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Mathematical Model Predicts the Elastic Behavior of Composite Materials
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Several studies have found that the non-uniform distribution of reinforcing elements in a composite material
can markedly influence its characteristics of elastic and plastic deformation and that a composite’s overall response
is influenced by the physical and geometrical properties of its reinforcing phases. The finite element method,
Eshelby’s method and dislocation mechanisms are usually employed in formulating a composite’s constitutive
response. This paper discusses a composite material containing SiC particles in an aluminum matrix. The purpose
of this study was to find the correlation between a composite material’s particle distribution and its resistance,
and to come up with a mathematical model to predict the material’s elastic behavior. The proposed formulation
was applied to establish the thermal stress field in the aluminum-SiC composite resulting from its fabrication
process, whereby the mixture is prepared at 600 °C and the composite material is used at room temperature. The
analytical results, which are presented as stress probabilities, were obtained from the mathematical model proposed
herein. These results were compared with the numerical ones obtained by the FEM method. A comparison of
the results of the two methods, analytical and numerical, reveals very similar average thermal stress values. It
is also shown that Maxwell-Boltzmann’s distribution law can be applied to identify the correlation between the
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material’s particle distribution and its resistance, using Eshelby’s thermal stresses.

Keywords: metal — matrix composites (MMCs), particle — reinforced composites, modelling

1. Introduction

The effective reinforcement of composite materials depends
on the distribution of SiC particles in the aluminum matrix. This
distribution affects both the elastic and the plastic behaviors of such
composites, albeit in different ways. Also worth keeping in mind is
the fact that the greater the number of particle clusters in a composite
material, the lower its resistance. Hence, the composite’s resistance
is greatest when its constituent elements are uniformly distributed
in the matrix. Mathematical models that evaluate the dependence of
a composite’s resistance on its particle distribution are crucial for
predicting the composite’s mechanical properties.

We discuss this dependence and propose a mathematical model
to predict the elastic behavior of a composite material consisting of
SiC particles in an aluminum matrix. The model is based on Max-
well-Boltzmann’s distribution law to correlate the SiC distribution to
the composite’s resistance, using Eshelby’s stress. The results of this
model were confirmed by the finite elements method (FEM).

2. Probability of a Distribution

This work involved an adjustment of the observations of Beiser!
and Reif? about statistical mechanics, which were then applied to
investigate the most probable behavior of particle distribution. Ac-
cording to this modeling method, the state of a particle system is
completely specified at a given instant if the position and potential
energy (rather than the kinetic energy) of each particle are known.
This modeling assumes that the aluminum matrix is divided into
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K cells, whose areas are a;, a, ..., The SiC particles are tossed
randomly into the matrix, without favoring any particular part, and
the number of particles that have fallen in each cell is recorded. After
repeating this procedure many times, one finds that the particles tend
to fall into a particular distribution pattern among the various cells
more frequently than any other perceptible pattern. This, then, is
the most probable particle distribution, and the number of particles
in each cell is proportional to the cell’s size. This paper presents a
study of the most probable distribution and of the corresponding
stress distribution.

3. Maxwell-Boltzmann Statistics

According to Beiser', Maxwell-Boltzmann’s distribution law can
be expressed as follows:

n =g e*e M )

The most probable number of particles in any cell is n, and the
total number of particles is N. The a priori probability g, of a par-
ticle falling into the ith cell is the ratio of its a, area and the total A
area of the entire matrix. The total a priori probability is 1. The n,
independent o and [ are called Lagrange multipliers. The “Partition
Function”, known as e 4, shows the distribution of particles in the
various potential energy levels.

Beiser' used Maxwell-Boltzmann’s distribution law to divide the
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kinetic energy among the molecules. In our modeling, the kinetic
energy is transformed into elastic potential energy®. The question
is: How is the elastic potential energy distributed among the various
energy levels produced by N particles?

This elastic potential energy is caused by the stress produced
during cooling due to the differences in the coefficients of thermal
expansion (CTE) of the SiC and the aluminum.

The matrix’s mean stress is used to find the approximate solution
of this distribution law by Eshelby’s method, as shown by several
authors*®.

o and [ are obtained by the method described by Beiser!, while
the matrix’s mean stress described by Clyne et al.* is used in the
model to determine Maxwell-Boltzmann’s modified distribution
law, which indicates the partition of stress in the particles according
to their distribution in the aluminum matrix. To this end, consider
a continuous distribution of energies, rather than the discrete set u,,

U,..., U, so that Equation 1 becomes

n(u)du = ge* e # du 2

The number of particles in which energies lie between u and u +
du is interpreted as n(u)du, where u is the elastic potential energy.
In terms of stress, Equation 2 can now be written as:

n(o)do = ge e’ gédG 3)

with E as Young’s modulus.
The Beiser! development is used to find e and f3.
Thus,
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n(o)do = 4N (i) o do

2ET 4)

The total energy U of the set of particles is used to find B, so that

_3N
U=2p 5)

The total energy U can also be written as:
U=uN (6)

The elastic potential energy u is a function of the matrix’s mean
stress>*, which determines the approximate solution of the distribu-
tion law.

+ 12
iﬂ — fcw[(s - I)SH] N
2p 2 (N
g, is called the eigenstrain*?, § is the Eshelby tensor, 1 is the iden-
tity matrix and f is the volume fraction of particles or inclusions.
Hence,

_ 3
p= fels-ne] 8)

So, Equation 4 becomes the modified Maxwell-Boltzmann
distribution law:

}’l(o_) = 47N (ﬁ) AOJ@?&” (9)
and
K=fc,[(s-De]’ (10)

or
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K=fC, {(S-D{(C,-C)IS-f(S-D]- (11
C,}'C, (0, - o) AT}?

C,, and C, are called the matrix and particle elastic tensor com-
ponents, respectively, while o and o are CTE matrix and particle
tensors, respectively, and AT is the temperature change.

C=E,L-v)/(d-2v,)(1+v,) (12)
CMiszMVM/(l -2v) (L+vy)

Cuu=E,/2(+v,)

C,=E d-v)/(-2v) (1 +vV)

C“j=EIVI/(1 -2v) (1 +v)

C.=E/2(+v)

Equation 9 represents the stress distribution function acting in
the composite material with the random spatial distribution of SiC
particles in the aluminum matrix.

Itis useful to consider L as a constant that can be used to facilitate
the derivative of Equation 9

3 3/2
L=47N |5=%=
™ (3cixa) 13)
This L must be replaced in Equation 9
n(0) = Lo'e 7 (14)

3.1. The most probable stress

The maximum value will be obtained from the derivative of
Equation 14. The most probable stress (Gp) is:

. 2 {(s - n{(cu- e)s - (s -] -} o aM)AT}E (15)
b= 3

3.2. Mean stress

The mean stress is obtained through the formula

- f o n(o)do 16

o= N (16)

with

_4N 1 (0’| =]

o) -5 (&) (17)

The solution of this equation is

0 = 1.130, (Mean stress) (18)
3.3. Quadratic mean stress

The quadratic mean stress is

. f o’n(0)do

o=y 19)

The solution to this equation is

o = 1.2250, (20)

3.4. Materials and simulation method

The phases in composite materials have significantly dissimilar
coefficients of thermal expansion (CTE). The production of composite
materials at high temperatures leads to considerably mismatched in-
ternal stresses and strains during the cooling process and, in the Al/SiC
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system, the fabrication temperature is usually around 600 °C.

Therefore, the most probable stress is determined based on the
material’s elastic behavior and the following data:

1) Young’s modulus of matrix : E; = 73GPa;

2) Young’s modulus of SiC particles: E, = 450GPa;

3) CTE of aluminum: o, = 23.6 X 10° C";

4) CTE of SiC particles: o, =4 x 106 C";

5) Temperature change: cooling from manufacturing to room

temperature or AT = - 580 °C.

4. Results
4.1. Determination of the most probable stress

4.1.1. Thermal strain tensor is given by £** = (o,— o, )AT

[0.011368]
0.011368
0.011368

4.1.2. The elastic constant tensor of the aluminum matrix is

given by
10.8160 53273  5.3273 0 0 0
53273 108160 5.3273 0 0 0
53273 53273 10.8160 0 0 0 i
“= o 0 0 2.7443 0 0 310
0 0 0 0 2.7443 0
0 0 0 0 0 2.7443
4.1.3. The elastic constant tensor of the inclusion is
483700 9.9100 9.9100 0 0 0
9.9100 483700 9.9100 0 0 0
.| 99100 99100 483700 0 0 0 o
C, = x10
0 0 0 19.2300 0 0
0 0 0 0 19.2300 0
0 0 0 0 0 19.2300

4.1.4. Eshelby’s tensor related to spherical inclusion is
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5. Discussion

Twenty-four simulations were done using the finite elements
method with different particle distributions and volume fractions. All
the results were compatible with the mathematical model. Four of
the thermal stress distributions results were selected and are shown
in this paper for the aforementioned volume fractions.

Figures 1, 3, 5 and 7 clearly show that the thermal stress distribu-
tion graphs for volume fractions of 17.9%, 24.4%, 31% and 35.2%
coincide with the range of stresses obtained by FEM simulations, as
shown in Figures 2, 4, 6 and 8 for the elastic stress. These figures

illustrate the coherence of the results.

Table 1. Results obtained from the most probable stress, mean stress and
quadratic mean stress equations, using the mathematical model.

Volume Most Probable ~ Mean Stress Quadratic
Fraction Stress o =1130, Mean Stress
£ (%) G, (MPa) (MPa) G = 12250,
(MPa)
17.9 352 398 432
24.4 404 456 495
31.0 447 505 547
352 471 532 577
n (o) Pa’!
-'/HI .\\
2 :,-" \ AUSIC17.9%
15 / \
.'jl’ I\'\.
1 f,*" L
.'fl‘ \."\.
051 / X
‘n' ‘\\
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Figure 1. Distribution function of stress for a 17.9% volume fraction of SiC

in aluminum matrix.
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The following volume fractions were used for the calculations:
17.9%,24.4%, 31% and 35.2%. Table 1 lists the most probable stress
(Gp), mean stress (g) and quadratic mean stress (g) for spherical
particles, considering the volume fractions.
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Figure 2. Finite element results (Pa) for a 17.9% volume fraction of SiC in

aluminum matrix.
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Figure 3. Distribution function of stress for a 24.4% volume fraction of SiC
in aluminum matrix.
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Figure 4. Finite element results (Pa) for a 24.4% volume fraction of SiC in
aluminum matrix.
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Figure 5. Distribution function of stress for a 31% volume fraction of SiC
in aluminum matrix.
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Figure 6. Finite element results (Pa) for a 31% volume fraction of SiC in
aluminum matrix.
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Figure 7. Distribution function of stress for a 35.2% volume fraction of SiC
in aluminum matrix.
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Figure 8. Finite element results (Pa) for a 35.2% volume fraction of SiC in
aluminum matrix.
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It is logical to assume that the introduction of a high volume
fraction of SiC particles into an Al matrix should increase the number
of clusters considerably and decrease the composite’s resistance’.
Recent studies have shown that high volume fractions of reinforce-
ment can reduce the matrix’s CTE, leading to low CTE composite
values!?. Moreover, the non-uniformity of SiC particles and aspect
ratio exert a strong effect on the local and global damage behavior
and stress-strain dependence''.

The magnitude of stress and SiC distribution are determined by
the material’s thermomechanical processing history. The mechanical
behavior of particulate metal-matrix composites is also dependent on
the matrix alloy and reinforcement!2.

Based on the stress distribution graphs obtained through the
mathematical model, the area between two stress values is the number
of particles per stress unit.

6. Conclusions

The mathematical model proposed herein analyzes the elastic
response of a two-phase composite as a function of the spatial
distribution of the reinforcement. This study led to the following
conclusions:

* The non-uniformity of SiC particle distribution strongly affects
the stress-strain relation in composite materials. This effect also
depends on the volume fraction of the reinforcement. There is
a broad consensus on this issue;

* As it stands, the approach presented here indicates a method
that considers the clustering effect on thermal stress. This
method proved as efficient as the FEM method to estimate
thermal stress;

* This paper proposes a mathematical model to obtain the elastic
response of composite materials. The factors that control matrix
plasticity will be the object of future studies to determine the
plastic behavior of composite materials.
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