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A multi layered feed forward neural network model is being developed for the prediction of end blow oxygen 
in the LD converter using a two step process. In the first step intermediate stopping temperature is being predicted 
and using this as an input the end blow oxygen is predicted. In both the cases two hidden layers had given the best 
results compared to the single layer neural network. Intermediate and end blow temperatures played a vital role 
in end blow oxygen and intermediate stopping temperature predictions. The model acts a guide for the operator 
and thereby enhances the yield of the converter steel making process.
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1. Introduction

LD converter steel making also known as Basic Oxygen Steel 
making (BOS) or Basic Oxygen Furnace (BOF) process converts hot 
metal, from blast furnace, and scrap into steel by exothermic oxida-
tion of metalloids dissolved in the iron. Oxygen also combines with 
carbon, eliminating the impurities by gas collection. The main purpose 
of this process is to decrease carbon percentage from approximately 
4.5% to less than 0.08% in liquid steel.

The LD Converter process is a very complex chemical batch 
process1. The amount and quality of scrap iron change from batch to 
batch, the grades of steel produced can change frequently.

A first principles model – called charge balance or static model- 
which is a complete heat and mass balance of the steel making 
process is used to predict total oxygen blow necessary to each 
batch2. However, model mismatches and the unsteady-state nature of 
decarburization rate lead to a poor control in end-point temperature 
and carbon percentage. One procedure to overcome this problem is to 
take measurements of carbon percentage and temperature during the 
process and then decarburization rate is determined. Oxygen blown 
correction is carried out through the ‘end-blow model’3. This model 
aims to correlate measurements taken during the process and the 
end-point conditions of the BOS process. One of the efficient tools, 
which enable one to obtain a numerical description of this kind of 
complex process, is the artificial neural networks.

Artificial Neural Networks (ANN), or commonly known as neural 
networks, have been attractive for applications in complex function 
modeling and classifications due to the fact that neural networks have 
very different computing approaches from traditional computing 
machines4,5. The neural network system has an ability to construct 
the rules of input-output mapping by itself. Thus, the designer of the 
system does not need to know the internal structure and instructions of 
the system, or the functional rules like traditional systems. Instead, the 
neural network system requires the feed-in’s of input-output patterns 
to “learn” before the system can function correctly. Due this flexibility 
neural networks have gained increasing interest in different fields of 
material science and other ferrous metallurgical areas6-9.

Several researchers have tried to predict the conditions of the 
LD converter in the past with varied success10-12. The conditions of 
the converter from one plant to the other and from one converter to 
another in the same plant may vary. Taking these into consideration in 
this paper, an attempt has been made to predict the end blow oxygen 
required by using Feed Forward Back Propagation algorithm using 
the previous heats data of an integrated Steel Plant.

2. Process Description

The integrated steel plant’s steel melting shop (which had chosen 
for our study) consists of three LD Converters. Each converter pro-
duces approximately 120 t of liquid steel from 135 t of charge (Scrap 
and blast furnace hot metal) in about 45 minutes. Approximately 
72 heats are carried out every day.

During the process, hot metal at about 1400 °C is converted into 
steel at 1700 °C by exothermic oxidation of metalloids dissolved in 
the iron. The converter is a cylindrical steel shell lined with basic 
refractory materials, such as dolomite and magnesite. The vessel can 
be rotated 180° on its axis. Oxygen is blown into the vessel with the 
help of water cooled lance.

The ‘heat’ begins with the addition of scrap into the slightly tilted 
converter. This is followed by the hot metal after which the converter is 
straightened and oxygen is blown into the bath through the lance. The 
necessary fluxes are added during blowing. Flux addition is done auto-
matically and precisely through bunkers situated above the converters. 
During blowing operation, oxygen oxidizes iron into iron oxide and 
carbon into carbon monoxide. The iron oxide immediately transfers 
the oxygen to the tramp elements (Carbon, Silicon, Manganese, and 
Phosphorus). The center of the reaction has temperatures of around 
2000-2500 °C. The development of carbon monoxide during refining 
process promotes agitation within the molten bath. The reaction of 
the tramp elements with the oxygen and the iron oxide developed in 
the center of reaction leads to formation of reactive slag. As blowing 
continues, there is a continuous decrease of carbon, phosphorous, 
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manganese and silicon within the melt. Phosphorous is removed by 
inducing early slag formation by adding powder lime with oxygen. 
The blow is continued upto a predetermined point (about 88% of the 
total blow time) and the converter is tilted and temperature is meas-
ured by a thermocouple and a sample is taken out for the estimation 
of carbon. By this time Silicon, Manganese, Phosphorus is almost 
eliminated. The converter is again kept in vertical position and further 
blowing is continued. From now onwards oxidation of carbon and 
iron are predominant. After completion of blowing the converter is 
tilted and liquid steel is tapped via tap hole and the slag is tapped into 
the ladles by tilting the converter exactly opposite to the steel tapping 
side. The time between the sample point and the end of the process is 
known as the end blow period. The amount of oxygen blown during 
this period is known as end blow oxygen.

Our aim is to design a model to predict this end blow oxygen so 
that the desired end point temperature of the steel is reached at the end 
of the blow without any excessive oxidation of the liquid steel.

3. Design Methodology

For predicting end blow oxygen a two step process is followed.
Step I: Predicting the intermediate stopping temperature (Predic-

tion model).
Step II: Using this data finding out the required end blow oxygen 

(Inverse model).
The proposed model’s flow sheet is given in Figure 1.

3.1 Method of analysis

3.1.1. Parameter selection

The selection of process parameters that affect the end blow 
oxygen is an important step in carrying out the analysis. A survey was 
conducted in the Integrated Steel Plant’s (ISP) steel melting shop and 
based on the heuristic knowledge provided by the plant personnel, 
a total of 6 process parameters viz. Weight of hot metal (tonnes), 
Weight of scrap (tonnes), End blow oxygen (Nm3), Intermediate 
stoppage temperature (°C), Intermediate stoppage Carbon (%), End 
Blow temperature (°C) are considered. LD converter heat data is taken 
from the same ISP’s historical data base. Table 1 gives the input and 
output variables used for the two neural networks.

3.1.2. Data pre-processing

The entire data set contains 1524 records (heat analysis) for 
a particular converter. In order to design an accurate model the 
data used is to be distributed evenly and should be in line with 
the manufacturing process. So certain pre-processing steps are 
carried out on the raw data and a range has been decided for 
each parameter. Of 1524 heats 936 heats are remained within the 
decided range. Table 2 shows the process parameters with their 
descriptive statistics.

3.1.3. Artificial Neural Network (ANN) modeling

Artificial neural networks are interconnected networks of 
system of neurons or nodes. A neuron is called a small processing 
unit which takes input and gives output. A Multi-Layer Perceptron 
(MLP) is a Feed-Forward neural network having one input layer, one 
output layer and one or more hidden layers in between them. Each 
layer is composed of a series of neurons. The output of neurons of 
one layer becomes input to the neurons of succeeding layer. After 
selecting the network architecture, the network is trained using 
learning rate and momentum factor. During the training process 
the network adjusts its weights to minimize the error between the 
actual and predicted outputs. The back propagation algorithm13 is 
used to adjust the weights. The model is developed using the com-
mercial software Statistica14.

The data set is divided in the ratio of 2:1:1 for training, selec-
tion and testing respectively. The training data set is used to train 
the neural network where are all the input variables are fed to the 
ANN model along with the output variables. The selection data 
set is used for the selection of the ANN model during training to 
keep track of over learning of the model14. Test data set is used to 
test the developed ANN model for prediction of unknown records. 
In the test data set input data variables are fed to the developed 
ANN model without the output variables. Since there are 5 input 
variables and 1 output variable, the input layer of the network 
contains 5 neurons and the output layer contains 1 neuron and 
one hidden layer with 13 neurons. A total of 3 ANN models are 
trained keeping same values of learning rate and momentum 
factor6 and number of epochs (iteration) by varying only number 
of hidden neurons. The synaptic function is dot product and the 
output function is sigmoid logistic activation function. The ANN 
model reports the Root Mean Square Error (RMSE) of the actual 
and predicted output variables.

Figure1. Proposed model’s flow sheet.

Table 1. Input and output variables for the proposed models.

Prediction model

Inputs Outputs

Weight of hot metal Intermediate stoppage 
temperatureWeight of scrap

End blow oxygen

End blow temperature

Intermediate stoppage carbon

Inverse model

Inputs Outputs

Weight of hot metal End blow oxygen

Weight of scrap

End blow temperature

Intermediate stoppage temperature

Intermediate stoppage carbon
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3.2. Sensitivity analysis

 Sensitivity analysis of the developed ANN model with all the 
process parameters is performed. To check sensitivity of the model 
with a parameter, that parameter is varied form minimum to maxi-
mum including the mean and all other parameters are kept at their 
corresponding mean levels. The same procedure is repeated for all 
other process parameters. Then the variation of the end blow oxygen 
values is observed and the effect of particular parameter is evaluated. 
This analysis is performed on the best developed network model.

4. Results and Discussion

Descriptive statistics for all input and output variables of the 
ANN model are shown in Table 2, which includes mean, minimum, 
maximum and standard deviation.

Three ANN models have been developed separately for both 
Prediction and Inverse model keeping same learning rate, momentum 
factor and iteration by only varying the number of neurons in the 
hidden layers and can be seen in Table 3. The learning rate of 0.05 
and momentum Factor of 0.2 are used. The number of iterations for 
all the topologies is predefined as 5000. All the network models are 
run for 5000 iterations of back-propagation algorithm during which 
the inter connecting weights are expected to reach global minimum6. 
The error reported is the Root Mean Square Error (RMSE) of the 
output variable. The training and selection errors first drop sharply 

Table 2. Descriptive statistics of the process parameters.

Process 
parameter

Description (unit) Mean Minimum Maximum Std. Dev.

HM Weight of hot metal: Liquid iron coming 
from the Blast furnace (tonnes).

118.299 110.000 120.000 1.3556

Scrap Weight of scrap : Ferrous material in the 
solid state (tonnes).

17.015 15.000 20.000 1.0914

EB Oxygen End blow oxygen: Oxygen blown between 
sampling and tapping of the converter 
(Nm3)

457.308 1.000 998.000 210.2785

I/S Temp Intermediate Stoppage Temperature: Tem-
perature taken during intermittent turndown 
of the converter for sampling (°C)

1680.378 1605.000 1753.000 19.4977

I/S Carbon Intermediate Stoppage Carbon: Carbon in the 
sample taken at the turndown condition (%)

0.101 0.000 0.300 0.0605

EB temp End blow Temperature : Final tapping tem-
perature (°C)

1683.728 1640.000 1737.000 19.0304

Table 3. Best three networks.

For prediction model

Network No Network topology Training error Selection error Test error

1 MLP 5-10-6-1 0.049401 0.050971 0.057783

2 MLP 5-25-16-1 0.057511 0.070563 0.069296

3 MLP 5-10-7-1 0.052465 0.057143 0.059974

For Inverse model

Network No Network topology Training error Selection error Test error

1 MLP 5-25-13-1 0.133284 0.134837 0.143504

2 MLP 5-25-19-1 0.134200 0.136889 0.149771

3 MLP 5-25-23-1 0.135179 0.136779 0.147021

Table 4. Error mean and correlation coefficient.

Prediction model Inverse model

Data Mean 1680.378 457.3077

Data S.D 19.487 210.1661

Error Mean 0.160 5.3224

Error S.D 9.695 169.1998

Abs. E mean 4.747 135.9859

S.D Ratio 0.498 0.8051

Correlation 0.867 0.5933
Data Mean is the Average value of the target output variable.
Data S.D. is the Standard deviation of the target output variable.
Error Mean is the Average error (residual between target and actual output 
values) of the output variable.
Abs. E. Mean is the Average absolute error (difference between target and 
actual output values) of the output variable.
Error S.D. is the Standard deviation of errors for the output variable.
S.D. Ratio is the error:data standard deviation ratio.
Correlation is the standard Pearson-R correlation coefficient between the 
predicted and observed output values.

at the very early stage of training and thereafter, the decrease of error 
is gradual. The sharp gradients (|DELTA RMSE / DELTA Iteration|) 
are observed as learning rates are high in the initial part of training. 
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Table 5. Sensitivity analysis.

Sensitivity analysis for the best Network ( 5-10-6-1)

Prediction model

HM Scrap EB temp I/S carbon EB oxygen

Ratio 0.995949 0.996381 1.936454 0.998879 1.348758

Rank 5.000000 4.000000 1.000000 3.000000 2.000000

Sensitivity analysis for the best network ( 5-25-13-1)

Inverse model

HM Scrap I/S temp EB temp I/S carbon

Ratio 0.999583 0.996859 1.431237 1.193511 1.034326

Rank 4.000000 5.000000 1.000000 2.000000 3.000000

Figure 2. Prediction model. Figure 3. Inverse model.

Thus the best model is selected where the selection error reaches a 
minimum value.

The training, selection and test error for all three models along 
with the best network code is shown in Table 3. It can be observed 
that the training error for Prediction model network topology 5-10-6-
1 is 0.049401 and for Inverse model network topology 5-25-13-1 is 
0.133284, which is lower compared to that in the other two topologies. 
As well the selection error and test error are also lower compared 
to error in other topologies. The best network topology achieved are 
5-10-6-1 (Prediction model) and 5-25-13-1 (Inverse model).

The error mean and correlation coefficient (R) are indicated for 
the output in Table 4. For a perfect fit of data R = 1. Thus a good 
network, a high value of R and a low value of mean square error 
are desirable. Good correlation is achieved for most of the outputs. 
This suggests that the model is capable of predicting the end blow 
oxygen effectively.

The observed (actual) versus predicted output values are shown in 
Figure 2 and 3 for prediction model and inverse models respectively. 
As can be observed from the figure, most of the predictions are very 
close to the actual values. However, the predictions are uncertain 
especially in very low values. The uncertainty can be resulted from 
the inadequate training for very low values.

Sensitivity analysis indicates which input variables are consid-
ered most important by that particular neural network. Sensitivity 
analysis can be used purely for informative purposes, or to perform 
input pruning. Sensitivity analysis can give important insights into 
the usefulness of individual variables. It often identifies variables 
that can be safely ignored in subsequent analysis, and key variables 

that must always be retained. Sensitivity analysis is performed and 
is shown in Table 5. The sensitivity graphs of the Prediction model 
and Inverse model network for the process parameters are shown in 
Figure 4a-d.

Based on sensitivity analysis the following observations are 
derived:

•	 Effect	of	Weight	of	Hot	Metal:	During	the	model	design	the	
quantity of hot metal is taken as one parameter, but in sensi-
tivity analysis it got least importance. So in the models to be 
considered instead of tonnage its analysis may be taken into 
the consideration;

•	 Effect	of	Weight	of	Scrap:	Weight	of	Scrap	also	got	the	same	
treatment as of hot metal. Scrap as a parameter in tonnage is 
of less use in modeling;

•	 Effect	of	End	Blow	Temperature:	End	Blow	temperature	of	
the previous heats got maximum importance in the prediction 
model which is used for finding the Intermediate stoppage 
temperature of the present heat. In case of inverse model which 
is used for predicting the end blow oxygen it is the second im-
portant parameter after intermediate stoppage temperature;

•	 Effect	of	Intermediate	stoppage	temperature:	The	Intermediate	
stoppage temperature is having very high impact in predicting 
the end blow oxygen of the inverse model; 

•	 Effect	of	Intermediate	stoppage	carbon:	As	per	the	sensitivity	
analysis intermediate stoppage carbon stood at the third important 
parameter in both the models after End blow temperature and end 
blow oxygen (in prediction model) and intermediate stoppage 
temperature and end blow temperature (in inverse model).
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Figure 4. a) Sensitivity analysis between  EB Temp vs. I/s Temp Predicted; b) Sensitivity analysis between  EB OxygenVs I/s Temp Predicted; c) Sensitivity 
analysis between EB Temp vs. EB Oxygen predicted. and d) Sensitivity analysis between I/s Temp vs. EB Oxygen predicted.

5. Conclusions

Feed forward network using back propagation algorithm is used 
for the prediction of end blow oxygen in the LD Converter steel 
making.

5-10-6-1 and 5-25-13-1 architectures with sigmoidal functions are 
best suited networks for predicting intermediate stopping temperature 
and end blow oxygen of the LD converter.

Weight of hot metal and Scrap became the secondary parameter 
while model predictions.

Intermediate stoppage temperature and end blow temperatures 
stood as the most important parameters in deciding end blow oxygen 
and intermediate stoppage temperature respectively.
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