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Fe
10

Ag
90

 granular alloys have been prepared using a sol-gel process, sintered at 300 °C and annealed at 
temperatures between 400 °C and 700 °C. The mean size of the iron particles, obtained from X-ray diffraction, 
is 30.0 ± 0.7 nm. Due to the existence of a distribution of particle sizes in these samples, both blocked (BL) and 
superparamagnetic (SPM) particles are present simultaneously, as confirmed by magnetization measurements 
at room temperature. AC susceptibility measurements as a function of temperature reveal a magnetic phase 
transition at about 770 °C, indicating the presence of particles exhibiting bulk behavior, in the samples annealed 
above 550 °C. The presence of these particles has been attributed to an atomic diffusion process between the 
grains, forming bulk-like multiple-domain Fe particles having Curie temperatures near that of bulk α-Fe phase 
(T

C
 = 770 °C).
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1. Introduction

The synthesis of nanometer-scale materials has been the focus of 
intense study in materials science and solid-state chemistry1,2. Nano-
sized particles of noble metals have attracted considerable interest in 
various fields of chemistry and physics because of their conspicuous 
physiochemical catalytic properties and their potential applications in 
microelectronics, optical, electronic, and magnetic devices3-6. Much 
attention have been paid to granular iron solids because of their 
interesting physical properties, in particular, the discovery of giant 
magnetoresistance (GMR)7,8 and giant magnetoimpedance (GMI)9, 
as well as their application in magnetic recording and optical devices 
and in sensors10-12.

Nanocrystalline Fe particles containing a single magnetic domain 
exhibit very different magnetic properties from those of bulk Fe. New 
applications require materials that combine high magnetization and 
coercivity of single domain Fe particles with a highly conducting 
matrix. Iron can form alloys or solid solutions with almost all met-
als, there being few metallic elements with which Fe is immiscible. 
Ag is an example of such a metal. However, in recent years, it has 
been shown that metastable and homogeneous alloys of Fe-Ag 
system can be formed by using special techniques, such as thermal 
evaporation13,14, liquid quenching15, ion implantation16, sputtering17-21, 
mechanical alloying22-24, gas condensation25 and a sol-gel process26-28. 
FeAg granular alloy, however, is metastable, and upon recrystalliza-
tion at elevated temperatures, a transformation into separated phases 
of BCC Fe and FCC Ag occurs.

In this work a series of Fe
10

Ag
90

 granular alloys has been produced 
by a sol-gel method and characterized by X-ray diffraction and mag-
netization measurements. We have observed that in all samples there 
are particle size distributions composed of SPM and BL particles. A 

method for fitting the magnetization curve to a size distribution with 
these two components has been applied to determine their relative 
amounts29. The changes in annealing temperature T

ann
 have a strong 

influence in the coercive field. The presence of particles exhibiting 
bulk behavior has been observed by AC susceptibility measurements 
in the samples annealed above 550 °C. 

2. Experimental

Fe
10

Ag
90

 granular alloys were produced by a sol-gel process26‑28. 
The start solution was prepared from an aqueous solution of Fe 
and Ag nitrates and nitric acid. The precursor powder obtained was 
reduced in a hydrogen atmosphere for 45 minutes at a temperature 
of 400 °C. The resultant powder was pressed and sintered at 300 °C 
for 8 hours. After sintering, the samples were thermally treated in the 
temperature range of 400-700 °C.

The crystalline structure of the samples was investigated by 
conventional X-ray powder diffraction using a Rigaku diffractometer 
operated with a Mo-Kα radiation tube.

The magnetization and hysteresis curves were measured in a 
vibrating sample magnetometer (VSM) with a maximum magnetic 
field of 1 T. AC susceptibility was measured in a mutual inductance 
bridge as described previously30. 

3. Results and Discussion

Figure 1 shows the X-ray patterns of powdered Fe
10

Ag
90

 granular 
alloy reduced at a temperature of 400 °C, sintered at 300 °C and an-
nealed at T

ann
 = 700 °C. It is seen that the iron in Fe

10
Ag

90
 has a b.c.c. 

structure and the silver has an f.c.c. structure; there are also some low 
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intensity reflections from Fe
3
O

4
. Assuming that the Fe in the sample 

is indeed distributed as small particles, the average particle diameter 
should be related to the Fe Bragg peak widths by Scherrer’s formula. 
Figure 2 shows part of the diffraction pattern shown in Figure 1 in the 
interval of 34.4-35.6 (2θ) for samples annealed at 400, 450, 500, 550, 
600 and 700 °C. The Bragg peaks for Ag(222) and Fe(211) were fitted 

with a pseudo-Voigt function in order to determine the line width. 
Applying Scherrer’s formula, we obtain the average Fe particle sizes 
D

m
 from the (211) line width for different annealing temperatures, 

as shown in Table 1. D
m
 increases from 28.6 nm (powder) to 30 nm 

(sintered sample). However, D
m
 is only slightly affected by T

ann
, stay-

ing at around 30 nm for all thermal treatment temperatures.
Figure 3 shows the hysteresis curves at room temperature obtained 

for Fe
10

Ag
90

 granular alloy samples annealed at different temperatures. 
The coercive field, determined from the hysteresis curves, ranges from 
365 to 295 Oe, and is two orders of magnitude greater than that of bulk 
iron, showing the presence of blocked single-domain particles. These 
curves do not saturate in fields of up to 1 T, indicating the additional 
contribution of SPM particles. The figure insert shows the maximum 
field magnetization M

Hmax
 as a function of the annealing temperature, 

and it can be seen that M
Hmax

 decreases linearly with increasing T
ann

, 
up to T

ann
 = 500 °C. However, there is an inflexion at T

ann
 = 550 °C, 

after which M
Hmax

 once again decreases linearly with T
ann

, but more 
rapidly. The inflexion at T

ann
 = 550 °C suggests the formation of a 

different type of particle at this temperature. These particles appear to 
be larger than the blocked particles, and have multi-domain properties 
similar to bulk Fe. We attribute their presence to an atomic diffusion 
process between the grains. Above the inflexion, the proportion and 
size of large particles increases, and M

Hmax
 therefore reduces quickly 

with T
ann

. This explanation is supported by AC susceptibility meas-
urements as a function of temperature, as shown in Figure 4. It can 
be seen that at T

ann 
= 550 °C, there is a phase transition at 766 °C, 

near to the Curie temperature T
C
 of pure bulk iron, T

C
 = 770 °C. The 

transition temperature and the susceptibility drop at this temperature 
both increase with T

ann
. This type of behavior has been observed in 

other systems31.
Figure 5a shows the remanence M

r
 as a function of annealing 

temperature. M
r
 decreases with increasing T

ann
, despite a small peak at 

Table 1. Average Fe particle sizes D
m
 in the Fe

10
Ag

90
 granular alloy at difer-

ent T
ann

 values.
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Figure 1. X-ray powder patterns of Fe
10

Ag
90

 granular alloy. a) Powder; b) 
Sintered at 300 °C; and c) Sintered at 300 °C and annealed at T

ann
 = 700 °C.
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Figure 2. X-ray powder patterns of the Ag(222) and Fe(211) peaks of Fe
10

Ag
90

 
granular alloy, at different annealing temperatures. The solid lines are the 
fittings obtained using two Pseudo-Voigt functions.
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Figure 3. Room temperature hysteresis curves of the Fe
10

Ag
90

 granular alloy 
samples for different annealing temperature. Insert: maximum field magneti-
zation as a function of T

ann
.
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Figure 5. Magnetic properties of Fe
10

Ag
90

 prepared at different annealing 
temperature. a) Remanent magnetization; b) Coercive field; and c) Fe mean 
particle diameter obtained from X-ray diffraction.
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Figure 4. AC susceptibility of the Fe
10

Ag
90

 granular alloy samples at different 
T

ann
: a) 450 and 500 °C; b) 550 °C; c) 600 °C; and d) 700 °C.
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550 °C, as seen in hysteresis curves. Figure 5b shows the coercive field 
H

c
 vs. T

ann
. One can see that H

c
 decreases signicantly with increasing of 

T
ann

, reaching a steady value of 295 Oe at T
ann 

= 600 °C. This saturation 
in coercivity is probably due to the fact that for T

ann 
= 600 °C there 

is a large number of bulk-like particles, as observed through the AC 
susceptibility curves (seen Figure 4). Another important observation 
may be made by comparing the coercive field with the average Fe 
grain size, displayed in Figure 5c, as a function of T

ann
. We see that 

while H
c
 change significantly with T

ann
, D

m
 stays almost constant at 

around 30 ± 0.7 nm. Thus, there is not a correlation between H
c
 and 

D
m
, as there is in a non-interage uniform particle system. However, 

in these samples there is a distribution of particle size. Both BL and 
SPM particles are present simultaneously, as confirmed by Mössbauer 
effect and magnetization measurements at room temperature28, even 
though the critical diameter of Fe spherical particle is 16 nm32, i.e. 
much less than D

m
. Thus, heat treatment mainly modifies the distribu-

tion of particle sizes, and consequently the coercive field, which is a 
sum of contributions of all Fe particles in samples.

4. Conclusions

Samples of Fe
10

Ag
90

 granular alloys were thermally treated at 
various temperatures. Magnetic measurements show the existence of 
a distribution of particle sizes in these samples, which are composed 
of both SPM and BL particles. The magnetic properties of the samples 
are strongly influenced by changes in annealing temperature. For 
the samples annealed above of 550 °C appears a multidomain phase 
similar the α-Fe phase, that was attributed to a process of atomic 
diffusion between the grains of Fe.
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