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In the present study, flexural strength together with pore structure, thermal behavior and microstructure of 
concrete containing ground granulated blast furnace slag with different amount of ZnO

2
 nanoparticles has been 

investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the 
properties of concrete specimens were investigated. Although it negatively impact the properties of concrete, 
ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete 
up to 45 wt. (%). ZnO

2
 nanoparticles with the average particle size of 15 nm were added partially to concrete 

with the optimum content of 45 wt. (%) of ground granulated blast furnace slag and physical and mechanical 
properties of the specimens was measured. ZnO

2
 nanoparticle as a partial replacement of cement up to 3 wt. (%) 

could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH)
2
 amount at the early age of 

hydration and hence increase flexural strength of concrete. The increased the ZnO
2
 nanoparticles’ content more 

than 3 wt. (%), causes the reduced the flexural strength because of the decreased crystalline Ca(OH)
2
 content 

required for C-S-H gel formation together with unsuitable dispersion of nanoparticles in the concrete matrix. 
ZnO

2
 nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and 

few-harm pores.

Keywords: concrete, ground granulated blast furnace slag, ZnO
2
 nanoparticles, flexural strength, TGA, 

XRD, pore structure

1. Introduction

Nowadays, most industrial slags are being used without taking 
full advantages of their characteristics or disposed rather than used. 
Ground granulated blast furnace (GGBFS) has been used for many 
years as a supplementary cementitious material in Portland cement 
concrete, either as a mineral admixture or a component of blended 
cement1. GGBFS typically replaces 35–65% Portland cement in 
concrete. Thus a 50% replacement of each ton of Portland cement 
would result in a reduction of approximately 500,000 t of CO

2
. 

Using GGBFS as a partial replacement takes advantage of the energy 
saving in Portland cement is governed by AASHTO M302 (Standard 
Specification for Ground Granulated Blast- Furnace Slag for Use 
in Concrete and Mortars)2. Three types of GGBFS are typically 
manufactured. They include Portland cement as covered by AASHTO 
M85 (Standard Specification for Portland Cement)3, Portland 
blast furnace slag cement and slag cement as per AASHTO M240 
(Standard Specification for blended Cement)4. Utilizing GGBFS as 
a partial replacement of ordinary Portland cement develops strength 
and durability of concrete by creating a denser matrix and thereby 
enhancing the service life of concrete structures. Grinding slag for 
cement replacement requires only about 25% energy needed to 
manufacture Portland cement1.

The use of these slags as cementitious components requires only 
grinding; it will save substantial amounts of energy compared with 
the production of Portland cement. The partial replacement may 
decrease the early strength, but increase the later strength and improve 
microstructure and durability of strengthened Portland cement and 
concrete considerably5. Research results have indicated that clinker 
less alkali-activated slags show higher strengths, denser structure 

and better durability than Portland cement under both normal and 
hydrothermal conditions6-10. Thus, the optimum content of these slags 
is as cementitious material components rather than as aggregates or 
for base stabilization. Blast furnace slag is a non-metallic material 
consisting essentially of silicates and aluminosilicates of calcium11. 
It is considerably used in the production of light weight aggregate. 
When the slag is allowed to cool slowly in the air, it solidifies into gray 
crystalline material known as crystallized slag. This slag is used as 
aggregates. When the slag is cooled very rapidly by water, it solidifies 
and granulates as a granulated slag. The chemical composition of slag 
can vary over a wide range depending on the nature of the ore, the 
composition of the limestone flux, coke consumption and the type 
of iron being made12.

Detwiler et  al.13 investigated the effectiveness of using 
supplementary cementing materials to increase the chloride resistance 
of accelerated cured concrete and they found that concretes containing 
supplementary cementing materials performed better than the 
Portland cement concretes. As well, use of supplementary cementing 
materials can also prevent deleterious expansions related to both 
delayed ettringite formation14 and alkali-silica reaction15.

There are several works on incorporating nanoparticles into 
concrete specimens to achieve improved physical and mechanical 
properties which most of them have focused on using SiO

2
 

nanoparticles16-25 and TiO
2
 nanoparticles26,27. There are a few studies 

on incorporating nano-Fe
2
O

3
[28], nano-Al

2
O

3
[29], and nanoclay 

particles30,31. Previously, the effects of SiO
2

[32], TiO
2

[33-35] and 
ZnO

2
[36,37] nanoparticles on different properties of self-compacting 

concrete have been studied. In addition, in a series of works38-43, the 

Materials Research. 2011; 14(3): 299-306 © 2011



Nazari & Riahi

effects of several types of nanoparticles on properties of concrete 
specimens which are cured in different curing media have been 
investigated. It has been shown that utilizing nanoparticles in concrete 
improves the mechanical properties of the specimens besides the 
improvement in microstructure and pore structure of the concrete 
specimens. Nanoparticles can act as heterogeneous nuclei for cement 
pastes, further accelerating cement hydration because of their high 
reactivity, as nano-reinforcement, and as nano-filler, densifying the 
microstructure, thereby, leading to a reduced porosity. The most 
significant issue for all nanoparticles is that of effective dispersion.

Incorporating of other nanoparticles is rarely reported. Therefore, 
introducing some other nanoparticles which probably could improve 
the mechanical and physical properties of cementitious composites 
is inherent.

The aim of this study is investigating flexural strength and pore 
structure of the concrete incorporating ZnO

2
 nanoparticles which 

instead of a main part of its Portland cement, GGBFS has been 
used. Several specimens with different amount of GGBFS have 
been prepared and their physical and mechanical properties have 
been considered.

2. Materials and Methods

Ordinary Portland Cement (OPC) conforming to ASTM C150[44] 
standard was used as received. The chemical and physical properties 
of the cement are shown in Table 1.

ZnO
2
 nanoparticles with average particle size of 15 nm and 

45 m2.g–1 Blaine fineness producing from Suzhou Fuer Import & 
Export Trade Co., Ltd was used as received. The properties of ZnO

2
 

nanoparticles are shown in Table 2.
Crushed limestone aggregates were used to produce self-

compacting concretes, with gravel 4/12 and two types of sand: one 
coarse 0/4, for fine aggregates and the other fine 0/2, with a very high 
fines content (particle size < 0.063 mm) of 19.2%, the main function 
of which was to provide a greater volume of fine materials to improve 
the stability of the fresh concrete.

Ground granulated blast furnace slag was used as a replacement 
of Portland cement. The chemical composition of the utilized GGBFS 
has been illustrated in Table 1.

A polycarboxylate with a polyethylene condensate defoamed 
based admixture (Glenium C303 SCC) was used. Table  3 shows 
some of the physical and chemical properties of polycarboxylate 
admixture used in this study.

Totally, two series of mixtures were prepared in the laboratory 
trials. C0-GGBFS series mixtures were prepared by cement, fine 
and ultra-fine crushed limestone aggregates with 19.2% by weight 
of ultra-fine ones and 0, 15, 30, 45 and 60% by weight of GGBFS 
replaced by Portland cement. N-GGBFS series were prepared with 
different contents of ZnO

2
 nanoparticles with average particle size of 

15 nm. The mixtures were prepared with the cement replacement by 
ZnO

2
 nanoparticles from 1 to 4 wt. (%). To improve workability of the 

fresh concrete, 1 wt. (%) of water was replaced by polycarboxylate 
admixture. The superplasticizer was dissolved in water, and then 
the nano-ZnO

2
 was added and stirred at a high speed for 3 minutes. 

Though nano-ZnO
2
 cannot be dissolved in water, a smaller amount of 

nano-ZnO
2
 can be dispersed evenly by the superplasticizer. The water 

to binder ratio for all mixtures was set at 0.40. The binder content 
of all mixtures was 450 kg.m–3. The proportions of the mixtures are 
presented in Table 4.

The mixing sequence for specimens was consisted of 
homogenizing the sand and cementitious materials for 1 minute in the 
mixer and then approximately 75% of the mixing water were added. 
The coarse aggregate was introduced and then the superplasticizer 
was pre-dissolved in the remaining water and was added at the end of 
the mixing sequence. The total mixing time including homogenizing 
was 5 minutes.

Several types of tests were carried out on the prepared specimens:
a)	Flexural strength: Cubic specimens with 100 mm edge length 

were made for flexural tests. The moulds were covered with 
polyethylene sheets and moistened for 24 hours. Then the 
specimens were demoulded and cured in water at a temperature 
of 20 °C in the room condition prior to test days. The flexural 
strength tests of the samples were determined at 7, 28 and 
90 days of curing. Flexural tests were carried out according to 
the ASTM C 39[45] standard. After the specified curing period 
was over, the concrete cubes were subjected to flexural test 
by using universal testing machine. The tests were carried out 
triplicately and average flexural strength values were obtained;

b)	Mercury intrusion porosimetry: In this study, the pore structure 
of concrete is evaluated by using MIP. To prepare the samples 
for MIP measurement, the concrete specimens after 90 days 
of curing were first broken into smaller pieces, and then the 
cement paste fragments selected from the center of prisms were 
used to measure pore structure. The samples were immersed in 
acetone to stop hydration as fast as possible. Before mercury 
intrusion test, the samples were dried in an oven at about 110 °C 
until constant weight to remove moisture in the pores. MIP is 
based on the assumption that the non-wetting liquid mercury 
(the contact angle between mercury and solid is greater than 
90°) will only intrude in the pores of porous material under 
pressure46,47. Each pore size is quantitatively determined from 
the relationship between the volume of intruded mercury 
and the applied pressure47. The relationship between the 
pore diameter and applied pressure is generally described by 
Washburn equation as follows46,47:

4 cos /D P= − γ θ 	 (1)

	 where, D is the pore diameter (nm), γ is the surface tension of 
mercury (dyne.cm–1), θ is the contact angle between mercury 
and solid (o) and P is the applied pressure (MPa).

	 The test apparatus used for pore structure measurement 
is Auto Pore III mercury porosimeter. Mercury density is 
13.5335 g.mL–1. The surface tension of mercury is taken as 
485 dynes.cm–1, and the contact angle selected is 130o. The 
maximum measuring pressure applied is 200 MPa (30000 psi), 
which means that the smallest pore diameter that can be 
measured reaches about 6 nm (on the assumption that all pores 
have cylindrical shape);

Table 1. Properties of Portland cement and GGBFS (wt. (%)).

Material SiO
2

Al
2
O

3
Fe

2
O

3
CaO MgO SO

3
Na

2
O K

2
O Loss on ignition

Cement 21.89 5.3 3.34 53.27 6.45 3.67 0.18 0.98 3.21

GGBFS 40.3 8.12 2.11 40.12 4.23 0.56 0.13 1.21 1.96
Specific gravity of cement: 1.7 g.cm–3.
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c)	Scanning electron microscopy (SEM): SEM investigations 
were conducted on a Hitachi apparatus. Backscattered electron 
(BSE) and secondary electron (SE) imaging was used to study 
the samples, which were prepared under conditions that ensured 
their subsequent viability for analytical purposes; and

d)	X-ray diffraction (XRD): A Philips PW-1730 unit was used for 
XRD analysis which was taken from 4 to 70o.

3. Results and Discussion

3.1. Properties of C0-GGBFS specimens

Table 5 shows the flexural strength of C0- GGBFS specimens 
after 7, 28 and 90 days of curing which are all increased by increasing 
GGBFS up to 45%. Using more than 45% GGBFS has reduced the 
flexural strength of the specimens and it may be as a result of the 
reduced CaO content in GGBFS in comparison with Portland cement. 
This may be reduce the amount of crystalline Ca(OH)

2
 and hence 

C-S-H gel. This fact may be due to various factors, such as using 
different superplasticizers or greater fines content in the concrete 
specimens. Roncero and Gettu48 have pointed out the formation of 
large CH crystals by using polycarboxylate superplasticizers. These 
large crystals weaken the aggregate-paste transition zone and hence 

decrease the flexural strength of concrete by decreasing the aggregate-
paste bond. As for the influence of the fines content, the bigger this is 
the greater the shrinkage becomes49-53, giving rise to the appearance 
of a greater number of micro-cracks in the aggregate paste interface 
which also reduce the flexural strength. Moreover, by increasing the 
volume of fines, the specific surface area of the aggregates increases, 
with the aggregate-paste transition zone is being precisely the weakest 
phase of the concrete.

Table  6 shows that with increasing GGBFS content, the total 
specific pore volumes of concretes are decreased and the most 
probable pore diameters of concretes shift to smaller pores and fall 
in the range of few-harm pore, which indicates that the addition of 
GGBFS refines the pore structure of concretes.

Table 6 also gives the porosities, average diameters and median 
diameters (volume) of various concretes. The regularity of porosity 
is similar to that of total specific pore volume. The regularity of 
average diameter and median diameter (volume) is similar to that of 
most probable pore diameter.

The pore size distribution of concretes is shown in Table 6. It 
is seen that by increasing GGBFS content, the amounts of pores 
decrease, which shows that the density of concretes is increased and 
the pore structure is improved.

Figure  1 shows XRD analysis of C0-GGBFS specimens at 
different times after curing. As Figure 1 also shows, the peak related 
to formation of the hydrated products shifts to appear in earlier times 
indicating the positive impact of PC on formation of Ca(OH)

2
 and 

C-S-H gel.
Finally, Figure  2 shows SEM micrographs of C0-GGBFS 

specimens without and with GGBFS. The morphological analysis 
evinced no significant differences in the form and the texture of the 
different reaction products in pastes with and without admixtures. This 
may be due to using superplasticizer which helps self compactibility 
of the specimens. The beneficial effects of GGBFS in concrete results 
from the modified microstructure of cementitious paste, which has 
more capillary pores, filled with low density C–S–H gel than Portland 
cement paste54-56. It can be observed that GGBFS can be effectively 
used to reduce the pore sizes and cumulative pore volume57. It appears 
that higher GGBFS replacement percentage has denser structure and 
prevents concrete from water penetration. The GGBFS reacts with 
water in alkali environment and then with calcium hydroxide to form 
cement hydration product through pozzolanic reaction to form extra 
C–S–H gel in the paste and slow down the strength development 
at early age. Denser microstructure or lower porosity results from 
higher C–S–H content that represents higher GGBFS replacement 
percentage and higher durability of concrete.

Table 2. The properties of nano-ZnO
2
.

Diameter 
(nm)

Surface volume ratio 
(m2.g–1)

Density 
(g.cm–3)

Purity 
(%)

15 ± 4 166 ± 17 < 0.10 >99.9

Table 3. Physical and chemical characteristics of the polycarboxylate admixture.

Appearance Yellow-brown liquid

% solid residue Approximately 36%

pH 5.2-5.3

Specific gravity (kg.L–1) Approximately 1.06

Rotational viscosity (MPa) 79.30

% C 52.25

ppm Na+ 9150

ppm K+ 158

Table 4. Mixture proportion of nano-ZnO
2
 particles blended concretes.

Sample 
designation

ZnO
2
 

nanoparticles 
(%)

Quantities (kg.m–3)

Cement ZnO
2
 

nanoparticles

C0-GGBFS0 0 450 0

C0-GGBFS15 0 450 0

C0-GGBFS30 0 450 0

C0-GGBFS45 0 450 0

C0-GGBFS60 0 450 0

N1- GGBFS 1 445.5 4.5

N2- GGBFS 2 441.0 9.0

N3- GGBFS 3 437.5 13.5

N4- GGBFS 4 432.0 18.0
Water to binder [cement + nano-ZnO

2
] ratio of 0.40.

Table 5. Flexural strength of C0-GGBFS and N-GGBFS specimens.

Sample 
designation

ZnO
2
 

nanoparticles 
(%)

Flexural strength (MPa)

7 days 28 days 90 days

C0-GGBFS0 0 3.7 ± 0.2 4.2 ± 0.2 5.6 ± 0.4

C0-GGBFS15 0 3.5 ± 0.2 4.6 ± 0.3 6.2 ± 0.3

C0-GGBFS30 0 3.1 ± 0.1 4.9 ± 0.4 6.8 ± 0.4

C0-GGBFS45 0 2.8 ± 0.2 5.4 ± 0.3 7.3 ± 0.5

C0-GGBFS60 0 2.5 ± 0.1 5.1 ± 0.4 7.0 ± 0.4

N1- GGBFS 1 3.5 ± 0.2 5.1 ± 0.4 6.7 ± 0.3

N2- GGBFS 2 3.8 ± 0.3 5.5 ± 0.3 7.1 ± 0.4

N3- GGBFS 3 4.3 ± 0.2 6.2 ± 0.4 7.6 ± 0.4

N4- GGBFS 4 4.0 ± 0.3 5.6 ± 0.3 7.2 ± 0.5
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Portland cement is usually used with GGBFS and the hydration 
product of Ca(OH)

2
 activates the slag hydration to from a mixture 

of low CaO/SiO
2
 (C/S) ratio CaO–SiO

2
–H

2
O (C–S–H) and AF

m
 

(cementitious product from the reaction of reactive alumina and 
calcium hydroxide) phases. Pozzolanic reaction is also found to 
increase the C/S ratio to a value of about 1.7 in slag-cement blends 
due to unstable low calcium C–S–H and Ca(OH)

2
 mixture. When 

supplementary cementitious material like GGBFS is used in concrete, 
they do not only reduce the porosity but also the pores become finer 
and the change in mineralogy of the cement hydrates leads to the 
reduction in mobility of chloride ions.

Since it has been found that using 45% GGBFS instead of Portland 
cement produces a suitable specimen with the optimum properties, 
ZnO

2
 nanoparticles with different amounts of replacement by Portland 

cement were added to the specimens containing 45 wt. (%) GGBFS 
and their properties have been investigated in the following section.

3.2. Properties of N-GGBFS specimens

Table  5 shows the flexural strength of N-GGBFS specimens 
after 7, 28 and 90 days of curing. The results show that the flexural 
strength increases by adding ZnO

2
 nanoparticles up to 3.0 wt. (%) 

replacements (N3-GGBFS series) and then it decreases, although 
adding 4.0 percent ZnO

2
 nanoparticles produces specimens with 

much higher flexural strength with respect to the all other C0-GGBFS 
concretes. In the previous works33-43 it was shown that using up 
to 4.0 wt. (%) of nanoparticles in self compacting concrete could 
improve the flexural strength of the specimens. However, in this 
work an optimum level of 3.0 wt. (%) was achieved by utilizing 
GGBFS. This may be due to the reduction of CaO content when 
GGBFS is used (Table 1). Thus, the amount of crystalline Ca(OH)

2
 

is reduced and the amount of ZnO
2
 nanoparticles assist to formation 

C-S-H gel is decreased. Hence, addition more than 3.0 wt. (%) of 
ZnO

2
 nanoparticles may decrease the flexural strength of N-GGBFS 

specimens. Also, the reduced flexural strength by adding more than 
3 wt. (%) ZnO

2
 nanoparticles may be due to the defects generated in 

dispersion of nanoparticles that causes weak zones.
The higher flexural strength in the N-GGBFS series mixtures 

with respect to C0-GGBFS series is due to the rapid consumption of 
crystalline Ca(OH)

2
 which quickly are formed during hydration of 

Portland cement specially at early ages as a result of high reactivity 
of ZnO

2
 nanoparticles. As a consequence, the hydration of cement 

is accelerated and larger volumes of reaction products are formed. 
Also ZnO

2
 nanoparticles recover the particle packing density of the 

blended cement, directing to a reduced volume of larger pores in the 
cement paste.

Table  6 shows that with increasing ZnO
2
 nanoparticles up to 

3 wt. (%), the total specific pore volumes of concretes are decreased, 
and the most probable pore diameters of concretes shift to smaller 
pores and fall in the range of few-harm pore, which indicates that the 
addition of PC refines the pore structure of concretes.

Table  6 gives the porosities, average diameters and median 
diameters (volume) of various concretes. The regularity of porosity 
is similar to that of total specific pore volume. The regularity of 
average diameter and median diameter (volume) is similar to that of 
most probable pore diameter.

The pore size distribution of concretes is shown in Table 6. It 
is observed that by adding nanoparticles, the amounts of is pores 
decreased, which shows that the density of concretes is increased 
and the pore structure is improved.

The effectiveness of nano-ZnO
2
 in improving the pore structure 

of concretes increases in the order: N1-GGBFS < N2‑GGBFS < 
N4‑GGBFS < N3-GGBFS. With increasing the nanoparticles’ content, 
the reduced extent of pores in concretes is all decreased, and the 
improvement on the pore structure of concretes is weakening.

Table 6. Properties of the pores in C0-GGBFS and N-GGBFS specimens.

Sample 
designation

Total specific 
pore volume 

(mL.g–1)

Most probable 
pore diameter 

(nm)

Prosity 
(%)

Average 
diameter 

(nm)

Median 
diameter 
(volume) 

(nm)

Pore size distribution (mL.g–1(%))

Pore size 
distribution 
(mL.g–1 (%))

Few-harm 
pores 

(20~50 nm)

Harmful 
pores 

(50~200 nm)

Multi-harm 
pores 

(>200 nm)

C0-GGBFS0 0.0323 16.0 9.14 11.6 25.7 0.0044 0.0098 0.0116 0.0041

C0-GGBFS15 0.0298 13.0 7.01 9.8 21.3 0.0036 0.0086 0.0095 0.0034

C0-GGBFS30 0.0284 13.0 6.88 9.3 20.9 0.0035 0.0084 0.0091 0.0033

C0-GGBFS45 0.0270 12.0 6.70 8.6 19.1 0.0030 0.0080 0.0083 0.0030

C0-GGBFS60 0.0279 13.0 6.76 8.9 19.6 0.0032 0.0082 0.0086 0.0031

N1- GGBFS 0.0245 10.5 6.29 7.6 17.5 0.0028 0.0073 0.0075 0.0029

N2- GGBFS 0.0232 9.5 6.13 7.0 16.9 0.0025 0.0067 0.0068 0.0025

N3- GGBFS 0.0220 9.5 6.03 6.3 16.0 0.0021 0.0063 0.0066 0.0023

N4- GGBFS 0.0227 10.5 6.07 6.6 16.4 0.0022 0.0066 0.0067 0.0024

Figure  1. XRD results indicating the formation of hydrated products 
for different C0-GGBFS specimens: a) C0-GGBFS0; b) C0-GGBFS15; 
c) C0‑GGBFS30; d) C0-GGBFS45; and e) C0-GGBFS60.
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Figure 2. SEM micrographs of a) C0-GGBFS0 specimen; and b) C0-GGBFS45 specimen at 7 days (series 1), 28 days (series 2) and 90 days (series 3) of curing.

The mechanism that the nanoparticles improve the pore structure 
of concrete can be interpreted as follows58: Suppose that nanoparticles 
are uniformly dispersed in concrete and each particle is contained in 
a cube pattern, therefore the distance between nanoparticles can be 

determined. After the hydration begins, hydrate products diffuse and 
envelop nanoparticles as kernel58. If the content of nanoparticles and 
the distance between them are appropriate, the crystallization will 
be controlled to be a suitable state through restricting the growth of 
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Ca(OH)
2
 crystal by nanoparticles. Moreover, the nanoparticles located 

in cement paste as kernel can further promote cement hydration due to 
their high activity. This makes the cement matrix more homogeneous 
and compact. Consequently, the pore structure of concrete is improved 
evidently such as the concrete containing nano-ZnO

2
 in the amount 

of 1% by weight of binder58.
With increasing the content of ZnO

2
 nanoparticles more than 

3 wt. (%), the improvement on the pore structure of concrete is 
weakened. This can be attributed to that the distance between 
nanoparticles decreases with increasing content of nanoparticles, 
and Ca(OH)

2
 crystal cannot grow up enough due to limited space 

and the crystal quantity is decreased, which leads to the ratio of 
crystal to strengthening gel small and the shrinkage and creep of 
cement matrix increased59, thus the pore structure of cement matrix 
is looser relatively.

On the whole, the addition of nanoparticles improves the pore 
structure of concrete. On the one hand, nanoparticles can act as a 
filler to enhance the density of concrete, which leads to the porosity 
of concrete reduced significantly. On the other hand, nanoparticles 
can not only act as an activator to accelerate cement hydration 
due to their high activity, but also act as a kernel in cement paste 
which makes the size of Ca(OH)

2
 crystal smaller and the tropism 

more stochastic.
Figure  3 shows XRD analysis of N-GGBFS specimens at 

different times after curing. As Figure 3 also shows, the peak related 
to formation of the hydrated products shifts to appear in earlier times 
indicating the positive impact of PC on formation of Ca(OH)

2
 and 

C-S-H gel at early age of cement hydration.
Finally, Figure 4 show SEM micrographs of N-GGBFS specimens 

containing 3 wt. (%) of ZnO
2
 nanoparticles. Figure 4 shows a more 

compact mixture after all days of curing which indicate rapid 
formation of C-S-H gel in presence of ZnO

2
 nanoparticles.

Although, as indicated, the larger volume of ZnO
2
 nanoparticles 

than 3 wt. (%) reduces the flexural strength due to reduction of 
hydrated lime with respect to the ZnO

2
 nanoparticle content in 

addition to the deficiency occurred during dispersion of ZnO
2
 

nanoparticles in the cement paste.
Several studies have been conducted on flexural strength of 

cementitious composites reinforced by ZnO
2
 nano-particles and 

some possible reasons have been represented to show the increment 
of flexural strength:

Figure  3. XRD results indicating the formation of hydrated products for 
different N-GGBFS specimens: a) N1-GGBFS; b) N2-GGBFS; c) N3-GGBFS; 
and d) N4-GGBFS.

Figure  4. SEM micrographs of a) N3-GGBFS specimen at 7 days (1); 
28 days (2); and 90 days (3) of curing.

1.	When a small amount of the nano-particles is uniformly 
dispersed in the cement paste, the nano-particles act as a 
nucleus to tightly bond with cement hydrate and further 
promote cement hydration due to their high activity, which is 
favorable for the strength of cement mortar29;
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2.	The nano-particles among the hydrate products will prevent 
crystals from growing which are positive for the strength of 
cement paste29,60,61; and

3.	The nano-particles fill the cement pores, thus increasing the 
strength. Nano-ZnO

2
 can contribute in the hydration process 

to generate C-S-H through reaction with Ca(OH)
2
[62,63].

4. Conclusions

The results obtained in this study can be summarized as follows:
•	 The increased the GGBFS content up to 45 wt. (%) results in the 

increased the flexural strength. It has been argued that utilizing 
GGBFS content more than 45 wt. (%) reduces the amount of 
CaO which is required for Ca(OH)

2
 and subsequent C-S-H gel. 

In addition, the pore structure of concrete specimens is found 
to improve with adding up to 45 wt. (%) GGBFS;

•	 As the content of ZnO
2
 nanoparticles is increased up to 

3 wt. (%), the flexural strength of the specimens is increased. 
This is due to more formation of hydrated products in presence 
of ZnO

2
 nanoparticles. More rapid formation of hydrated 

products in presence of ZnO
2
 nanoparticles was confirmed by 

XRD results. The pore structure of self compacting concrete 
containing ZnO

2
 nanoparticles is improved and the content of 

all mesopores and macropores is increased.
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