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This approach assumes three functions independently acting on a set of microparticles. The first
one, w1, concerns re-distribution of mass to decrease the surface energy. The second one, w2,
concerns re-distribution of mass to increase the entropy of the microparticle set. The third one, w3,
is a further re-distribution of mass that vanishes a microparticle. Once vanished, its mass is
distributed among its neighbors. w1 and w3 release energy, whereas w2 absorbs energy. Part of the
energy released should be available to sustain w2. The action frequency of w1, w2, and w3, the amount
of mass exchanged in each iteraction, the fraction of released energy available to sustain w2, and
the size of a vanishing microparticle can be varied. As the dynamical system formed by w1, w2, and
w3 act on an initial microparticle set, it is observed an evolution resembling the Ostwald ripening
concerning steady-state size distribution and microparticle growth.
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1. Introduction

The decrease surface energy is usually assumed as the
driving force for the Ostwald ripening, so that when two
microparticles interact with each other by exchanging
mass, the larger one grows at the expense of the smaller
one. To handle the whole set of microparticles, it is gener-
ally assumed that the microparticles are in an average
environment, and that there is a critical size, rc, so that a
microparticle larger than rc will always grow, and one
smaller than rc will always shrink1. Although it is recog-
nized that this approach is only “statistically true”, and that
there are local interactions not following this rule, these
mean field approaches neglect these events. Moreover, the
collective behavior should also be taken into account
through the entropy of the microparticle set. So, in addition
to the decrease of the surface energy, its distribution among
the microparticles should be considered. To maximize the
entropy of the set, this distribution should be uniform, and
the microparticles should also be uniformly distributed in
space. This is the configuration for the microparticle set
with the highest probability if one assumes an intrinsic
random re-distribution of mass between the microparti-
cles2. Consequently, there is also an intrinsic tendency in
the interactions between microparticles to achieve all of
them with the same form and size. This tendency should
compete with the one to decrease the surface energy2,3,4.

A microparticle releases mass at a rate depending on its
solubility, which is given by the Gibbs-Thomson relation,
but it also absorbs mass released by other microparticles at
a rate depending on its surface area, the concentration of
released mass at its position, and the reactions involved in
the absorption process. The energy necessary to increase
the surface area as consequence of the absorption is avail-
able from the energy released when the surface area of
another microparticle is decreased due to the release of
mass. The mass release and absorption are treated here
separately and as independent of each other.

Some computer simulations are based on interactions
between two microparticles. In these approaches the larger
microparticle grows at the expense of the smaller one, so
that a microparticle can grow when it interacts with one of
its neighbors (if it is the larger one), or shrink when it
interacts with other neighbor (if it is the smaller one)5.
These approaches are an improvement in relation to the
mean field theory. But the entropy of the microparticle set
is also not taken into account. By considering the interac-
tions in this way, there is no tendency for the distribution
of the surface energy among the microparticles to become
uniform, because the larger microparticles will always
grow at the expense of the smaller ones.

The model proposed here assumes that there are three
functions acting upon a set of microparticles independently
of one another. The first one, w1, concerns re-distribution
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of mass between two microparticles to decrease the surface
energy. This is achieved by taking an amount of volume of
the smaller microparticle and adding it to the larger one.

The second function, w2, also concerns re-distribution of
mass between two microparticles, but to increase the en-
tropy of the microparticle set. This is achieved by taking an
amount of volume of the larger microparticle and adding it
to the smaller one. The third function, w3, is a further
re-distribution of mass between microparticles, but at this
time one microparticle is vanished. This interaction can
only happen if the microparticle has a “vanishing size”.
Once a microparticle is vanished, its mass is distributed
among its neighbors. This interaction decreases the number
of microparticles and also the surface energy. Table 1
shows these functions. Conservation of volume (or mass)
is assured in w1, w2, and w3. w1 and w3 are interactions that
release energy, whereas w2 absorbs energy. Part of the
energy released by w1 and w3 should be available to sustain
w2, whereas the other part is released to the environment..
Before each action of w2 the stock of released energy that
is available should be observed. If there is not enough
energy, w2 cannot act. After each action of w2, this stock is
diminished by the amount of energy absorbed. When w1,
w2, and w3 act simultaneously on a set of microparticles
they form a dynamical system6. The characteristics of the
evolution of this system resembles the Ostwald ripening. It
is not the purpose of this paper to make an in-depth analysis
based on the theory of dynamical systems. The properties
of the dynamical system formed by w1, w2, and w3 are only
intuitively developed.

2. Implementation

The microparticles are assumed as distributed in a regu-
lar three dimensional lattice, as shown in Fig. 1. The
microparticle sizes, measured through a linear dimension,
were assumed as smaller than the distance between the
lattice nodes, so that a microparticle never touches its
neighbors. No other assumption concerning the volume
fraction of the microparticles is made. A void lattice node
means that it is occupied by a microparticle with volume
equal to zero. It was taken a lattice with 21 x 21 x 21 = 9261

nodes. An initial set of microparticles with different sizes
is distributed among the nodes.

The model works as follows: a) choose at random one
of the functions w1, w2 or w3; b) choose at random one node
and apply the function chosen in a) to the microparticle
located at it. Case the node is empty, do nothing and
proceed to the next iteration. In each iteration, the chosen
microparticle interacts with all its 26 neighbors. To check
the model, some calculations were performed. ∆v was
taken as 

∆v  =  0.01 ( 1 − 
vi

vtotal
 ) vi (1)

where vtotal is the volume of the microparticles altogether
and vi is the volume of the microparticle that is loosing
volume. This equation has no physical meaning and is used
only to test the model performance.

3. Results

Figure 2 shows the result of the action of w1 on an initial
microparticle set with the size distribution shown. The
diameter is calculated by taking the microparticles as
spheres. The mean diameter is calculated from the mean
microparticle volume, defined as (volume of all micropar-
ticles) / (number of microparticles). If n is the number of
microparticles, the final distribution should ideally be one
with n - 1 microparticles with vanishing size and one
microparticle with volume close to vtot. This distribution
can be seen as a fixed point of w1 in the space of size
distributions of n microparticles with total volume vtot.
Nevertheless, due do the restrictions of the model that allow
interactions only with the first neighbors and the spatial
correlations developed during the iterations, the final dis-
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Table 1. The three functions acting upon the set of microparticles.

w1
if v1 ≥ v2 then
v1 = v1 + ∆v
v2 = v2 - ∆v
else
v1 = v1 - ∆v 
v2 = v2 + ∆v

w2
if v1 ≤ v2 then
v1 = v1 + ∆v
v2 = v2 - ∆v

else
v1 = v1 - ∆v
v2 = v2 + ∆v

w3
if vj has “vanishing

size” then
for i = 0 to n do

vi = vi + vj/n
vj = 0
else

do nothing

where vi (i = 1, 2) is the microparticle
volume and ∆v is the amount of volume
transferred.

where the vi’s are
neighbors and n
their number.

Figure 1. Spatial distribution of the microparticle set assumed in this
model.



tribution occurs after 5 millions iterations, with a small
population at larger sizes (not shown).

w2 is not allowed to act alone, because it have to be
powered by the energy released by w1 or w3. There is one
exception to this rule in this implementation for the case
where both interacting microparticles have the same vol-
ume, but the calculations have shown that this has a negli-
gible effect on the resulted size distributions. If enough
energy is given, w2 also has a fixed point in the space of
size distributions above described. It is the distribution with
all microparticles with the same size equal to vtot/n.

Figure 3 shows cases where both w1 and w2 act. Al-
though it is possible to vary the probabilities of action of
w1 and w2, it was considered only the case where these
probabilities are equal, because the system doesn’t “prefer”
any of these functions. According to the theory of dynami-
cal systems, w1 and w2 form an iterated function system
(IFS) that converges to a size distribution for the micropar-
ticle set (called attractor), which can be obtained by in-
creasing the number of iterations. This figure suggests that
this is the case for the dynamical system formed by w1 and
w2, and that the final size distribution is very similar to the
one resulted from the action of w1. The effect of w2 is to
slow down the action of w1 (the IFS needs a greater number
of iterations to achieve a size distribution). The increase of
the fraction of released surface energy available to power
w2 enhances this effect. There should be a situation where
the action of w1 could be virtually stopped by w2.

Concerning the action of w3, the vanishing size, defined
as the critical size for the collapse of a microparticle, was
arbitrarily established as any size with diameter smaller
than 16% of the initial mean diameter. It can only vanish
the smaller microparticles until they are exhausted, what
was already observed for 0.5 millions iterations. The IFS
formed by w2 and w3 shows a very similar result. w2 can
only act while w3 delivers energy released by the vanishing
of the smaller microparticles. Once they are exhausted,
both w2 and w3 are no more allowed to act.

Figure 4 shows the case of action of both w1 and w3. The
attractor of this IFS was achieved for 12 millions iterations.

This figure also shows the increase of the mean volume of
the microparticles as a function of the number of iterations.
Initially, it was observed a linear growth law. At about 4.5
millions iterations this behavior was disturbed probably
due to spatial correlations developed because of the imple-
mentation of the model. The growth stopped at 12 millions
iterations, when the attractor was achieved.

Figure 5 shows cases for the IFS formed by w1, w2, and
w3. The fraction of released energy available to power w2

was considered as in Fig. 3. The attractor was not achieved
in these cases because the required number of iterations is
prohibitively large. The linear growth law was observed for
the mean volume after an “incubation” period. Both the
linear growth law and the incubation period are strongly
influenced by the fraction of released energy available to
power w2. Compared to Fig. 4, the effect of w2 is to slow
down the action of the IFS formed by w1 and w3 and to
decrease the scattering of the size distributions. If ∆v is
doubled, the evolution of the size distribution becomes
more rapid, the increase of the mean volume is also more
rapid, and the incubation period decreases. The growth
stopped at 45 millions iterations.

4. Discussion

In this implementation, the number of iterations can be
associated with time according to a linear relationship.
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Figure 2. The result of action of w1.

Figure 3. The action of w1 and w2 for two fractions (factor) of the released
surface energy available to power w2.



The fraction of released surface energy available to
power w2 should depend on the size and geometry of the
sample, as well as on the material properties and tempera-
ture. Because of its strong influence on the evolution, it is
advisable to avoid a simple fit of this fraction to experimen-
tal data. It should be derived based on physical back-
grounds.

The amount of mass transferred in the interactions
between microparticles and the vanishing size should also
be appropriately modeled. Different models can be intro-
duced in this implementation.

The growth of the microparticle mean volume shows
three features: a) an incubation period, that depends on the
fraction of released surface energy available to power w2

and on the amount of mass transferred in each interaction
between two microparticles. It may even not be observed
in some situations, as in Fig. 4; b) a linear growth law after
the incubation period, which can be described by

1
N

 = ( 1
N0

 ) [ 1 + α(t − t0) ] (2)

where N is the number of microparticles at instant t; t0, and
N0 are the initial instant and number of microparticles,
respectively, and α is a constant. This is similar to the grain
growth law proposed by Rhines and Craig (7) for the
steady-state. Because of this similarity the growth is called
“steady-state” when Eq. (2) is observed; c) a perturbation
on the growth law of Eq. (2) is observed for larger mean
sizes, followed by the full stop of the growth. These events

are related to spatial correlations developed because of this
implementation.

After the onset of the linear growth law (steady-state),
the size distributions developed for the IFS formed by w1

and w2, and w1, w2, and w3 can be described by

ni = n0 e[ λ ( d0 − di ) d 2
i
 ] (3)

where ni is the number of microparticles in the i-th size class
with size di,  and n0 is the number of vanishing
microparticles. λ and d0 are parameters related to the
scattering and position of the distribution in the di-axis,
respectively. This distribution is derived elsewhere (2). A
small population of microparticles at larger sizes was
developed. Although this population has slowly decreased
as the iterations proceeded, it persisted up to the full stop
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Figure 5. The result of action w1, w2 and w3.

Figure 4. The result of action of w1 and w2.



of growth. It cannot be described by Eq. (3). I also explain
this population as consequence of the spatial correlations.
The steady-state size distributions for the IFS formed by w1

and w3 cannot be described by Eq. (3). These are more close
to the lognormal distribution (see Fig. 4, 1 million
iterations).

This implementation works while the microparticles
don’t touch each other. The volume fractions admitted by
this restriction depends on the size and position of the larger
microparticles: a) if they are adjacent, the maximum vol-
ume fraction admitted can be calculated as maximum vol-
ume fraction = (6/π)  * vtotal / (largest microparticle
diameter)3 * (number of lattice nodes). For the case of Fig.
4, this volume fraction is 1.2%; b) if they are not adjacent,
larger volumetric fractions can be admitted. It is possible
to implement a monitoring routine to check if “collisions”
between microparticles take place. While these collisions
don’t happen, larger volume fractions can be admitted.

5. Summary

The iterated function system formed by three functions
acting independently of each other on a set of microparti-
cles of different sizes randomly distributed into a three
dimensional lattice shows characteristics that resemble the
Ostwald ripening. These functions concern the re-distribu-
tion of mass during the interactions between microparti-
cles. The first one, w1, promotes interactions to decrease
the surface energy of the microparticle set. The second one,
w2, promotes interactions to increase the entropy of the
microparticle set. The third one, w3, eliminates microparti-
cles of vanishing sizes and distributes their mass among
neighbors. w1 and w2 are interactions that release energy,

whereas w2 absorbs energy. Part of the energy released by
w1 and w3 should be available to sustain w2.

This system was implemented by arbitrarily defining
the amount of mass transferred in each interaction, the
fraction of released energy available to sustain w2, and the
vanishing size. Different models can be introduced in place
of these arbitrary definitions. The Rhines and Craig’s
growth law for steady-state was observed after an incuba-
tion period with no growth. At later stages this linear
growth law is disturbed followed by a full stop of the
growth, which are events associated with spatial correla-
tions developed during the iterations. After the onset of the
linear growth, the size distributions can be described by Eq.
(3) for the iterated function systems formed by w1 and w2,
and w1, w2, and w3. For the system formed by w1 and w3 the
distributions are more close to the lognormal one.
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