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The Phase-Field method was applied to simulate the solidification of pure nickel dendrites and the results 
compared with those predicted by the solidification theory and with experimental data reported in the literature. 
The model’s behavior was tested with respect to some initial and boundary conditions. For an initial condition 
without supercooling, the smooth interface of the solid phase nucleated at the edges of the domain grew uniformly 
into the liquid region, without branching. In an initially supercooled melt, the interface became unstable under 
260 K supercooling, generating ramifications into the liquid region. The phase-field results for dendrite tip 
velocity were close to experimental results reported in the literature for supercooling above 50 K, but they failed 
to describe correctly the nonlinear behavior predicted by the collision-limited growth theory and confirmed by 
experimental data for low supercooling levels. 
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1. Introduction

Understanding dendritic solidification is highly important because 
the microstructural scales of the dendrite determine the proprieties 
of the material. Although significant advances have been achieved 
in understanding dendritic structures in past decades, our knowledge 
concerning dendritic growth phenomena is largely based on experi-
ments and idealized theoretical models.

The first well-known paper about the Phase-field Method, pro-
posed by Caginalp1, dates back to 1980. Since then, the method has 
proved to be suitable for describing the complex growth of the unstable 
solid/liquid interface during solidification phenomena. This method is 
especially attractive because it considers all the governing equations in 
the whole domain, without direct tracking of the interface position dur-
ing numerical calculations. Several phase-field models have recently 
been developed, mainly for the solidification of pure materials1-6, and 
have also been extended to the solidification of binary alloys7-15. 

For this type of work involving solidification of pure materials, we 
can cite Kim et al.6. In that paper, the authors present a double-grid 
method that significantly reduces the CPU time. This method is based 
on the difference in phase-field diffusivity and thermal diffusivity 
in a pure material, enabling one to use a large time step. The phase 
variable (φ) is calculated adaptively within the solid/liquid interface 
and the thermal field is calculated within the thermal boundary layer. 
The results obtained by Kim et al. point to a well-developed nickel 
dendrite with tertiary and secondary arms forming side branches. 
Kobayashi2 proposes a similar work for pure materials, showing the 
influence of the isotropic mode on the solid/liquid interface in a sys-
tem cooled from the boundaries. In one simulation, the solid/liquid 
plane interface is stable, with no branching, and advances uniformly 
into the liquid region. In another, Kobayashi studies the effect of latent 
heat on the shapes of the solid/liquid interface. For low latent heat 
in a supercooled system, the plane solid/liquid interface is slightly 
destabilized. At high latent heat, also in a supercooled system, a cel-
lular structure is visible. One can also see that the branches compete 
with each other. The anisotropy constant (δM) is also studied in this 
paper2. Kobayashi shows the relations between δM and dendrite 
shapes. In the first computation, where δM = 0, patterns similar to 

the amorphous shapes are noted. The results for anisotropy constants 
different from zero (δM = 0.010) show one typical dendritic structure 
with side branches. 

The simulation of the solidification process is an intriguing 
problem. The formation of complex microstructures during the so-
lidification of metals and alloys in the liquid phase have fascinated 
researchers in materials science and related areas for hundreds of 
years. A question a researcher in this area might come across is: 
How does the phase-field method generate results that resemble 
the morphology of a dendrite? To answer this question, this paper 
presents a study of some fundamental features of the method under 
different boundary and initial conditions. In the results section, we 
first present the equations of the phase-field method solved by finite 
volumes versus finite differences. This is a strategy adopted to validate 
our numerical procedure. The second section presents a simulation 
of solidification without supercooling. In this case, the plane inter-
face is stable. In the third section discusses the simulation of the 
solidification of a pure metal with supercooling. In this condition, 
the solid/liquid interface becomes unstable, generating ramifications 
into the liquid. In the fourth section, the Phase-Field Method is used 
to predict solidification rates. We calculated the solidification for 
different supercooling levels from 10 to 160 K. The model success-
fully reproduced the general behavior and the predicted velocities 
were of the same order of magnitude found in experimental data. The 
phase-field model, however, was not able to reproduce the nonlinear 
dependence between solidification velocities and supercooling levels. 
The last section presents the development of the thermal field for the 
system. For the formation of a dendritic morphology, it is important 
that the thermal diffusivity become greater than its phase diffusivity 
so that asymmetrical secondary dendrites can be formed. 

2. Phase-field Modeling for Pure Materials

The phase-field model is based on the simultaneous solution of 
energy and phase-field equations. Phase-field modeling assumes the 
growth of seeds in the liquid phase. According to this hypothesis, 
there are three regions to be considered: the solid nucleus, the liquid 
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phase and the solid/liquid interface. The state of the entire domain is 
represented by the distribution of a single variable known as the order 
parameter, φ, or phase-field variable. The solid material is represented 
by φ = 1 while, in the liquid region, φ = 0. The region in which φ 
changes from 1 to 0 is defined as the solid/liquid interface. The time 
evolution equation of the phase-field φ is described by6:
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where M is defined as the solid/liquid interface mobility7, the angle θ 
is given by the orientation of a vector perpendicular to the solid/liquid 
interface, e.g., ∇φ. DH is the latent heat and Tm the melting tempera-
ture. The function g’(φ) that multiplies w determines the distribution 
of the excess free-energy at the interface. h(φ) is a function that satis-
fies the condition h’(0) = h’(1 ) = 0. As in Ref. 7, we chose

h(f) = f3(10 – 15f + 6f2)	 (2)

g(f) = f2 (1 – f)2	 (3)

Equations 2 and 3 are widely used in combination with the Phase-

field Method. Note that the term  wg h
T
H T T
m

mz z D
- - -l l_ _ ^i i h

disappears when φ = 0, in which case only liquid is present. Similarly, 
when φ = +1, only solid is present. As expected, this term is different 
from zero only in the presence of both the solid and liquid phases. The 
method most widely used6,7 to include anisotropy for two-dimensional 
calculations is to assume that ε in Equation 1 depends on θ, the orien-
tation of the normal to the interface with respect to the x-axis:

e(q) = e(1 + d
M
 cos j(q – q

o
))	 (4)

where δ
M

 is the anisotropy constant. The value of j controls the 
number of preferential directions of the material’s anisotropy, equal-
ling 0 for the isotropic cases, 4 for anisotropy of 4 directions, and 
so on. The constant θo is the interface orientation with respect to the 
maximum anisotropy, while ε and w are parameters associated with 
the interfacial energy (σ) and interface thickness (λ), as proposed 
by Boettinger et al.7:
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For the interface mobility, we follow Refs. 6 and 7:
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where µ is the linear interface kinetic coefficient. The Phase-field 
Method particularized for a pure material, subjected to a nonuniform 
thermal field, includes an energy transport equation:
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In Equation 8, D is the thermal diffusivity, ∆H is the phase-change 
latent heat, considered positive for solidification, ρ is the material’s 
density, assumed to be the same for both solid and liquid, and C

p
 is 

the specific heat. The parameters and physical properties are presented 
in the results section. 

3. Numerical Solutions

Equations 1 and 8 were solved using the Finite Volume Method16, 
in a mesh sufficiently refined to describe details of the dendrites. The 
energy equation was solved by an implicit scheme, which ensures 
convergence for longer time steps. For the phase-field equation, an ex-
plicit scheme was used. Considering the case of pure nickel, e(q)2 < D, 
convergence is then already possible for values of  Dt ≤ Dx2 / 4e(q)2. 
However, in order to observe the growth of thermal dendrites, the 
calculation must be done according to the time scale of the thermal 
diffusion. For this reason, it was necessary to use Dt ≤ Dx2 / 4D. 

The anti-symmetrical side branching from primary arms around 
the dendrite tip is known to be possible only with the existence of a 
noise source in the phase-field Equation 1. Therefore, random noise 
was added to Equation 1, in the same way as described by Warren 
and Boettinger:8

Noise = 16 a r f2 (1 – f)2	 (9)

r is a random number generated between + 1 and – 1 and α is a noise 
amplitude factor. An analysis of Equation 9 indicates that the maxi-
mum noise is at φ = 0.5, with zero at φ = 0 and φ = + 1. The calculations 
were made on a Pentium 4, 1200MHz, with 1 GB RAM. 

4. Results and Discussion

4.1. The phase-field method by finite volumes vs. phase-field 
by finite differences

The Phase-field Method has been developed over the two last 
decades. The equations pertaining to the method are usually solved by 
finite differences. In this work, Equations 1 and 8 were solved by the 
finite volume technique16. The strategy adopted to validate the numeri-
cal procedure developed here was to compare our results against those 
of Kobayashi2 for the numerical simulation of a dendritic crystal. The 
parameters and properties adopted for this simulation were the same 
as those used by Kobayashi2 and are shown in Table 1 and 2. Figure 1 
shows the simulation results for a latent heat of 1.6. The boundary 
condition for φ is zero-flux condition. An adiabatic process was as-
sumed for the heat flux. The initial temperature of the domain is equal 
to - 1.0, which is below the melting temperature (Tm = 0).

In Figure 1, the similarity between the dendrite obtained in this 
work a) and the one obtained by Kobayashi2 b) under the same condi-
tions is evident. Small differences between the secondary arms are 
due to the random characteristics of the noise source. 

Table 1. Material properties2.

Melting temperature (Tm) 1

Thermal diffusivity (D) 1

Table 2. Model parameters2.

Anisotropy constant (δε) 0.04

Interface thickness (ε
o
) 0.01

Interface energy (w) 8

Interface mobility (M) 1/0.003

Time steps 2 x 10-04

Grid spacing (∆x) 3 x 10-02

Grid spacing (∆y) 3 x 10-02

Anisotropy mode (J) 6

Noise amplitude (a) 0.01

Preferential direction of growth (θ
o
) 90
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Figure 2a depicts the simulation of a nickel dendrite calculated 
here with a numerical grid of 1200 x 1200 points, while Figure 2b 
depicts the results obtained by Kim et al.6. A “seed” was set at the top 
left-hand corner, as done before by Kim et al.6. Both figures show: 
a) the secondary and tertiary arms; b) the secondary arm increases 
with the distance behind the primary dendrite tip; and c) the asym-
metry in the side branch found in the secondary and tertiary arms. 
The initial and boundaries conditions we used in this simulation are 
identical to those adopted by Kim et al.6

4.2. Simulation of the solidification of a pure metal without 
supercooling 

Table 3 summarizes the values of the model’s parameters used 
here to simulate a nickel dendrite, while Table 4 lists the values of 
the material’s properties.

The initial temperature of liquid nickel was set to equal its melting 
temperature (T

m
 = 1728 K). The domain discretization was a mesh of 

600 x 600 points. The four boundaries were cooled at identical rates. 
The temperature in the region neighboring the domain is 300 K. The 
cooling rate obeys the convection law for heat transfer. The regions 
closer to domain boundaries present lower temperatures, since the 
system is being cooled at the boundaries at a prescribed heat transfer 
coefficient of h = 45 Wm-1 K-1. 

A thin layer of solid (φ = 1) was placed on the left, right and top 
borders of the domain, while a rectangular layer of solid was placed 

Table 3. Parameters model (Ni)6.

Anisotropy constant (δε) 0.025

Thickness interface (ε
o
) 2.01 x 10-4 (J/m)1/2

Free energy factor (w) 0.61 x 108 J/m3

Mobility interface (M) 13.47 m3/sJ

Grid spacing (∆x) 2 x 10-08 m

Grid spacing (∆y) 2 x 10-08 m

Time steps (∆t) 1 x 10-12 (s)

Noise amplitude factor (α) 0.025

(b)

Figure 1. a) Present calculation and b) Kobayashi’s Dendrite calculation2, 
both with DH = 1.6.

(a)

(b)

Figure 2. Dendrite calculated with a 1200 x 1200 point grid, where the den-
drite started to grow from a seed at the top left-hand corner toward the bottom 
right-hand corner of the box. Solidification time was 6.26 x 10-7 s.

on the bottom border (Figure 3a). The objective of this simulation 
is to verify that, in a non-supercooled melt, the interface advances 
uniformly into the liquid region, with no branching. This type of plane 
interface is stable. These results are illustrated by the time evolution 
of the interface shown in Figures 3b to 3d. 

The phase-field model is also able to reproduce solidification con-
ditions in which the solid/liquid interface is stable and no dendrites are 
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Table 4. Properties material (Ni)6.

Interface energy (σ
0
) 0.37 J/m2

Coefficient kinetic interfacial 2 m/sK

Melting temperature (Tm) 1728 K

Latent heat (∆H) 2.35 x 109 J/m3

Thermal diffusivity (D) 1.55 x 10-5 m2/s

Specific heat (Cp) 5.42 x 106 J/m3 K

Interface width (2λ
0
) 8 x 10-08 m

Figure 3. Development of the smooth interface from an initially disturbed region. Solidification time is a) t = 0; b) t = 6.9 x 10-9 s; c) t = 9.5 x 10-9 s; and d) 
t = 2.2 x 10-8 s, and the melting temperature isotherm (Tm = 1728 K) is also presented.  
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formed. Such is the case of a pure metal that undergoes solidification 
due to heat extraction through the walls of a mould, with no supercool-
ing of the bulk of the liquid. Under these circumstances, even large 
perturbations in the solid/liquid interface are damped and the solidifica-
tion front becomes flat. Stabilization of a planar interface in a domain 
with no supercooling is also reported in Chalmers17 and is exemplified 
in Figure 3a-d, which shows the solid/liquid interface at four different 
moments during solidification. Figure 3a shows the initial condition, 

where a pattern of rectangles was set as a seed for the solidification 
front. In Figure 3c-d, this pattern evolves to a planar front. 

4.3. Solidification of a pure metal with supercooling effects

In this simulation, a fine solid layer was added to the domain 
boundaries and there is 260 K supercooling. The objective of this 
simulation is to demonstrate that the plane interface becomes unstable 
in a supercooled domain, with branching advancing into the liquid 
region. Figure 4a-d illustrates the advance of the interface. Note that 
regions close to domain corners solidify more slowly than other re-
gions, which is due to the fact that there is a greater release of latent 
heat in the corners, causing the local temperature to increase and thus 
delaying solidification in this region. Figure 4d shows the primary 
arms; note that some of the arms located in the central region are well 
developed, including some secondary arms.

4.4. Solidification speed 

The phase-field model is usually applied as a tool to calculate the 
solidification process, but it can also be used to predict solidification 
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of a linear dependence between the solidification speed and super-
cooling17. A consequence of this assumption is the introduction of a 
constant linear kinetic coefficient, µk, in Equation 7. The coefficient µk 
should be considered constant only for small ranges of supercooling. 
Disregarding this dependence could cause the linear behavior shown 
in Figure 5b. However, this assumption requires further investigation 
and will be the focus of the upcoming Ref. 18. However, the model 
predicted a velocity magnitude very close to that of the experimental 
results, especially at higher supercooling, where the experimental 
results scatter and do not rule out a linear behavior. 

4.5. Development of the thermal field 
Figure 6a shows the solidification of initially supercooled 

(∆T = 260 K) pure nickel with adiabatic boundary conditions and 
zero flux for φ, while Figure 6b shows the thermal field. In Figure 6a 
the dendrite started to grow from a solid nucleus at the top left-hand 
corner toward the bottom right-hand corner of the domain. One of 
the interesting phenomena is the asymmetry in the side branching 

Figure 4.  Evolution of an unstable interface into a supercooled melt. Solidification time is a) t = 0; b) 2.6 x 10-8 s; c) t = 7.5 x 10-8 s; and d) t = 4.6 x 10-7 s.
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rates or speeds. The boundary condition for φ is a zero-flux condition. 
As for the heat flux, an adiabatic process was assumed. We explored 
this possibility to assess dependence of the solidification speed on 
supercooling, calculating the solidification of pure nickel at differ-
ent supercooling levels ranging from 10 to 160 K. For each transient 
calculation, the displacement of a dendrite tip was measured and the 
speed of the tip of a dendrite was determined for each supercooling 
level. The results of these calculations are shown in Figure 5b, while 
the experimental results are depicted in Figure 5a. In both Figures 5a 
and 5b, the supercooling considered was the difference in temperature 
between the equilibrium and the initial liquid. The phase-field model 
predicted a linear dependence between solidification speed and super-
cooling levels, while experimental results in the literature17 indicate a 
nonlinear behavior. We surmise that the discrepancy can be explained 
by the fact that the linear behavior is “built into” the formulation of 
the phase-field model. The linear dependence on supercooling first 
appears in the source term in Equation 1, but it is also a consequence 
of the constant mobility M, which is derived based on the assumption 
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Figure 5. Dendrite tip speed vs. thermal supercooling (DT), a) experimental17; 
and b) predicted in this work using the phase-field model.

Figure 6. a) Phase and b) temperature fields in dendritic growth.

found in the secondary and tertiary arms; side branching occurs only 
at one side of the arms. Such asymmetry seems to be related with the 
thermal-field distribution. 

Figure 7 shows temperature profiles and the phase-field variable 
across the interface at the dendrite tip, as indicated in Figure 6a. 
The transient response of phase-field equations is controlled by the 
product M.e

0
2. This parameter acts in the phase-field method simi-

larly to the thermal diffusivity D in the thermal energy equation. As 
Kim et al.6 pointed out, in the formation of a dendritic morphology 
it is important that the thermal diffusivity becomes greater than its 
similar term, M.e

0
2. This can be explained by analyzing Figure 7. The 

greater value of D forced the thermal front to be always ahead of the 
solidification interface. Hence, there was always a thermal gradient 
ahead of a small perturbation at the solidification front. This thermal 
gradient favored the perturbations, which penetrated this region and 
then grew more rapidly. Without this thermal gradient, no perturbation 
would hold and the dendritic pattern would not form. 
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5. Conclusions

The phase-field model is a powerful tool for simulating details 
of solidification of crystalline materials. The model can be described 
as a transport-like equation for the solid phase formulated in terms 
of a phase-variable, φ, which determines whether the phase is solid 
or liquid. This transport equation was solved by a finite-volume 
scheme, explicit in time, together with a finite-volume scheme and 
an implicit-in-time scheme for the energy equation. The simulations 
of pure nickel dendrites carried out in this work were first compared 
with previous simulations reported in the literature to validate the 
present computational code. Calculations of the solidification of pure 
nickel were then used to investigate the model’s ability to reproduce 
both stable and unstable solid/liquid interfaces. Predictions of the 
phase-field method for the solidification velocities at dendrite tips 
were compared with data from the literature17. Our model was able 
to reproduce the general behavior and the predicted velocities were of 
the same order of magnitude found in experimental data. The phase-
field model, however, could not reproduce the nonlinear dependence 
between solidification velocities and supercooling levels. The likely 
reason for this discrepancy was “built into” the phase-field model 
due to the use of a constant interface mobility, M, through a kinetic 
coefficient µk, originally postulated as a constant. 
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Appendix

From the hypothesis of equilibrium, a solution exists when T = Tm 
for a one-dimensional transition zone between liquid (φ = 0) and solid 
(φ = 0), where φ varies in the x direction normal to the interface. In 
this case, Equation 1 becomes:

dx

d
w

d

dg
2

2

2

f
z

z

z
=

_ i
	 (10) 

g(φ) is here represented as follows: 

g(f) = f2 (1 – f)2	 (11) 

and

d

dg
2 1 1 2

z

z
z z z= - -

_
_ _

i
i i	 (12) 

Inserting Equation 12 into 10, one has:

dx

d w2
1 1 22

2

2

z
f
z

z z= - -_ _i i	 (13) 

The solution is:

tgh
w

x
2
1 1

2
oz

f
= - e o> H	 (14) 

 The goal here is to show that Equation 14 is a solution of Equa-
tion 13 and that it satisfies the boundary conditions, where φ = 1 
(solid) when x → - ∞ and φ = 0 (liquid) when x → + ∞. Rearranging 
Equation 14,

tgh
w

x
2

1 2 o
f

z= -e o 	 (15) 

The relation between the hyperbolic functions is:

sec h
w

x tgh
w

x
2

1
2

2 2

f f
= -e eo o 	 (16) 

Taking Equation 15 into Equation 16,

sec h
w

x
2

1 1 2 o

2 2

f
z= - -e _o i 	 (17) 

Differentiating Equation 14 twice:

sec tanh
dx

d w w
x

w
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2 2 2
h2

2

2

2
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z
f f f

= f ep o 	 (18) 

Using Equations 15 and 16 in 17 and rearranging the terms, 
one has:

dx

d w2
1 1 22

2

2

z
f
z

z z= - -_ _i i	 (19)

Thus, Equation 19 is equivalent to Equation 13.


