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Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually 
treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that 
are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal), 
R( radial) and T(tangential) are coincident with the Cartesian axes (x, y, z), is more accepted as wood elastic 
model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but 
more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic 
parameters, this paper deals with the fiber orientation influence in these models through adequate transformation 
of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, 
i.e., Young´s modulus and shear modulus, with fiber orientation are presented.

Keywords: anisotropic material, orthotropic elastic models, wood elastic constants, fiber orientation, 
compression test

1. Introduction

On the whole, in order to solve a solid mechanics problem 
some conditions must be satisfied. These conditions are related to 
equations of equilibrium, strain-displacement relations and material 
constitutive laws. The first and second conditions do not depend on 
the characteristics of the material of which the solid is composed. 
Whereas the third, which relates stress to strain components at any 
point in the solid, is a function of the material. These laws may be 
simple or complex, depending on the material of the body. In fact, the 
behavior of the real material is not easy to be comprehended. When 
trying to model mathematically that behavior, it is necessary to con-
struct idealizations and perform simplifications, using a convincing 
theory and adequate experimental tests. The final result of modeling 
is to get an expression that can be used to predict a specific property, 
with an acceptable degree of reliability.

The most general elastic constitutive model formulated to de-
scribe the mechanical behavior of material is the anisotropic model. 
This kind of model implies that there is no material symmetry, and 
mechanical properties in certain directions are different. On the other 
hand, if there is material symmetry, the material can be denominated, 
for example, orthotropic or isotropic. In this context, the adequacy 
of a determined material for a certain elastic model is based on the 
existence of elastic symmetry axes. In these axes, denominated elastic 
principal axes, there is invariance of the constitutive relations under 
a group of transformations of coordinate axes.

In fact, the study of anisotropy implies knowing the constitutive 
law that governs the elastic behavior of the material and consequently, 
determining the constitutive tensor, S

ijkl
, and its components. In a 

completely elastic and anisotropic model this tensor has 81 unknown 
constants. By using adequate simplifications, this number can be 
reduced to 9 constants, which is denominated orthotopric model, or 
to 3 constants, the isotropic model.

Among the construction materials, wood, because of its internal 
structure with axes of elastic symmetry longitudinal, tangential and 
radial, reveals an orthotropic pattern. Thus, there are 9 constants to 
be determined. Besides this,due to nature of wood, the variation of 
grain angle constitutes the fundamental cause of wood anisotropy. It 

is responsible for the greatest changes in the values of the constitutive 
tensor components, i.e., in these wood elastic constants.

In this way, the goal of this paper is to examine the orthotropic 
models for wood, the linear and cylindrical ones, some elastic con-
stitutive tensor components (Young’s modulus and shear modulus), 
using an adequate transformation coordinate and also to present 
some examples showing the effect of grain orientation in these elastic 
parameters. 

2. Theoretical Analysis of the Elastic Properties of 
Anisotropic Materials

2.1. Elastic models

According to Love1, Chen and Saleeb2 among others, the laws and 
equations that govern engineering problems are related to the stored 
energy in a solid. So, an elastic solid is capable of storing the energy 
developed by the external work and transforms it into potential elastic 
energy that is denoted as strain energy. During this process the body 
is deformed, but recovers its original shape and size.

In this condition, if no energy is dissipated during the process of 
deformation, under adiabatic and isothermal conditions, the derived 
equations from this supposition are termed elastic models of Green 
and the material that makes the body as hyperelastic material. Thus, 
a hyperelastic material is the one that has a strain energy function, 
denoted by U

o
.

The elastic material of Green is, in fact, a special case of the 
most general elastic material called elastic material of Cauchy, but 
considering the existence of the U

o
, in order to maintain unaltered the 

laws of thermodynamics. These laws say that no work is produced 
by an elastic material in a closed loading cycle.

For an elastic body, the current state of stress depends only on 
the current state of strain. Mathematically, the constitutive laws can 
be written as:

Fij ij kl=v f^ h	 (1) 
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in which: σ
ij
 is the stress tensor; ε

kl
 is the strain tensor, and F

ij 

is the response function. Notice that only small strains given by 

u u2
1

, ,ij i j j if = +_ i are considered in the strain tensor. The term u
i,j
 

represents the partial derivative of displacement.
As has already been emphasized, the elastic models described 

by Equation 1 is both reversible and path independent since that 
strains are uniquely determined from the current state of stress or 
vice versa.

We can set the response function as polynomial relations of n-
degree, relating stress and strain, by:

...ij ij ij im mj im mn nj0 1 2 3z d z f z f f z f f f= + + + +v 	���� (2) 

where: f
0
, f

1
...

 
are elastic response parameters3.

One can observe that the first term in Equation 2 is related to the 
scalar state of stress or strain, the second term represents the first 
order model or linear model, the third term represents the second 
order or nonlinear model and so on.

Consider now an elastic solid in equilibrium, with conditions of 
respected compatibility. The Principle of Virtual Work relates a series 
of equilibrium F

i
, T

i
, s

ij
,
 
u

i
 to a series of the virtual compatibility du

i
,
 

de
ij
 via the following equation:

T udA F udV dVi i i i ij ij
VVA

+ =d d v df### 	 (3) 

where: T
i
 is the surface force; F

i
 is the external body force; u

i
 is the 

displacement; A is the area; V is the volume and δ denotes variation. 
Figure 1 shows these parameters.

The left side of Equation 3 represents the variation of external 
work δW, while the right side represents the variation of the strain 
energy delta δU. From Equation 3 we can obtain that:

U
ij

ij

o

2
2

=v
f 	� ��(4)

where: U V
U

o = .

Thus the relationship among σ
ij
, ε

kl
 and U

o 
can form the constitu-

tive laws of the material. In general, these laws describe the behavior 
of the usual construction material.

Using the strain energy function and considering the Green elastic 
model, formulations of the constitutive laws for different classes of 
elastic materials can be established. So, consider a strain energy 
function given by: 

U
0 
= C

0 
d

ij 
+ a

ij
e

ij 
+ b

ijkl
e

ij
e

kl
	 (5)

where C
0,
 δ

ij,
 β

ijkl
, α

ij
 are constants. In view of the strain energy for-

mulation where the strain energy has a stationary value in relation 
to the strain tensor, it is possible to set C

0 
= 0. From Equation 5, the 

stresses can be expressed by:

s
ij 
= a

ij 
+ (b

ijkl 
+ b

klij
)e

kl
	 (6)

It may also be taken into the account the fact that α
ij 
= 0, since 

that the initial strain field corresponds to an initial stress free state, 
and (β

ijkl
 + β

klij
) can be taken as C

ijkl
, we have: 

s
ij 
= C

ijkl
e

kl
	 (7)

The C
ijkl

 is the tensor of material elastic constants.
Agreeing that | C

ijkl
 | ≠ 0 Equation 7 can be expressed as:

e
ij 
= S

ijkl
s

kl
	 (8)

where: S
ijkl

 is the compliance tensor.
The C

ijkl
 has 81 constants to be determined and must be symmetri-

cal due to Cauchy’s second law of motion. In addition, since both σ
ij
 

and ε
kl
 are symmetrical, the number of elastic constants is reduced 

to 21, with 18 independent ones4. This implies that in an anisotropic 
material with the principal stress directions do not coincide with the 
principal strain directions. 

The constitutive laws may also be written in matrix form as:

{σ}=[C]{ε}	 (9)

Similarly for S
ijkl

, we obtain:

{ε}=[S]{σ}	 (10)

In this case, we used the contracted notation for stresses, strains 
and, consequently, for the constitutive tensor. It can be found in Ting5, 
where the indices 1, 2 and 3 correspond, for example, to the axes x, 
y and z. So the stresses are given by:

σ
11 

= σ
1
;
 
σ

22
 = σ

2
; σ

33 
= σ

3
;	 (11)

σ
23 

= σ
4
;
 
σ

31
 = σ

5
; σ

12 
= σ

6

and the strains are written as:

e
11 

= e
1
;
 
e

22
 = e

2
; e

33 
= e

3
;	 (12)

2e
23 

= e
4
;
 
2e

31
 = e

5
; 2e

12 
= e

6
 

The constitutive tensor becomes, then, a 6 x 6 symmetric matrix 
and the constitutive relationship is reduced to:

.
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C

Sym
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C
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(13)

 

2.2. Elastic symmetry

According to Lekhnitskii6 all bodies, on the whole, can be divided 
into homogeneous and non-homogeneous bodies, and isotropic and 
anisotropic as well. 

When a body is considered to be homogeneous, its physical prop-
erties, such as density, remain invariant in all directions, in any of its 
points. For non-homogeneous body its properties are not constants.

Wood, as was presented by Perkins7, might be classified as a 
material that possesses some levels of inhomogeneity from the mac-
roscopic structure to microscopic structure. Dinwoodie8 noticed that 
there are four levels: macroscopic, microscopic, ultrastructural and 
molecular (See Figure 2). These levels could explain the adequacy 
of wood to the theory of Continuum Mechanics or certain features 
of it. For example, the wood crushing and the wood tensile strength 
could be related to the strength of the tracheids. Besides that, the 
components of stress, strain and elastic constants in different levels 
can be considered and the elastic properties would depend on the 

V
F

i

ij

i

T
i

n
i

A

Figure 1. Elastic Solid in equilibrium.
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position in the tree. Moreover, the macroscopic constants C
ijkl

 are 
not necessarily equal to the microscopic constant c

ijkl
 or, equal to 

the average values. However, when the medium is macroscopically 
homogeneous and when the strains are small and relatively homo-
geneous, one could consider the material response as homogeneous 
and C

ijkl
 is approximately equal to c

ijkl
.

If the elastic properties of the material are the same in certain 
directions at a point, then the material exhibits symmetry with respect 
to these directions. If symmetry exists, the material is generally said 
to be isotropic. Otherwise, if there is no symmetry at all, the material 
is said to be anisotropic. 

Another interesting issue to be pointed out is that when a body 
presents certain kinds of symmetry, the constitutive relations are 
simplified. These simplifications can be done in different ways just 
as those used by Love1, where the strain energy function remains un-
altered by all symmetrical coordinate system substitutions. Thus, for 
example, a corresponding substitution given by three axes of elastic 
symmetry, x xi i=-l , with i = 1,2,3 or also ; ;x x y y z z=- = =-l l l , 
does not change U

o
. Lekhnitskii6, on the other hand, performs these 

simplifications by developing in two different coordinate systems, 
symmetrical one to other. He compares the obtained constitutive 
relations, identifying, in this way, the existence of the elastic sym-
metry.

A material with elastic symmetry under the linear transformation 
x xi ij j,=l , with ij,  being the transformation tensor, requires that the 
constitutive tensor, either C

rspq
 or S

rspq
, be submitted to the following 

condition:

C Crspq ri sj pk ql ijkl, , , ,=l 	 (14)

2.3. Classification of materials regarding as the number of 
elastic symmetrical planes

There are four cases of elastic symmetry that are considered most 
important. They are: one plane of elastic symmetry, three planes 
of elastic symmetry (orthotropic material), transversely isotropy 
material and isotropic m aterial. Since the purpose of this paper is 
to consider wood as an orthotropic body, we only analyzed this kind 
of elastic symmetry.

Thus, a body referred to a coordinate system x
i
 is defined as 

orthotropic material if through each point there are three mutually 
perpendicular axes of elastic symmetry. Then, using the coordinate 
system x

1
, x

2
 and x

3
 (or x, y, and z), perpendicular to the three planes 

of material symmetry and considering the elastic properties to be 
invariant under counterclockwise rotation 180° of about three axes, 
and using one at time as showed in Figure 3.

Consequently, we obtain that:

1
0
0

0
1

0

0
0
1

ij, = -

-

R

T

S
S
SS

V

X

W
W
WW	

(15)

And we find, either C
rspq

 or S
rspq

,even in contracted notation, 
that:

.

S

S S
S
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W	

(16)

Now, the engineering notation may be used for elastic constants 
and it can be written by:

.

S

E E
v

E
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E
v

E
v
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(17)

where: E
i
 is the Young’s modulus related to i direction, G

ij
 is the 

shear modulus related to ij - plane and ν
ij
 is the Poisson’s ratio in 

ij - plane. 
It could be interesting to apply to wood the theory of transversely 

isotropic material, since that would be possible to consider some 
simplifications to wood. This sort of material possesses a rotational 
elastic symmetry about one of the coordinate axes. In other words, 
if one takes, for example, the x-y plane as the plane of symmetry, in 
this plane, at any point having any direction, the elastic properties 
are the same, and the elastic constants are E, G and v in the follow-

ing relationship: . In addition to these constants in this 
model there are only two more to be determined.

For wood, the plane of isotropy could be the R-T plane. But, un-
fortunately, the results from experimental tests show that the elastic 
constant in R-direction is, in general, greater than in T-direction and 
the relationship among the E, G and v is not valid either.

2.4. Some considerations about the orthotropic model 
applied to wood

The theory of elasticity applied to wood is based on the hy-
pothesis that wood has three mutually planes of elastic symmetry 

Figure 2. Levels of Inhomogeneous of wood.
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according to its internal structure. Bodig and Jayne9, in addition to 
this hypothesis, consider the material homogeneous. Therefore, the 
longitudinal- tangential surface is not a plane, but roughly cylindrical. 
The other two surfaces, the longitudinal-radial and radial-tangential 
are, truthfully, more straight. Thus, wood may be treated as a cylin-
drical orthotropic body.

There are many procedures in literature that treat wood as the 
cylindrical anisotropic body. Carrier10 described a mathematical 
analysis about thin wooden plates applying to the Airy’s function 
in terms of cylindrical coordinates. Foschi11, Gopu and Goodman12 
and Noack and Roth13, for example, presented a formulation of 
plane problems using this model in cylindrical coordinates for plane 
orthotropic curved beams. Hsu14 applied this model when studying 
the shrinkage in wood logs.

The cylindrical orthotropic elastic model can be regarded as:

.

S S
S
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S
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S

S

0
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0
0
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0
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0
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(18)

in a cylindrical coordinate system r, z and θ, considering the elastic 
tensor in contracted notation.

 According to Lekhnitskii6, a body with cylindrical anisotropy 
must necessarily have the axis of anisotropy with the following 
property:

•  all directions parallel to the axis of anisotropy (for example 
L‑axis, that coincides with the axis of the core), passing through 
different points are equivalents; 

•  all directions intersecting this axis at right angles (for example 
R-direction, are also equivalent), and 

•  all directions orthogonal to the first two are equivalent (in this 
case, T-direction).

Furthermore, for a homogeneous body there is no difference 
between r and θ. This implies that:

S
22

 = S
11

, S
23

 = S
13

, S
55

 = S
44

	 (19)

or:

Eq = E
r
; v

zq = vqr
; Gqz

 = G
rz
	 (20)

Although it seems to be interestingly associated to wood as a 
cylindrical anisotropic model, as previously described to material with 
transversely plane of isotropy some results available in the literature 
indicate that, in general form, Eθ 

≠ E
r
 and Gqz

 ≠ G
rz
.

 Another subject that might be arisen when analyzing the mac-
roscopic structure of wood, following some ideas that can be found 
in Chung15, is concerned with adopting two different coordinate 
systems to wood. Firstly, considering a cylindrical axes: z-direction 
parallel to axis of the tree, θ-axis parallel to annual growth rings and 
r‑axis perpendicular to o direction. Secondly, considering Cartesian 
coordinate system, L, R and T, as has been mentioned, to describe 
small parts, as a specimen. Figure 4 shows these axes.

This description corresponds to the Lekhnitskii’s description, in 
which a body may have both curvilinear anisotropy and rectilinear 
anisotropy.

So, let x
1
 = r; x 

2 
= z; x

3
 = θ be a global coordinate system (G) 

and x+
1
 = r = R; x+

2
 = T e x+

3
 = L be a local coordinate system (L). 

The coordinate transformation is given by:
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(21)

 Now it is possible to write stress and strain in terms of these 
systems as:

[s]L = [K][s]G	 (22)

and:

[e]L = [K-1]T[e]G	���� (23)

where K is the following matrix:

K
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K
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and [K-1]T is the transpose of the inverse of K.
One can consider certain coordinate transformations in order 

to analyze specific features of wood. For example, if the fibers are 
inclined of the angle a in relation the L - direction, we have:
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(25)

When the fibers are inclined to R or T directions or both directions 
the equation be comes more complicated. This may happen when the 
log presents a spiral grain pattern.

Considering an axisymmetric body with the z-axis being the 
generator, the stress leads to:
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(26)

and the strain:

Z

L

RT

r

Figure 4. Cartesian and Cylindrical axes for wood.
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(27)

Finally, the constitutive relations can be written in terms of 
matrices by: 

CG = K-1 CL (KT)-1	�����  (28)

and more simply:

SG = KT SL K	���� (29)

And, using Equation 29 one can obtain the elastic parameters of 
wood in these coordinate systems.

If the generator were inclined in relation to z-axis, Equation 25 
must appropriately be changed to mathematically express this fact.

Now, after presenting the general ideas of the cylindrical anisot-
ropy applied to wood, we may make some reasons about choosing 
the rectilinear anisotropy only. The present work is concerned with 
the analysis of the orthotropic model applied to wood dealing with 
small specimens or small pieces, generally removed at some distance 
from the center of the trees. Here, we may admit wood as a rectilin-
ear orthotropic body, avoiding the mathematical complication and 
experimental difficult as well, that may result from the assumption 
of the cylindrical orthotropic model. 

In this way, arbitrating for wood the rectilinear ortrotropic model, 
with the three elastic principal axes denoted L, R and T the components 
of the compliance tensor S

ijkl
 are given by Equation 17, replacing the 

indices 1,2 and 3 by L, T and R (See Figure 5). 
However, we must to notice that if a different coordinate system 

is considered, other components of S
ijkl

 will be nonzero and the con-
stitutive laws will become more complicated to use.

Table 1, which uses data from Hearmon16, presents some values 
of elastic constants of 3 species of wood in order to show the wood 
anisotropy.

Next topic we will present some factors that influence the elastic 
properties for wood. 

3. The Effect of Grain Angle

Many researchers, in the theoretical and experimental point of 
view have long studied the effect of grain angle. One of the most 
important procedures was formulated by Hearmon16, who reported 
the effect of grain angles in all the components of S

ijkl,
 showing that 

for wood it is possible to obtain negative values of Poisson’s ratio, 
which emphasized the wood anisotropy.

Goodman and Bodig17, presented the following coordinate trans-
formation matrix:

sin

sin sin
sin

cos cos
cos

cos

cos

cos cos

x
x
x

L
R
T

0
sin

1

2

3

z

z

z i
i

z i

z i
z

z i
=

-

-

-

R

T

S
S
SS

V

X

W
W
WW

* *4 4
	

(30)

in order to determine the wood elastic properties with respect to rota-
tion θ about the L axis and φ about R - axis. The material axes and 
the board axes are: R, T,and L x

i
 (x, y, z), respectly. 

Equation 30 can be found using two coordinate transformations 
that can be written by:

x x x'
i im m ik km m

2 1, , ,= = 	 (31)

in terms of tensor notation, where ij,  represent the set of direction 
cosines and the superscripts 1 and 2 are, respectively, the first and 
the second rotations. Since no rotation about T was considered, this 
coordinate transformation is limited to cases where the L material 
axis lies in the x

1
- x

3
 plane. 

Bindzi and Samson18 carried out the following coordinate trans-
formation relation:
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(32)

with rotation φ about L-axis and ψ about R-axis. It can be noticed 
that the R-axis lies in the x-y plane. This equation can be got as Equa-
tion 30 using Equation 31. 

Both this and Goodman and Bodig’s transformations are consid-
ered limited since it is not possible to obtain all relations between the 
board and material axes.

Hermanson19, studying the transformation of elastic properties 
for lumber to align these axes x

i
 (x, y, z) with the material axes x’

i
 (L, 

R, T), used three rotations λ, ρ and φ  (denoted Euler’s angles) about 
x, y and z axes, as can be seen in this Figure 6.

Thus, we can write that:

x xi ij jk km m
3 2 1, , ,=l 	���� (33)

or in terms of matrix, by:

x Ax=l 	 (34)

with A equals to:
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where c and s indicate cos and sin, respectively.
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Figure 5. Material Axes and Board Axes for wood. 

Table 1. Elastic constants of three species of wood (E
i
 and G

ij
 in 104 MPa). 

Species E
L

E
R

E
T

G
LT

G
LR

G
TR

ν
RT

ν
LR

ν
TL

Oak 5.55 2.214 0.97 0.76 1.29 0.39 0.64 0.33 0.086

Beech 13.70 2.224 1.14 1.06 1.61 0.46 0.75 0.45 0.044

Oregon pine 16.40 1.130 0.90 0.91 1.18 0.079 0.063 0.043 0.024
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The final relation between these systems is given by:

[ ]
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(35)

or:
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where A is written by:
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After that, the three Euler’s angles were related to the surface 
angles α, β and γ, through the following relations:

;

;
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These angles can be seen in Figure 7.
In this way, it was possible to find the Euler’s angles by know-

ing the surface angles and evaluating all wood elastic constants by 
using the complete coordinate transformation to elastic properties, 
given by:

S Srspq ri sj pk ql ijkl, , , ,=l 	���� (38)

where: ij,  and S are function of components of the matrix A.
Now, by means of Equation (38), we can determine, for example, 

S
1111,

 S
2222, 

S
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or, simply, the board elastic moduli, by:
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where i = x,y,z. And the components: S
4444,

 S
5555, 

S
6666 

or, the board 
shear modulus, by:

G E
a a

E
a a a a a a v

E
a a a a a a v a a a a v

G
a a a a a a a a

G
a a a a a a a a

G
a a a a a a a a

1 4 4 8

4 8 8

2 2

2

ij R

Ri Rj

T

Ti Tj Ri Rj Ti Tj TR

L

Li Lj Li Lj Ri Ri LR LI LJ Ti Tj LT

TL

Li Tj Li Tj Li Lj Ti Tj

LR

Li Ri Rj Li Ri Rj Li Lj

RT

Ti Rj Tj Rj Ri Rj Ti Tj

2 2 2 2

2 2 2

2 2 2 2 2 2 2 2

2 2 2 2

= +
-

+

- -
+

+ +
+

+ +
+

+ +
(40)

where: ij = xy, yz, xz.

4. Examples

4.1. Theoretical examples

In order to present some examples of the use of the present 
theory, firstly we constructed tri-dimensional diagrams using Equa-
tion 39 and Equation 40, where it is showed the variation of Young´s 
modulus and shear modulus in function of the two Euler’s angles, 
as we can see in Figures 8, 9, 10 and 11. Secondly, we constructed 
bi-dimensional diagrams with the objective of showing the relation-
ship between shear modulus with the Euler´s angle λ (see Figure 6), 
which expresses the variation of theses wood elastic parameters in 
the LT and LR planes, whose planes usually considered in practical 
cases. Figures 12 and 13 show this variation. For this analysis we 
used a hardwood species, Ipê (Tabebuia sp) and a softwood species, 
Pinus caribaea var. bahamensis.

The elastic parameters were determined by Mascia20 and are 
presented in Table 2.

We can observe that both the values and the relations among the 
elastic constants (see Table 2) have influence on the shapes of the 
last figures and also depend on the wood species considered in the 
analysis (softwood or hardwood).
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4.2. Experimental example

Finally, we used some results of Young´s modulus, of Jatobá 
(Hymenaea stilbocarpa), to verify the agreement between theoreti-
cal and experimental data, from Furlani21. The goal of this procedure 
was to determine the modulus of elasticity in some fiber orientations 
determined with respect to the R-T, the R-L and the T-L plane. 

These parameters were estimated from the experimental data or 
better (See Table 3).

To achieve this, lumbers were cut according to Figure 7 in L-direc-
tion varying the angle β on the R-T plane of the following angles: 0°, 
15°, 30°, 45°, 60°, 70° and 90°. After this, blocks were obtained from 
these lumbers but varying the angle α over the lumber axis on the 
R-T plane by 0°, 3°and 5° and finally considering the angle γ of 0°, 
45° and 90°. In this way, 21 specimens of 5 cm x 5 cm x 15 cm were 
obtained for the compression tests. Table 4 shows Young´s modulus 
(the modulus of elasticity) data. 
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Figure 8. Three -Dimension diagram of Young´s Elastic Modulus and Euler’s 
angles for Pinus.

Figure 9. Three -Dimension diagram of Elastic Modulus and Euler’s angles 
for Ipê. 

Table 2. Wood Elastic Constants (E
i
 and G

ij
 in MPa).

Species E
L

E
T

E
R

G
LT

G
LR

G
RT

νLT νLR νRT νTL νRL νTR

Ipê 18043.9 960.5 1748.1 831.2 620.2 356.3 0.4790 0.4345 0.6136 0.0270 0.0371 0.3532
Pinus 5471.0 737.6 1049.4 307.0 542.6 116.3 0.3346 0.3701 0.6393 0.0477 0.0858 0.4509
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Figure 10. Three -Dimension diagram of Elastic Modulus and Euler’s angles 
for Pinus.

Figure 11. Three -Dimension diagram of Shear Elastic Modulus and Euler’s 
angle for Ipê.
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With 95% CI (Confidence Interval) for mean C1: β
1
 – mean C2:

β
2
: ( - 2963; 4530) and t-Test mean C1 equal mean C2 (versus not 

equal): t = 0.42 P = 0.67 DF = 39 and tφ (P%) around 1.69. 
From this statistical analysis we can conclude  that the hypothesis  

H
0
: b

1
 = b

2 
can be accepted with a high level of significance. In other 

words: the agreement among the theoretical values in z-direction and 
the experimental values described by Equation 39 is satisfactory.

To better illustrate this argument we present Figures 14 and 15 
showing the agreement between the experimental and theoretical 
results as a function of grain angles. 

These presented diagrams evidenced the strong relation between 
the analyzed wood elastic parameters and the fiber orientation and 
consequently the wood anisotropy.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
300

350

400

450

500

550
Theoretical Shear Elastic Modulus-Pinus (MPa)

 Angles (radians)

T
he

or
et

ic
al

 G
 (

M
Pa

)

Figure 12. Lateral view diagram of Shear Elastic Modulus and Euler’s angles 
for Pinus.
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Figure 13. Lateral view diagram of Shear Elastic Modulus and Euler’s 
angles for Ipê.

Table 3. Wood Elastic Constants (E
i
 and G

ij
 in MPa).

Species E
L

E
T

E
R

G
LT

G
LR

G
RT

ν
LT

ν
LR

ν
RT

Jatobá 18558 932 1501 1450 1024 496 0.7778 0.5089 0.4286

Table 5. Experimental and Theoretical Data of Jatobá (in MPa).

C1 - Experimental Values C2 - Theoretical Values 

18359 18420

12422 1130

4316 4738

2078 2311

2659 1391

2704 1036

2900 1501

20992 17804

16105 9683

4521 4441

837 2601 

1083 1894

1339 1501

11604 17258

1610 1596

6775 9035

6281 4056

2073 2433

1477 1815

2077 1568

1477 1815

2077 1568

1960 1501

Table 6. Twosample t –Test for C1 vs C2.

n β -mean s -stdev se mean

21 5913 6182 1349

21 5129 5816 1269

Table 4. Young`s modulus Data of Jatoba (Ei in MPa).

Angle 
α

Angle 
β

Angle 
γ

0° 15° 30° 45° 60° 75° 90°
0° 18359 12422 4318 2078 2659 2704 2900 0°
3° 20992 16105 4521 837 1083 1610 1339 45°
5° 11604 6775 6281 2073 1477 2077 1960 90°

5. Two Sample t-Test and Confidence Interval

It was considered the 21-data set to establish relations between 
theoretical and experimental data, through the statistical analysis 
(See Annex). Table 5 shows the experimental and theoretical values 
of Young´s modulus.

From the Two sample t-Test22 for C1 vs C2, we obtain the 
Table 6.



Vol. 9, No 3, 2006 Remarks on Orthotropic Elastic Models Applied to Wood 309

6. Conclusions

In this paper, the general concepts of the orthotropic elastic model, 
particularly the rectilinear and cylindrical models, were described. 
Taking into account both to consider practical considerations and to 
avoid mathematical complications, the linear model is considered 
more usual.

In order to present some applications of this model, it was 
developed some examples for softwood and hardwood species, by 
analyzing theoretical data from a specific expression resulted from 
this model and checking experimental data obtained from compres-
sion tests in Jatobá (Hymenaea stilbocarpa).

We have already commented that the variation of grain angle, 
which constitutes the main reason for wood anisotropy, is responsi-
ble for the greatest changes in the values of the constitutive tensor 
components.
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Figure 15. Theoretical and Experimental (-o-) diagram of Young’s Modulus 
and Euler’s angles for Jatobá.

In general, the most important conclusion from this study can be 
summarized as follows:

•  the agreement between the rectilinear orthotropic model, de-
scribed by the theoretical values and the experimental values, 
can be considered satisfactory. 

The present statistical analyses indicated that only some results of 
the data did not adequately fit in the model especially because wood 
to be a non-homogeneous and an anisotropic material. 

It is important to notice that this conclusion is restricted to the 
current experimental data. In order to make generalizations about 
these results, it is necessary to perform more tests taking into account 
other species of wood, and in other fiber orientations.
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Notation

C
0,
 δ

ij,
 β

ijkl
, α

ij
	 constants 

i, j, k	 indices 
ε

kl
	 strain tensor, strain

σ
ij
	 stress tensor, stress

 x
i
, x

1
, x

2
 and x

3 
(or x, y and z)	 coordinate system 

U
o
	 strain energy function

C
ijkl

	 tensor of material elastic 
constants

S
ijkl

	 compliance tensor
E

i
	 modulus of elasticity related 

to i direction
G

ij
	 shear modulus related to 

ij‑plane 
ν

ij
	 Poisson’s ratio in ij-plane

expE
	

modulus of elasticity from 
the experimental data 

theoE	 modulus of elasticity from 
theoretical data 

A, K	 matrix
a

ij
	 elements of tensor or ma-

trix

ij, 	 coordinate transformation 
tensor, coordinate

x’
i
 (L, R, T )	 material axes

L	 Longitudinal direction
T	 Tangential l direction
R	 Radial direction
λ, ρ, ϕ	 Euler’s angles
β

i
	 Sample mean

DF	 degrees of freedom
t a/2

	 the value from a t-distribution 
where a is 1 - confidence 
level/100

N, n
1
, n

2
	 number of specimens

p	 probability 
s	 standard deviation

Annex

1. Two Sample t- Test Description from Minitab 
Program 

1.1. Confidence interval

The confidence interval is calculated as

(b
1
 - b

2
) - ta/2

 to (b
1
 - b

2
) + ta/2

where ta/2 
is the value from a t-distribution table where α is 1 - con-

fidence level/100. The sample standard deviation, s, of (b
1
 - b

2
) and 

the degrees of freedom depend upon the variance assumption.
You can specify a confidence level of any number between 1 and 

100 in Confidence level. The confidence level is 95% by default.

1.2. Hypothesis test

Minitab calculates the test statistic, t, by

t = (b
1
 - b

2
) /s

and we compare with tφ (P%), obtained from table of t-Student dis-
tribution with level of significance P%.

The sample standard deviation, s, of (b
1
 - b

2
) depends upon the 

variance assumption.

1.3. Standard deviations

When you assume unequal variances, the sample standard devia-
tion of (b

1
 - b

2
) is

s n
s

n
s

1

1
2

2

2
2

= +

The test statistic degrees of freedom are

/ /
DF

VAR n VAR n
VAR VAR

1 11
2

1 2
2

2

1 2
2

=
- + -

+

^ ^ ^ ^

^

h h h h

h

8 8B B

where /VAR s n1 1
2

1=  and /VAR s n2 2
2

2=  .
 When you assume equal variances, the common variance is 

estimated by the pooled variance

s n n
n s n s

2
1 1

p
2

1 2

1 1
2

2 2
2

=
+ -

- + -^ ^h h

The standard deviation of (b
1
 - b

2
) is estimated by

s s n n
1 1

p
1 2

= +

The test statistic degrees of freedom are (n1 + n2 - 2).


