-
difference t-test (p<0.05). The Kolmogorov-Smirnov test assessed the normality of data distribution; the 
equality of variance was measured using Levene’s test. SPSS 13.0 for Windows (SPSS Inc., Chicago, IL, USA) 
was used. A power analysis estimated the number of rats to obtain 80% power at a confidence level of 
95% [33]. The Western blot procedure was carried out in triplicate for each sample.

Western Blots information was analyzed with the software Prism 7.04 (GraphPad, San Diego, CA, 
USA). The results were presented as relative expressions of the respective protein to β-actin, giving a value 
of 1 to the control group, and analyzed with the Tukey method for multiple comparisons. A p-value<0.05 
was considered statistically significant.

R E S U LT S

The present research analyzed the expression of ferritin and transferrin receptors in five groups of 
young male Wistar rats fed with diets with different ratios of vitamin A-to-iron. The control group received 
a standard diet according to the reference diets for laboratory animals, and the four experimental groups 
received different combinations of iron (Fe) and vitamin A (vA) at sufficient (s), insufficient (i), or deficient (d) 
levels. None of the diets were deficient in iron because it is necessary for sustaining life; thus, a complete lack 
of it would result in non-viable experimental subjects [34]. Given the known relationship between VAD and 
iron homeostasis, biomarkers are essential. They would indicate the needed supply of both micronutrients 
together to prevent ID in children and women at reproductive age [35].

All the intergroup comparisons indicated significant differences in serum iron content. Both groups 
with low amounts of iron (Fei/vAs and Fei/vAi) showed significant differences when compared to the control 
group (p<0.001 for both groups). VAD (Fes/vAi and Fes/vAd) impacted the total serum iron content (p=0.024 
and 0.001, respectively), as the Fes/vAd group exhibited the lowest values of both VAD groups.

In terms of serum retinol levels, the groups with insufficient or deficient dietary vitamin A all had 
significantly lower serum retinol levels than the control group (p<0.001 for both groups). In the multiple 
comparisons, only the groups with low dietary vitamin A (Fes/vAi and Fei/vAi) showed no significant 
differences between them (p=0.980). It is an important remark that those groups insufficient or low in 
vitamin A were under the normal value of 1.37±0.21 μmol/L for serum retinol and that the group with 
both in insufficient levels (Fei/vAi) was within the range of iron deficiency (<77μg/dL) [36,37]. The results 
are summarized in Table 3.

Table 2 – Primary antibodies used for Western Blotting tests.

Protein Primary antibody Dilution Host

β-actin beta-Actin Antibody (AC-15) NB600-501 1:2000 Mouse

Ferritin Ferritin Antibody NBP1-31944 1:100 Rabbit

Transferrin receptor TfR (Transferrin R) Antibody NB100-92243 1:100 Mouse

Il6 IL-6 Antibody NB600-1131 1:500 Rabbit

Note: IL6: Interleukin-6.

Table 3 – Biochemical parameters of the different groups.

Parameter Control Fes/vAd Fes/vAi Fei/vAs Fei/vAi

Serum iron (µg/dL) 255.86±43.83a 181.30±14.53b 219.81±15.58c 131.01±43.83d 74.74±18.27e

Serum retinol (µmol/L] 1.60±0.16a 0.24±0.04b 0.55±0.10c 1.26±0.12d 0.55±0.08c

Note: Data are given as mean ±1; n= 7; Different letters indicate significant differences between groups (p<0.05). Fes/vAd: Sufficient in iron and deficient 
in vitamin A; Fes/vAi: Sufficient in iron and insufficient in vitamin A; Fei/vAs: Insufficient in iron and sufficient in vitamin A; Fei/vAi: Insufficient in both 
nutrients.
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The groups showed no significant differences in food intake (p=0.126); the average daily food intake 
per rat was 15.5g/d, which is consistent with the expected food intake for growing animals of this type [38]. 
In a previous publication, we showed that iron and vitamin A are essential to improve weight gain and some 
hematological parameters like reticulocyte count and hemoglobin [31].

Ferritin is an acute-phase protein, and the inflammation status must be considered to avoid 
misinterpretations and introduce adjustments, if necessary [39-41]. Figure 1A shows that there were no 
significant differences (p<0.05) in the expression of hepatic Interleukin 6 (IL6) values when the experimental 
groups were compared with the control group, and also when the intergroup comparisons were made; so, 
inflammation was not a critical factor for the study.

The results for ferritin in the liver (Figure 1B) showed that entirely lacking vitamin A combined with a 
sufficient amount of iron (Fes/vAd) induces some level of holding or reabsorption of iron as ferritin, reducing 
its mobilization to other tissues, maybe due to damage at the hepatocyte [42]. Ferritin’s significantly higher 
expression demonstrates this in Fes/vAd group compared to the control group (p=0.0017). Those results are 
consistent with previous findings about the relationship between VAD and oxidative stress by serum iron 
overload related to an increase of ferritin and IRP2 [43,44].

Regarding ferritin in the duodenum (Figure 1C), we found no significant differences between the 
experimental and control groups. Ferritin in the spleen (Figure 1D) showed that only the group without 
vitamin A (Fes/vAd) does not have significant differences in comparison with the control group (p=0.1076).

Our study does not show any differences between the experimental groups and the control group 
for both tissues regarding the effect of VAD on the expression of the transferrin receptor in the liver (Figure 
1E) and spleen (Figure 1F).

D I S C U S S I O N

This study’s findings showed no significant differences in IL6 expression as an indicator of inflammation 
in the animals, including with VAD, ID, or both. Previous works showed that VAD or ID enhances the 
inflammatory state by increasing IL6 expression in the liver [45]. Regarding hepcidin, it has been established 
that IL6 regulates its transcription, thus controlling the circulation of iron in inflammation [46,47]. So, our 
findings do not mean that no relationship exists between VAD or ID and inflammation, but that under the 
experimental research conditions, there is not enough evidence to support it.

When groups with insufficient iron intake (Fei/vAs and Fei/vAi) were compared with one another, 
there is a subexpression of ferritin in comparison with the control group (p<0.001 for both groups) due to 
the marginal deficiency of iron.  However, it is interesting that the group with sufficient iron, but marginal 
deficiency of vitamin A also showed a subexpression of hepatic ferritin compared to the control group 
(p<0.001). Considering that vitamin A induces the expression of the ferroportin (Fpn1) gene to promote 
the export of iron into the bloodstream, that means that both nutrients must be in adequate quantities to 
maintain the appropriate levels of iron storage in the liver [26].

When intergroup comparisons were made, we found that the group with enough iron and a 
marginal deficiency of vitamin A (Fes/vAi) had significantly higher levels of ferritin in the duodenum than 
Fei/vAi (p=0.0351) and Fei/vAs (p=0.0487). That suggests that at duodenal level, only dietary iron seems 
to influence the expression of ferritin as a mechanism to regulate the circulating iron and prevent oxidative 
stress, which demonstrated that not only hepcidin but also ferritin are necessary to regulate the iron efflux 
to the bloodstream [48].

Results of examinations for ferritin in the spleen showed a relationship between the entire absence 
of vitamin A and some kind of inflammatory disease, which increases the expression of splenic ferritin as a 
marker of inflammation [49]. In this case, it seems that there is no relationship with the iron status of the 
body.

https://doi.org/10.1590/1678-9865202134e200297
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Figure 1 – Relative expression to β-actin of: (A) interleukin-6 in the liver; (B) ferritin in the liver; (C) ferritin in the duodenum; (D) ferritin in the 
spleen; (E) transferrin receptor in the liver and (F) transferrin receptor in the spleen. Data are given as mean ±1 Standard Deviation; groups with 
different letters differ significantly (p<0.05). IL6: Interleukin-6; Fn: Ferritin; TfR: Transferrin Receptor; Fes/vAd: Sufficient in iron and deficient in 
vitamin A; Fes/vAi: Sufficient in iron and insufficient in vitamin A; Fei/vAs: Insufficient in iron and sufficient in vitamin A; Fei/vAi: Insufficient in 
both nutrients.
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Our results for the transferrin receptors in the liver and spleen agree with the findings of Citelli, 
Bittencourt, Silva, Pierucci, and Pedrosa [26], that indicate that VAD impairs iron metabolism and may not 
affect iron absorption or transport [23,45].

The focus of this research was not to evaluate the effect of iron deficiency on the status of vitamin 
A. However, it is important to remark that dietary iron changes do not affect serum retinol amounts 
when dietary vitamin A levels are low or absent. Previous findings showed a lack of consensus about the 
unidirectional effect of iron supplementation on the nutritional status of vitamin A and differences between 
the results of animal models and humans [50].

The results of this study give a new approach to the relationship between VAD and ID on the 
expression of ferritin. Previous findings had been focused on the effects on the expression of hepcidin, iron 
regulatory protein, and ferroportin [23,25,43,51]. Our findings do not indicate that the previous ones are 
wrong but give a new approach based on ferritin supported by the review and meta-analysis made by da 
Cunha, Aboudib, and Arruda [19]. They suggest that supplementation with vitamin A alone may reduce 
the risk of anemia by improving ferritin levels in individuals with low serum retinol levels. Our study also 
reinforces the concept that vitamin A acts differently as a regulator of iron homeostasis and metabolism and 
must be studied more in-depth to understand all the mechanisms related to IDA or anemia by VAD.

Finally, the development of improved technologies for the diagnosis of VAD and ID could lead to a 
better understanding of the relationship between them and a better interpretation of the results considering 
variables such as inflammation status, interaction with other micronutrients, and general health status of 
the individuals [52].

As to considerations regarding the animals’ well-being, seven animals per cage were not an issue 
according to the concepts of the ethical committees that studied the experimental design. Nevertheless, 
this could be a bias and could influenced the results, being a limitation on the study. However, our previous 
findings indicated that the food intake and weight gain were consistent with the expected for growing 
animals of this type [31].

It is important to remark that this study did not measure serum ferritin as a typical parameter for ID. 
Serum iron was used as an indicator of the iron intake from the diets and, therefore, both ferritin in tissues 
by Western Blotting and serum iron were used to indicate some level of iron deficiency in the animals. 
Considering further clinical studies, it should be relevant to include serum ferritin, retinol-binding protein, 
and immunohistochemical analysis to give more information about the use of iron and vitamin A in the 
tissues of interest.

C O N C L U S I O N

The study results suggest that VAD influences the expression of the proteins associated with iron 
storage and could be another mechanism to explain anemia by VAD even with adequate dietary iron levels. 
Based on our findings, we consider that the supply of iron and vitamin A must be evaluated together in 
human beings to be considered as a feasible strategy to reduce the ID prevalence, especially for women 
at reproductive age and children. Further and more in-depth research at the clinical level can give more 
information about both nutrients’ relationship in a more realistic scenario, possibly explaining the mechanism 
behind that interaction.
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