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Cellular automata simulation in three dimensions is carried out to simulate microstrutural evolution for 
nuclei distribution ranging from a periodic arrangement to clusters of nuclei. The effect of clustering in three 
dimensions is found to be much more difficult to detect using conventional microstructural path analysis than in 
two dimensions. Microstructural path equations fit simulated data well, even when the nuclei are non-randomly 
located. However, the parameters obtained by means of this fitting lead to erroneous time dependent velocities. 
Therefore, measuring a descriptor that is sensitive to non-randomness such as the contiguity is even more important 
in three than in two dimensions.
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1. Introduction

Formal kinetics is often used to analyze recrystallization as well 
as other nucleation and growth reactions. Early formal theories of 
Jonhson-Mehl1, Avrami2-4 and Kolmogorov5, the JMAK theory, 
were subsequently expanded by DeHoff6 and further developed by 
Vandermeer7, resulting in the so-called microstrucural path method, 
MPM. In particular, this approach has been used on a routine basis 
to interpret results obtained for recrystallization kinetics. The usual 
methodology consists in measuring quantities on a planar section: 
the volume fraction transformed, V

V
, and the interfacial area between 

transformed and untransformed regions per unit of volume, S
V
, as a 

function of time. From these data, it is possible, by means of equations 
from formal kinetics, to extract information concerning the average 
nucleation and growth behavior of individual regions. Such analysis 
is usually carried out assuming that nuclei are randomly located in 
space, a fundamental assumption of JMAK’s. 

In practical situations nucleation often takes place non-random-
ly8,9. In recrystallization, for instance, the deformed state is invariably 
heterogeneous and preferential nucleation may take place within the 
regions with higher stored energy10. Non-randomness is very diffi-
cult to model by analytical methods because it is not easy to specify 
nuclei location if nuclei are not located in space either randomly or 
periodically11. Experimentally, Vandermeer12 has been advocating 
the use of the contiguity parameter as a useful descriptor to detect 
non-randomness. The contiguity, Cβ, needs measuring the interface 
area per unit of volume between transformed, β, and untransformed 
regions, α, here designated by the symbol S

Vβ
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In recent papers, computer simulation by cellular automata13,14 
has been used to investigated the kinetics in conditions that depart 
from randomness15-23. The simulation allows precise data to be gen-
erated, without the experimental errors. This allows to focus on the 

geometrical issues of the transformation and apply the theoretical 
results with confidence in real materials. 

In a previous work, detailed cellular automata23 simulation in 
two-dimensions was carried out to investigate the efficiency of 
microstructural descriptors in assessing departure from randomness. 
In that work it became clear that the contiguity is very sensitive to 
departures from randomness. Moreover, it was found that the formal 
theory was able to fit the simulated results fairly well, even if the nu-
clei were not randomly located in space. This fitting could potentially 
induce serious misinterpretation of the data. �����������������������    This is so because the 
fitted parameters, obtained from non-random nuclei, could not be 
interpreted in their usual way.

Although the 2D simulation was interesting 3D simulations are 
much more relevant in practical applications. In this work, site-satu-
rated recrystallization is simulated by using cellular automata in three 
dimensions in order to investigate the effect of nuclei distribution 
on the kinetics. In order to simplify the problem only site-saturated 
nucleation is considered. Formal kinetics is applied to the non-random 
distribution of nuclei and its validity under these circumstances is 
investigated. The results are compared with 2D simulations of previ-
ous work23. Although this work has recrystallization as main focus its 
results are general, valid for any nucleation and growth transformation 
complying with the assumptions of the simulation.

2. Description of the Simulation

Cellular automata methodology was used to simulate recrystal-
lization. The implementation followed that of Hesselbarth and Göbel15 
using the von Neumann neighborhood criterion. The matrix consisted 
of a cubic lattice with 304 x 304 x 304 cells and 4096 nuclei. One 
cell edge was considered to have a unit length and consequently of a 
single cell had unit volume. The units of all quantities reported here 
follow from this. The number of nuclei per unit of volume, N

V
, was 

kept constant and equal to 1/6859. The matrix size and number of 
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nuclei were chosen for reasons described elsewhere22. The nuclea-
tion was site-saturated: all nuclei appeared at t = 0. In this work, in 
addition to the random nuclei distribution, the nuclei were arranged 
periodically and in clusters. For the periodic arrangement they were 
located in the center of “boxes” of 19 x 19 x 19 cells. There were in 
total 4096 “boxes”. For clustering the simulation procedure was as 
follows. Nucleation was allowed to occur randomly within a number of 
randomly selected boxes from the set of 4096 boxes mentioned above. 
First, 1024 boxes were randomly selected from the set of 4096 boxes, 
then four nuclei were randomly placed in 1024 boxes; then 256 boxes 
were randomly chosen and sixteen nuclei were randomly located in 
each box; finally, 64 boxes were randomly chosen with 64 nuclei per 
box. The simulation produced a sequence of matrices as a function of 
time. Time is discrete in CA, it takes integer values starting from t = 0. 
One time unit corresponds to the interval between two consecutive 
matrix updates21,22. From the simulated matrices, all the desired quanti-
ties could be extracted. Hesselbarth and Göbel15 give a more detailed 
account of two-dimensional cellular automata in general. Oliveira22 
gives further details of the three-dimensional CA simulation.

3. Derivation of Analytical Formalism to  
Describe 3D Simulation 

In this section the microstructural path analysis formalism is 
derived for cellular automata simulations with a von Neumann 
neighborhood.

The basis of formal kinetics analysis is Equation 2

V
V
 = 1 – exp(– Ktn)	 (2)

This equation is very “flexible” and is able to fit even complex 
heterogeneous transformation reasonably well. In some cases, a clear 
interpretation can be given to the values of K and n, found by fitting 
the experimental data. Below we derive K and n for the specific case 
of cellular automata simulation of site-saturated reactions. A very 
general derivation of these values for spheroidal particles is given 
by Vandermeer et al.7. 

The first point is to derive the extended volume fraction, V
E
, that 

is the sum of the volumes of all growing regions supposing that they 
grow freely. In other words supposing that they grow as each were 
the only growing regions, increasing its size indefinitely without 
impinging on another region. First we derive the volume of one 
growing grain, v(t)

v t Gdt
t

( ) = ( )∫η3 0

3

	 (3)

where η
3
 is a shape factor, G is the interfacial velocity in extended 

space and t is time. In a previous work14 we found that for cellular 
automata with G = constant = 1/3

v t t( ) =
4

3
3 	 (4)

Comparing the equations gives η
3
 = 36, so that the extended 

volume, V
E
 is 

V t N GdtE V

t
( ) = ( )∫36

0

3
	 (5)

where N
V
 is the number of nuclei per unit of volume, G is the inter-

facial velocity in extended space and t is time.
G can be formally described by

G
G

tk
= 0 	 (6)

where G
0
 and k are constants. The extended volume becomes.
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Notice that the extended volume does not depend on nuclei lo-
cation. It is the same for randomly or non-randomly located nuclei. 
However, the JMAK relationship between extended and real volume 
fraction does depend on the assumption that nuclei are randomly 
located in space

V
V
 = 1 – exp(– V

E
)	 (8)

Combining this with the calculated extended volume results in:
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The extended area per unit of volume is also necessary for the 
present analysis. For a single grain, s

s t Gdt
t

( ) = ( )∫η2 0

2
	 (10)

where η
2
 is a shape factor, In a previous work14 it was found that for 

cellular automata with G = constant = 1/3

s(t) = 12t2	 (11)

Comparing the equations gives η
2
 = 108, so that the extended 

interface area, S
E
 is 

S t N GdtE V

t
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0

2
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Using Equation 6 for the velocity results in
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Notice that, likewise the extended volume, the extended interface 
area does not depend on nuclei location. When nuclei are randomly 
located in space

S
V
 = S

E
(1 – V

V
)	 (14)

and
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For constant velocity k = 0, G = G
0
, and the expressions given in 

a previous work14 are recovered

V N tV V= − −1
4

3
3exp( ) 	 (16)

S N t N tV V V= −12
4

3
2 3exp( ) 	 (17)

S
V
 can be written as a function of V

V
 and the “microstructural 

path” is obtained
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For site-saturated reactions, the microstructural path is independ-
ent of the interface velocity.

One way of obtaining the interface velocity is by fitting Equa-
tion 2 or 9 and 18 to the data, as will be done below. ����������������� Another possibil-
ity is to obtain it directly by means of the Cahn-Hagel equation24 
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G
S

dV

dtCH
V

V=
1

	 (19)

Equation 19 is a mathematically exact expression for the veloc-
ity averaged over all interface area. The interface velocity for the 
growth of a single grain was obtained in a previous work with the 
help of Equation 19

G
s

dv

dtCH ( )single grain = ≅
1 1

3
	 (20)

G
CH

 for the simulation is reported in the next section.

4. Results 

Figure 1 shows the simulated microstructure for randomly located 
nuclei: a) volume fraction equal to 0.01 and b) volume fraction equal 
to 0.1. Figure 2 shows the simulated microstructure for clustered nu-
clei, 64 boxes were randomly chosen from 4096 boxes and 64 nuclei 

were randomly located within each box: a) volume fraction equal 
to 0.01 and b) volume fraction equal to 0.1. Figure 2 clearly shows 
that for clustered nuclei, impingement within the cluster takes place 
very rapidly and for the remaining of the growth the clustered region 
behaves as a single grain.

Figures 3-5 show the plots of volume fraction as a function of 
time; interface area per unit of volume against volume fraction, the 
microstructural path, and the contiguity as a function of volume frac-
tion. In Figures 3-5 the nuclei arrangement varies from periodic to 
severely clustered. Three cases were chosen from Figures 3 and 4 for 
a more detailed microstructural path analysis to be carried out. 

The general trends observed in the simulation were:
1.	The more severe is the clustering the slower is the reaction 

kinetics relative to the kinetics of the randomly located nuclei, 
see Figure 3. The reaction is fastest for the periodic arrange-
ment but, compared with 2D simulations, 3D simulations show 
a smaller difference between the kinetics of periodically and 
randomly located nuclei;

Figure 1. Simulated microstructure for randomly located nuclei: a) t = 0 and 
b) volume fraction equal to 0.1. Only part of the 304 x 304 x 304 matrix is 
shown to avoid overloading the figure.

Figure 2. Simulated microstructure for clustered nuclei, 64 boxes were ran-
domly chosen from 4096 boxes and 64 nuclei were randomly located within 
each box: a) t = 0; and b) at volume fraction equal to 0.1 nuclei within clusters 
have already impinged. Only part of the 304 x 304 x 304 matrix is shown to 
avoid overloading the figure.
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Figure 3. Volume fraction against time, simulated by CA. The reaction is 
faster for a periodic nuclei arrangement and slower for clusters. The number 
of nuclei per unit of volume is the same in all simulations.
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Figure 4. Interfacial area between recrystallized grains and matrix, S
V
, against 

volume fraction, simulated by CA. The maximum in S
V
 is more pronounced 

for a periodic nuclei arrangement and less pronounced for clusters.
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Figure 5. Contiguity, Cβ against volume fraction, simulated by CA. 

2.	As shown in Rios et al.14, in 2D simulations the microstructural 
path developed a pronounced peak at low volume fractions. 
This did not occur here. Only a slight increase was observed at 
low volume fractions( See Figure 4.). Of course, the curves in 
Figure 4 change with clustering but the overall shape remains 
similar. Therefore, in 3D one might say that in contrast with 2D 
results the microstructural path is not so sensitive to deviations 
from randomness; 

3.	Figure 5 shows that Cβ is a quite good parameter to evaluate 
deviations from randomness as advocated by Vandermeer12. 
The Cβ vs. V

V
 curve, solid line in Figure 5, for randomly lo-

cated nuclei divide the (V
V
, Cβ) plane in two distinct regions. 

Below the random curve lies the region in which nuclei deviate 
from randomness tending to a periodic arrangement. Above 
the random curve lies the region in which the nuclei tend to 
cluster. These results are similar to those obtained from 2D 
simulations; and

4.	The interface velocity, calculated from the growth of a single 
grain and from the global parameters, S

V
 and V

V
 by means of 

the Cahn and Hagel equation showed very good agreement. 
For the single grain, as show in a previous work14, G

CH
(single 

grain) ≅ 1/3, and for the simulation G
CH 

≅ 0.34. The only ex-
ception was the simulation using nuclei periodically located 
where there was an slight increase in G

CH
 at the later stages 

of the simulation, V
V 

> 0.9. This shows that the true interface 
velocity remained constant during all the simulations. 

5. Microstructural Path Analysis 

The microstructural path analysis is carried out in practice by 
fitting the experimental or simulated equations and comparing the 
fitted parameters with those calculated for exact cases. Here, this 
analysis is greatly simplified because it is assumed that the nuclea-
tion is site-saturated so that Equations 9 and 18 can be used. Notice 
that Equations 9 and 18 were derived based on the assumption that 
nuclei are randomly located in the matrix. This assumption was 
important because randomness allowed one to use an exact geo-
metrical relationship to take care of the impingement. In practice, if 
the equations based on the assumption of random nuclei fit the data 
well one normally concludes that such an assumption is valid and 
the fitted parameters have a clear meaning with regard to interfacial 
velocity and number of nuclei per unit of volume. Here, it is shown 
that this is not entirely correct.

Figure 6 shows the results of three simulations: periodic, random 
and 64 clusters. Equation 16 is plotted along the random simulation 
and Equation 9 is force fitted to the periodic and cluster kinetics. Fit-
ting produces correlation coefficients of R2 = 0.999, indicating very 
good fit. For periodic nuclei this results in a time dependent apparent 
velocity that increases with time

G
per

 = 0.27t0.13	 (21)

For nuclei located in 64 clusters, the apparent velocity decreases 
with time

G
clu

 = 0.21t–0.24	 (22)

Equations 21 and 22 show that an analysis solely based on volume 
fraction could give an erroneous time dependent velocity whereas in 
all simulations the interface velocity remained constant. For periodic 
nuclei it could predict that the boundary velocity increases with time. 
More interesting is the result for the cluster. It predicts that the veloc-
ity decreases with time. This is result is quite interesting because it is 
believed that the velocity decreases with time during recrystallization 
either owing to concurrent recovery25 or the existence of deforma-
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tion gradients26. The present analysis suggests yet a third possibility: 
interpreting a non-random microstructure using Equations 9 and 18, 
essentially valid for randomly located nuclei, can lead to misleading 
time dependence on apparent velocity as in Equations 21 and 22. In 
short, Equation 9 is quite flexible and will give good fit but any data 
inferred from the fitting parameters is uncertain, unless one can be 
sure that the nuclei distribution is random. The apparent decrease in 
growth rate observed here is not real because the interface velocity 
is kept constant during the simulation. It is purely an artifact arising 
as a result of the limitations of the mathematical formalism used 
to analyze the data. This is in full agreement with previous result 
obtained in 2D simulations.

An indication of randomness is often sought by plotting the 
microstructural path: S

V
 vs. V

V
 and using Equation 18 to fit it. Good 

fit is often taken as an indication that the reaction is site-saturated and 
that the nuclei distribution is not far from randomness thus validating 
the above approach. Figure 7 shows this plot for three simulations: 
periodic, random and 64 clusters. Equation 18 is plotted along the 
random simulation. Equation 18 is force fitted to the periodic and 
cluster kinetics curves by allowing N

V
 to vary in Equation 18. From 

force fitted curves an “apparent” number of nuclei per unit of volume 
can be calculated.

For periodic nuclei, the apparent number of nuclei per unit of 
area, N

Vper 
≅ 2.0 x 10–4, is higher than the value used in the simula-

tion, N
V 

≅ 1.458 x 10–4. The correlation coefficient was R2 = 0.99877, 
indicating good agreement.

For clustered nuclei, the apparent number of nuclei per unit of 
volume N

Vclus 
≅ 6.591 x 10–6, is almost an order of magnitude smaller 

than the simulation value. The correlation coefficient was still high 
R2 = 0.97827. The agreement is still good.

Thus, the microstructural path analysis produced good fit even when 
there were significant deviations from randomness. In 2D simulations23 
a similar analysis gave at least some indication that the microstructure 
was non-random. Here, by contrast, it is clear that just by carrying out 
such analysis, without any other information, would be very difficult 
to suspect that nuclei location were non-random. The analysis would 
then give a wrong idea of the microstructural evolution. 

This result shows that for a more reliable analysis it would be 
highly desirable, if not mandatory, to investigate the possibility of 
non-random nuclei location. �������������������������������������       One way would be to use a descriptor 
able to detect non-randomness such as the contiguity.

The present work shows the relative advantages and disadvantages 
of computer simulation against the traditional experimental approach. 
Using computer simulation it was possible to vary the degree of 
non-randomness. This made possible to infer trends and precisely 
assess the analytical methodology used in data analysis. This would 
be extremely difficult to accomplish experimentally. 

6. Summary and Conclusions 

Cellular automata simulation of three dimensional transforma-
tions has been carried out to investigate the effect of non-randomness 
on nuclei location on microstructural evolution. In contrast with 2D 
simulations, the conventional analysis was much less sensitive to 
deviations from randomness. Here, conventional kinetic analysis 
based on the volume fraction against time and the microstructural path 
based on the S

V
 against V

V
 plot could not detect non-randomness. This 

generated misleading time dependent velocity and number of grains 
per unit of volume. For instance, when nuclei are located in clusters 
this analysis may erroneously suggest that the velocity decreases 
with time. Therefore, a more reliable data analysis should include 
an investigation into the possibility of non-random nuclei location. 
This is particularly true for 3D transformations. The contiguity, as 
suggested by Vandermeer12, is probably a good choice.
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