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The effect of non-random nuclei location and the efficiency of microstructural descriptors in assessing 
such a situation are studied. Cellular automata simulation of recrystallization in two dimensions is carried out 
to simulate microstrutural evolution for nuclei distribution ranging from a periodic arrangement to clusters of 
nuclei. The simulation results are compared in detail with microstrutural descriptors normally used to follow 
transformation evolution. It is shown that the contiguity is particularly relevant to detect microstructural deviations 
from randomness. This work focuses on recrystallization but its results are applicable to any nucleation and 
growth transformation. 
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1. Introduction

Microstructural evolution during recrystallization as well as 
during other nucleation and growth reactions is normally studied 
by means of microstructural descriptors obtained by quantitative 
metallography measurements carried out on a planar section. The 
most fundamental descriptor is the volume fraction, that constituted 
the basis of the early formal theories of Johnson-Mehl1, Avrami2-4 
and Kolmogorov5, the JMAK theory. In this theory, nucleation is 
assumed to take place on sites randomly located in the matrix. This 
assumption is important because randomness allows one to use an 
exact geometrical relationship to take care of the impingement. When 
JMAK theory is applied the question that is always asked is whether 
or not the nuclei are randomly dispersed. The standard answer is 
that if the equations based on the assumption of random nuclei are 
obeyed then the assumptions are likely to be valid. Later, the area per 
unit of volume between recrystallized regions and non-recrystallized 
matrix was introduced by Cahn and Hagel6 and by DeHoff7. DeHoff 
was the first to propose the concept of microstructural path. He 
proposed that recrystallization follows a path in the S

V
 vs. V

V
 space. 

The microstructural path method, MPM, has been subsequently 
developed and extensively employed8, notably by Vandermeer and 
coworkers in many excellent papers9-11. More recently, the interface 
area per unit of volume between recrystallized grains8,10,11 has been 
measured. Vandermeer and coworkers10-12 have shown that using these 
measurements the mean intercept length of transformed grains10,13 and 
the contiguity11,12 can be obtained and these can be useful descrip-
tors which are particularly sensitive to deviations from randomness. 
There is more than one way that the location of nucleation sites can 
deviate from randomness. One possibility is that the nuclei tend to a 
periodic arrangement. Price14 has treated this case. Another possibil-
ity is the occurrence of clusters of nuclei on grain edges and faces15. 
Also, nucleation may be more concentrated in certain parts of bulk 
volume than in others16,17. In recent papers18-21, computer simulation 
has been used to investigated the kinetics in conditions that depart 
from randomness. 

In a previous paper22, cellular automata simulation of recrystalli-
zation in two dimensions was compared in detail with mathematically 
exact analytical theories considering both kinetic and geometrical 

aspects. Very good agreement was observed between the cellular 
automata simulation and the theoretical results. The simulation allows 
precise data to be generated, without the often substantial experimen-
tal errors which are unavoidable in recrystallization data. This allows 
one to focus on the geometrical issues of the transformation and apply 
the theoretical results with confidence in real materials. 

In this work, site-saturated recrystallization is simulated by us-
ing cellular automata18-26 in two dimensions in order to investigate 
the effect of nuclei distribution on the kinetics. Rios et al.21 carried 
out a preliminary study of the effect of periodically located nuclei 
on the kinetics. Here, that work is expanded and simulations are 
carried out for nuclei located randomly, periodically and clustered 
within certain areas of the microstructure. The results are assessed 
by means of microstructural path descriptors11,22. Although this work 
has recrystallization as main focus its results are general, valid for 
any nucleation and growth transformation complying with the as-
sumptions of the simulation.

2. Description of the Simulation

Cellular automata methodology was used to simulate recrys-
tallization. The implementation followed that of Hesselbarth and 
Göbel21-23,26 using the von Neumann neighborhood criterion. The 
matrix consisted of a square lattice with 812 x 812 cells and 784 nu-
clei. One cell was considered to have unit area and consequently 
the side of a single cell had unit length. The units of all quantities 
reported here follow from this. The number of nuclei per unit of area, 
N

A
, was equal to 1/841. The matrix size and number of nuclei were 

chosen for reasons described elsewhere21,22,26. The nucleation was site-
saturated: all nuclei appeared at t = 0. In previous work22 the nuclei 
were randomly located in the matrix. In this work in addition to the 
random nuclei distribution, the nuclei were arranged periodically21 
and in clusters. For the periodic arrangement they were located in the 
center of “boxes” of 29 x 29 cells. There were in total 784 “boxes”. 
For clustering the simulation procedure was as follows. Nucleation 
was allowed to occur randomly within a number of randomly selected 
boxes from the set of 784 boxes mentioned above. First one nucleus 
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was randomly placed in each of the 784 boxes, then 392 boxes were 
randomly chosen and two nuclei were randomly located in each box, 
then 196 boxes were randomly selected with four nuclei per box and 
so on. The minimum number of boxes was 49 with 16 nuclei inside. 
The simulation produced a sequence of matrices as a function of time. 
Time is discrete in CA, it takes integer values starting from t = 0. One 
time unit corresponds to the interval between two consecutive matrix 
updates23,26. From the simulated matrices, all the desired quantities 
could be extracted. Hesselbarth and Göbel23 give a more detailed 
account of two-dimensional cellular automata in general. Oliveira26 
gives further details of the present simulation. 

3. Simulation Results and Discussion

In what follows simulation results are presented and qualitatively 
discussed. In the next section selected cases will be quantitatively 
discussed.

3.1. Nucleation and growth conditions

As mentioned in section 2, the nucleation was site-saturated: all 
nuclei appeared at t = 0. The behavior of the interface velocity, v, 
was studied in detail in Rios et al.22 for randomly located nuclei. With 
regard to growth, the interface velocity was calculated from the growth 
of a single grain by means of the Cahn and Hagel7 equation:

	 (1)

For the simulation the velocity was calculated from the global 
parameters: area fraction, A

A
, and Interfacial area length between 

recrystallized grains and matrix, L
A
, units are omitted from now on 

throughout the paper:

	 (2)

The interface velocity during the simulation remained very close 
to 0.51 that is practically the same value expected from the theoretical 
prediction, v = 0.5, for a single grain. Therefore, the growth occurs 
with constant interface velocity22. The interface velocity was calcu-
lated for the simulations carried out here using Equation 2 and the 
same result was obtained in spite of the non-randomness of nuclei 
location. The only exception was the simulation using nuclei periodi-
cally located where there was a slight increase in v at the later stages 
of the simulation with v reaching 0.55 for A

A 
= 0.95. Beyond that it 

increased more rapidly, reaching 0.60 for A
A 

= 0.99. Consequently, 
at the very end, A

A 
> 0.95, the simulation of the periodic nuclei could 

not maintain a strictly constant interface velocity. 
On the whole, these results show that interfacial velocity remained 

constant during the simulation and was not affected by non-random-
ness. This is what one would theoretically expect thus showing the 
soundness of the simulation method in the present case.

3.2. Area fraction, A
A
 

Figure 1 shows A
A
 as a function of time, simulated by CA. The 

full line corresponds to randomly located nuclei and as shownd in 
previous work is in good agreement with the theoretical analytical 
expression:

A
A
 = 1 – exp(– 2N

A
t 2)	 (3)

The theoretical expression is not shown in Figure 1, in order not 
to overload the figure.

Figure 1 clearly shows the effect of a periodic arrangement and of 
clustering on the kinetics. The transformation is faster for a periodic 
nuclei arrangement and slower for clusters. Clustering slows down the 
transformation. The reason for this is the impingement. Overall growth 

of one region is slowed down when it meets another growing region 
even though the interfacial velocity remains constant. Periodically 
arranged nuclei grow without impingement for longer times than ran-
domly arranged nuclei so that the overall kinetics is faster. On the other 
hand clustered nuclei impinge early and their overall kinetics is slower. 
The more severe the clustering is the slower the transformation is.

It is worthy of note that clustering does not seem to significantly 
change the overall shape of area fraction vs. time curve. Figure 2 
shows the same data, replotted in a classical way. This kind of plot 
tends to accentuate the small area fraction, A

A 
< 0.1, behavior. For 

random nuclei the line is straight, clustering makes the lines to 
curve. Still, for area fractions between 0.1 and 0.9, where most of 
experimental data are normally measured the lines are not far from 
straight lines. Fitting these curves is a more precise way to quantify 
this and will be done later in this paper.

3.3. Interfacial area length between recrystallized 
grains and matrix, L

A

Figure 3 shows L
A
 as a function of time, simulated by CA. The 

full line corresponds to randomly located nuclei and as shown in 
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Figure 1. Area fraction against time, simulated by CA. The reaction is faster 
for a periodic nuclei arrangement and slower for clusters. The number of 
nuclei per unit of area is the same in all simulations.
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Figure 2. Area fraction against time, simulated by CA. Data from Figure 1 is 
replotted in the classical way. For random nuclei the line is straight, clustering 
makes the lines to curve.
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previous work is in good agreement with the theoretical analytical 
expression, not shown in Figure 2:

L
A
 = 8N

A
t exp(– 2N

A
t 2)	 (4)

Figure 4 shows L
A
 now plotted as a function area fraction, simu-

lated by CA. The full line corresponds to randomly located nuclei and 
as show in previous work is in good agreement with the theoretical 
analytical expression, not shown in Figure 3:

	 (5)

The maxima observed in Figuras 3 and 4 can be explained as 
follows. At the early stages of the reaction the grains grow without 
impingement and therefore L

A
 increases. As impingement starts part 

of L
A
 is “transformed” into interfacial area between recrystallized 

grains, L
R
, and therefore L

A
 starts to decrease. Eventually, when the 

matrix is fully transformed, only interfacial area between recrystal-
lized grains remains and L

A
 is equal to zero. From this explanation 

one can infer that the maximum is higher for periodic that for random 

nuclei for the same reason that its kinetics are faster: impingement 
occurs later in the periodic arrangement than for random arrangement. 
Therefore L

A
 for periodic nuclei can become larger than for random 

nuclei. The maximum value of L
A
 decreases with clustering for iden-

tical motive: impingement occurs earlier for clusters and does not 
allow L

A
 to increase as much as it does for the random arrangement. 

Figure 4 shows that a peak develops at the low area fraction range for 
the most severe clustering conditions. This peak corresponds to an 
early impingement of the grains within the clusters, as will be seen 
in more detail later in this paper.

3.4. The contiguity parameter, C
R

An important quantity is the contiguity parameter, C
R
. The con-

tiguity is the ratio of immobile interface length to the total interface 
length and is quite sensitive to deviations of nuclei location from 
randomness11,12. It can be defined as:

	 (6)

where L
R
 is the interfacial area length between recrystallized grains.

Figure 5 shows C
R
 as a function of area fraction, simulated by 

CA. The full line corresponds to randomly located nuclei. 
A comparison of Figure 5 with Figures 1-4 shows that C

R
 is a quite 

good parameter to evaluate deviations from randomness as advocated 
by Vandermeer11. The C

R
 vs. A

A
 curve, solid line in Figure 5, for ran-

domly located nuclei divide the (A
A
, C

R
) plane in two distinct regions. 

Below the random curve lies the region in which nuclei deviate from 
randomness tending to a periodic arrangement. Above the random 
curve lies the region in which the nuclei tend to cluster. So by compar-
ing the experimental or simulated data with the random curve a good 
indication of departures from randomness becomes evident. In the 
present simulations, C

R
 emerges as the most reliable microstructural 

descriptor as far as deviations from randomness are concerned.
In the next section a detailed analysis is carried out showing the 

uncertainties associated with trying to infer information using only 
the usual descriptors: A

A
 and L

A
.

4. Detailed Analysis 

The well-known generalized form of JMAK kinetics is, see for 
example, Rios and Padilha8:

0 20 40 60 80 100

L
A

Time

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

 periodic
 random
 392 clusters
 196 clusters
  98  clusters
  49  clusters

Figure 3. Interfacial area length between recrystallized grains and matrix, L
A
, 

against time, simulated by CA. The maximum in L
A
 is more pronounced for a 

periodic nuclei arrangement and less pronounced for clusters. 
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Figure 4. Interfacial area length between recrystallized grains and matrix, 
L

A
, against area fraction, simulated by CA. The maximum in L

A
 is more 

pronounced for a periodic nuclei arrangement and less pronounced for 
clusters.
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 against area fraction, simulated by CA. 
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A
A 

= 1 – exp(– Kt n)	 (7)

The exact expression for randomly located nuclei is given by 
Equation 3. Equation 3 which can be generalized for a time depen-
dent velocity, G:

	 (8)

where G
0
 and k are constants. G was used instead of v to emphasize 

that it is an “apparent” interface velocity. Equation 8 can be used to 
generalize Equation 3:

	 (9)

For k = 0, G
0
 = v = 0.5 and Equation 9 reduces to Equation 3. 

This formalism is valid for site-saturated reactions when k ≠ 1. 
Figure 6 shows the results of three simulations: periodic, random 
and 98 clusters. 

Equation 3 is plotted along the random simulation and Equation 9 
is force fitted to the periodic and cluster kinetics. Fitting produces 
correlation coefficients of R2 = 0.999, apparently indicating very 
good fit. For periodic nuclei this results in a time dependent apparent 
velocity that increases with time:

G
per

 α t0.36	 (10)

For nuclei cluster, the apparent velocity decreases with time:

G
clu

 α t-0.21	 (11)

Equations 10 and 11 show that an analysis solely based on volume 
fraction could give an erroneous time dependent velocity whereas in 
all simulations the interface velocity remains constant. For periodic 
nuclei it could predict that the boundary velocity increases with time. 
More interesting is the result for the cluster. It predicts that the veloc-
ity decreases with time. This is result is quite interesting because it is 
believed that the velocity decreases with time during recrystallization. 
Two main causes are invoked for this16,28: 

a)  Concurrent recovery: this would result in a decrease in the 
stored energy during recrystallization and a consequent de-
crease in grain boundary velocity; and

b)  Existence of deformation gradients in the microstructure: the 
idea here is that the recrystallization would begin in regions 
of higher stored region and grow into regions of progressively 

lower stored energy. This would cause a decrease in grain 
boundary velocity.

Stüwe et al.29 is an example of a model that takes recovery into 
account whereas Rios30 is an example of a deformation gradient 
model.

The present analysis suggests yet a third possibility: interpreting 
a non-random microstructure using formalism similar to Equations 7 
and 9, essentially valid for randomly located nuclei, can lead to mis-
leading time dependent apparent velocity as in Equations 10-11. In 
short, Equation 7 is quite flexible and will give good fit but any data 
inferred from the fitting parameters is uncertain, unless one can be 
sure that the nuclei distribution is random. The apparent decrease in 
growth rate observed here is not real because the interface velocity 
is kept constant during the simulation. It is purely an artifact arising 
as a result of the limitations of the mathematical formalism used to 
analyze the data. This does not mean that the effects mentioned above 
cannot lead to a decrease in interface velocity in real materials but 
that, time dependencies resulting from best-fitting Equation 7 must 
be taken with care. More reliable is of course to determine the inter-
face velocity by means of the Cahn and Hagel equation, Equation 2. 
Unfortunately, this latter method can also be subjected to error8 owing 
to the unavoidable experimental scatter and normally small number 
of points of real datasets8,31.

An indication of randomness is often sought by plotting the 
microstructural path: L

A
 vs. A

A
 and using Equation 5 to fit it. Good fit 

is often taken as an indication that the reaction is site saturated and 
that the nuclei distribution is not far from randomness thus validating 
the above approach. Figure 7 shows this plot for three simulations: 
periodic, random and 98 clusters. Equation 5 is plotted along the 
random simulation. Equation 5 is force fitted to the periodic and 
cluster kinetics by allowing N

A
 to vary in Equation 5. From force 

fitted curves an “apparent” number of nuclei per unit of area can be 
calculated.

For periodic nuclei, the apparent number of nuclei per unit of 
area, N

Aper 
≅ 2.4 x 10-3, is about twice the value used in the simula-

tion, N
A 
≅ 1.2 x 10-3. The correlation coefficient was R2 = 0.89. The 

agreement was not very good as shown in Figure 7. 
For clustered nuclei, the apparent number of nuclei per unit of 

area N
Aper 

≅ 1.9 x 10-4, almost an order of magnitude smaller than 
the simulation value. The correlation coefficient was R2 = 0.94. The 
agreement was not good but much better than for the periodic nuclei. 
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Figure 6. Area fraction against time, simulated by CA. Simulation data are 
force fitted by JMAK kinetics.

0.0 0.2 0.4 0.6 0.8 1.0

L
A

A
A

0.15

0.10

0.05

0.00

Simulated
 periodic
 random
 98 clusters

Analytical
 best-fitted
 Equation 5

Figure 7. Interfacial area length between recrystallized grains and matrix, 
L

A
, against area fraction, simulated by CA. Simulation data are force fitted 

by Equation 5, allowing N
A
 to vary.



Vol. 9, No 2, 2006
Microstructural Descriptors and Cellular Automata Simulation of the Effects of

Non-random Nuclei Location on Recrystallization in Two Dimensions 169

Actually, most of the disagreement was caused by the peak observed 
for an area fraction about 0.05. Beyond A

A 
≈ 0.10 the agreement was 

good.
Therefore, the bad fit between the microstructural path expression, 

Equation 5, and data may provide some indication that the nuclei are 
randomly located. However, one must consider that recrystallization 
data normally consist of a small number of experimental points, of 
the order of ten points, and that experimental errors are rarely less 
than ± 10%. Under these circumstances correlation coefficients are 
not usually high8,28,31. Consequently, drawing conclusions from fit-
ting of a small number of experimental points subject to large errors 
can be highly problematic. One cannot always be sure that the low 
correlation coefficient comes from experimental errors or from a true 
deviation from randomness.

The peak that develops in the low area fraction region might be 
an indication that there is clustering. An extreme case is shown in 
Figure 8 where the microstructural path for the most severe clustering 
condition simulated, 49 boxes is shown.

Figure 8 shows that for severe clustering a clear peak develops. 
The curves were calculated by using two values of number of nuclei 
per unit of area. One value for the transformation within the cluster, 
N

Aw
, that is, supposing that in the beginning the reaction proceeds 

as if it occurred in a region containing N
Aw 

= 16/841 = 16N
A
 nuclei 

instead of the average value of N
A 

= 1/841. This gives the dotted 
line in Figure 8. In the later stages, after impingement within the 
cluster has taken place, the transformation occurs, outside the clus-
ters, as if each of the 49 boxes behaved as a single region, giving 
N

Ao 
= 1/(16 x 841) = 1/(16N

A
) nuclei, a value sixteen times smaller 

than the average value N
A 

= 1/841. It can be seen that, for severe 
clustering, the agreement between the curve generated with N

Ao
 and 

the simulation is good for A
A
 > ≈ 0.10. In practice one might easily 

miss the peak because one rarely has a large number of experimental 
measurements below ≈ 0.10. 

The detailed analysis carried out in this section reinforces the 
need to use the contiguity that was shown in the previous section to 
be highly sensitive to non-randomness. The methodology used in 
this section is often employed in real cases but the fitted parameters 
could result in erroneous velocities when nuclei are not randomly 
located.

5. Summary and Conclusions 

Cellular automata simulation of two dimensional recrystallization 
has been carried out to investigate the effect of non-randomness on nu-
clei location on microstructural evolution. The results were compared 
with several microstructural descriptors. The main conclusions are:

a)  Conventional kinetic analysis based solely on the area fraction 
against time data could generate misleading time dependent 
velocity. For instance, when nuclei are located in clusters this 
analysis may erroneously suggest that the velocity decreases 
with time. Notice that in the simulation the interface velocity 
remained constant in all cases;

b)  A microstructural path based on the L
A
 against A

A
 plot was more 

sensitive to deviations from non-randomness using the precise 
data provided by the simulation. However, when applied to real 
experimental data which normally consists of a limited number 
of data points subject to significant experimental errors one 
might have difficulties to detect non-randomness; and

c)  It is clear from the simulations that the contiguity, C
R
, is 

more sensitive to non-randomness than the other measure-
ments considered: area fraction, A

A
, interface length between 

recrystallized grains and the matrix, L
A
, and interface length 

between recrystallized grains, L
R
. Therefore, a more reliable 

data analysis should include the contiguity, as suggested by 
Vandermeer11, in order to establish to what extent non-random-
ness influences microstructural evolution.
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