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This paper shows theoretical models (analytical formulations) to predict the mechanical behavior 
of thick composite tubes and how some parameters can influence this behavior. Thus, firstly, it was 
developed the analytical formulations for a pressurized tube made of composite material with a single 
thick ply and only one lamination angle. For this case, the stress distribution and the displacement 
fields are investigated as function of different lamination angles and reinforcement volume fractions. 
The results obtained by the theoretical model are physic consistent and coherent with the literature 
information. After that, the previous formulations are extended in order to predict the mechanical 
behavior of a thick laminated tube. Both analytical formulations are implemented as a computational 
tool via Matlab code. The results obtained by the computational tool are compared to the finite element 
analyses, and the stress distribution is considered coherent. Moreover, the engineering computational 
tool is used to perform failure analysis, using different types of failure criteria, which identifies the 
damaged ply and the mode of failure.
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1.	 Introduction
Composite materials have been more and more widely 

applied on the production of structural components in many 
areas such as the petroleum and the aeronautical industries, 
as well as composite structural repairs for civil constructions. 
However, mapping the stresses and predicting the failure in a 
structure manufactured by composite material is a challenge 
due to the inherent anisotropy. Thus, composite structures 
such as tubes and cylinders have been studied by many 
researchers. Also, due to their cylindrical symmetry, it is 
possible to find at the literature many contributions about 
stress analyses for these structures, using theoretical models 
(e.g. analytical formulations).

Considering the structural design with anisotropic 
materials, Lekhnitskii1-2 is an important reference, because 
this author derived generic analytical formulations for 
the main loading cases applied on anisotropic media. In 
1988, Durban3 studied finite elastic-plastic deformations 
on pressurized tubes. Later, in 1989, the researcher 
improved his work, including formulations for large 
strains and composite materials4. A rather feasible and 
specific formulation was shown by Wüthrich5, who studied 
a laminate thick-walled under a specific set of loading 
cases. In 1995, Sayir and Motavalli6 analyzed a composite 
laminate tube, describing the limitations of the Classical 
Laminate Theory (CLT) for cylindrical geometries. They 
decided to propose an alternative and more accuracy solution 
for this problem. In the same year, Salzar7 published a 

study about the stress distribution at tubes with different 
reinforcement volume fractions, aiming to obtain lighter 
and more efficient structures. A theoretical model for tubes 
under several loading cases such as torsion, flexion and 
pressurization was presented by Tarn and Wang8. These 
researchers and many others based on the deductions for 
anisotropic structures developed by Lekhnitskii2. Due to 
the unlimited possible setups for composite tubes, this area 
continues to attract researchers like Gning  et  al.9 (2005) 
and Onder et al.10 (2009), who recently studied the failure 
of composite tubes either by impact or burst, respectively. 
Still in 2009, Silvestre11 studied non-classical effects of 
composite tubes, investigating failure by instabilities via 
a proposed General Beam Theory (GBT). Besides, the 
researcher compared the GBT results to numerical analysis 
carried out by a finite element program, AbaqusTM. Anasari, 
Alisafaei and Ghadi12, as well as Bakaiyan, Hosseini and 
Ameri13 analyzed multi-layered filament wound tubes under 
internal pressure and thermomechanical effects. In 2010, 
Alexander and Ochoa14 showed the feasibilities of using 
carbon fiber reinforced composites as composite structural 
repair for steel risers offshore, where the main loading was 
internal pressure. And lately (in 2011), Shadmehri, Derisi 
and Hoa15 showed analytical formulations to determine 
the stiffness of composite tubes. Also, the recent work of 
Piekarczyk et al.16 showed that even single or double layer 
laminates are currently in use. The researchers investigated 
laminates as structural repair for concrete cylinders. There 
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was registered a considerable increase in the axial strength 
up to three times the original value.

In this context, this paper shows theoretical models 
(analytical formulations) to predict the mechanical behavior 
of thick composite tubes and how some parameters (e.g. 
reinforcement volume fraction) can influence this behavior. 
Thus, firstly, it was developed the analytical formulations 
for a pressurized tube made of composite material with a 
single thick ply and only one lamination angle. For this 
case, the stress distribution and the displacement fields are 
investigated as function of different lamination angles and 
reinforcement volume fractions. Also, the ply properties 
are estimated by a micromechanical analysis. After that, the 
previous formulations are extended in order to predict the 
mechanical behavior of a thick laminated tube, considering 
similar boundaries and loading applied earlier. It is important 
to mention that an engineering computational tool was 
developed, because the analytical formulations were 
implemented via Matlab code. Based on this computational 
tool, stress analyses were carried out and the results were 
compared to the finite element model results. Finally, the 
final goal of this work, in fact, consists on predicting the 
failure of the laminated tube using the computational tool. 
Therefore, three common failure models were implemented, 
as well as a new failure model proposed by Tita et  al.17, 
which was never used to predict failure mechanisms for 
composite tubes.

2.	 Composite Tube with a Single Lamination 
Direction
The first analytical formulations were developed for a 

thick tube under internal and external pressure (Figure 1a) 
and manufactured by composite material with anisotropic 
properties in global cylindrical coordinates (Figure 1b). All 
interfaces were assumed perfect and tube’s wall consists of 
a thick layer (also named “a set”, which is the stacking of 
several thin plies to achieve the thickness specified by the 
project) with fibers aligned in a lamination angle φ different 
of zero, shown by Figure 1b, 1c.

2.1.	 Theoretical formulation – part 1

Based on Figure 1, a simplification is used in the 
theoretical formulation due to the applied loading and 
geometry of the tube. A 2D approach is used for a section 
of the tube. Then, the formulation is extended and the third 
dimension is added, composing a cylindrical coordinate 
system (r-θ-z). Regarding lamination angle different than 
0 and 90°, there are shearing-stretching-coupling effects. 
However, in this formulation, the shear stresses and strains at 
planes r-θ and z-θ are taken to be relatively small compared 
to others, hence, one assumes:

θ θ θ θε = ε = τ = τ = 0r z r z 	 (1)

In this case, the z direction loading can be further treated 
separately. To solve the problem, it is necessary to consider 
only the loadings in r and θ directions, whose equilibrium 
equations produce:

( )θ
∂σ

+ σ − σ =
∂

1 0r
rr r

	 (2)

Considering only radial displacements:

0;   ;   r z
du u constant
dr rθε = ε = ε = ε = 	 (3)

The composite tube has a lamination angle φ measured 
counterclockwise from the direction θ of the cylinder. 
Therefore, initially, the tube has one plane of symmetry, 
which is perpendicular to direction z. The constitutive 
matrix in a global coordinate system (r-θ-z) depends on the 
lamination angle φ and the coefficients of the constitutive 
matrix defined in a local coordinate system (1-2-3) C

ij
*. 

These coefficients are calculated as function of mechanical 
properties for each constituent material (fibers and matrix) 
as written by Mendonça18 and Christensen19. Hence the 
stress-strain relation in a global coordinate system (r-θ-z) 
is given by:
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With Equation 3 and 4 applied on the equilibrium 
Equation  2, it is possible to write the following non-
homogeneous second order differential, Equation 5. 
Considering that each layer is transversally isotropic 
(C
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Equation 5 has a homogeneous solution: u = crη. 
Where c is a constant and η is a parameter to be defined. 
The homogeneous solution plus a particular one is written 
at Equation 6 and it can be found at Wüthrich5.

( )
( ) ( )

1/2
1 2 3 11 33

3 0 12 23 33 11

( ) : ;u r c r c r c r for C C

c C C C C

η −η= + + → η =

= ε − −
	 (6)

The solution presented is re-written for very long 
cylinder, where these ends have their displacements towards 
direction z set to a null value. A similar case to a section 
of an infinite tube; where the strains ε

zr
 and ε

z
 are also 

considered null. Using the mentioned constitutive relations 
and considering the hypothesis for the strains, the stress 

Figure 1. Thick composite tube: a) section of the tube with internal 
and external pressure; b) system of coordinates: cylindrical and 
material coordinates; c) lamination angle φ.
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distribution in the composite tube are obtained as functions 
of the radial coordinate r:

1 ( 1)
1 13 33 2 13 33( ) (C ) ( )r r c C r c C C rη− − η+σ = + η + − η 	 (7)

1 ( 1)
1 12 23 2 12 23( ) ( ) ( )z r c C C r c C C rη− − η+σ = + η + − η 	 (8)

1 ( 1)
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θσ = + η + − η 	 (9)

Applying the boundary conditions (σ
r
(r

i
)  =  -P

i
 and 

σ
r
(r

e
)  =  -P

e
), radial, hoop and axial stresses, as well as 

the radial displacement are calculated by the following 
equations:
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It is possible to write the equations for the anisotropic 
tube with a generic lamination angle φ different of zero, 
measured from direction θ. For this approach, it is necessary 
to consider the tube (thick layer) made of orthotropic and 
transversally isotropic material. Thus, there is a plane of 
symmetry perpendicular to the directions of the fibers 
(Figure 1 – r-z plane). The analytical formulation requires 
elastic properties of the constituent materials (fibers and 
matrix), which are obtained by a method developed by 
Hashin20, using the CCA (Composite Cylinder Assemblage). 
This method is similar to the Rule of Mixtures. From 
Equations 14 to 18, some elastic properties of the composite 
are defined by the following Equations 14-18:
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Where m and f are sub indexes, which refer to the 
properties of the matrix and the fibers respectively; w is the 
volume fraction of fibers in the composite. G, E, K, μ, ν are 
respectively the shear modulus, Young’s modulus, Bulk’s 
modulus, plane strain Bulk’s modulus and the Poisson’s 
coefficient. Combining Equation 4 and Equations 14-18, 
the material parameters used by the Equation 10-13 can be 
obtained as follow below:
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Thus, the material parameters in Equations 10-13 written 
in the global coordinate system r-θ-z remain as a function of 
the lamination angle φ and the elastic properties, which are 
obtained in the local coordinate system (1-2-3).

2.2.	 Results for composite tube with a single 
lamination direction

The theoretical model was implemented via Matlab 
code as an engineering computational tool. Thus, it is 
possible to investigate how different materials (e.g. type 
of fibers) and manufacturing parameters (e.g. lamination 
angle) can influence on the mechanical behavior of the thick 
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composite tube. It is important to mention that variation 
of parameters leads to modified stiffness, strength, weight 
and cost of the structure. In this paper, as a first approach, 
it was investigated the influence of the volume fraction of 
fibers within a feasible percentage range (w = 25-75%) for 
a fixed lamination angle (φ = 30°). Then, it was studied the 
influence of the lamination angle (φ = 0-90°), keeping a 
fixed volume fraction of fibers (w = 50%). Two different 
types of fibers were investigated, also. One tube was made 
of epoxy resin reinforced by graphite fibers and another one 
was made of the same epoxy resin, but reinforced by glass 
fibers. However, it is very important to observe that the 
formulation can be applied for any type of reinforcement. 

For the analyses, using the computational engineering 
tool, some material properties must be calculated. However, 
due to slight differences between the chemical compositions 
of each constituent material, some material properties of the 
composite were considered as an average of values found at 
literature (Table 1). The tube analyzed has internal radius 
r

i
 equal to 0.12 m and external one r

e
 equal to 0.15 m. The 

loading is internal pressure P
i
 of 20 MPa combined to 

external pressure P
e
 of 0.1 MPa.

Figure 2 shows the variation of the stresses and the 
radial displacement through the thickness as a function of 
the volume fraction of fibers w and the lamination angle φ 
for the tube reinforced by graphite fibers. Similar graphics 
for tubes reinforced by glass fibers are shown by Figure 3.

The maximum and minimum values (through 
the thickness) obtained for all stresses and for radial 
displacement at the tube are shown by Figure 4 and 5. These 
results show that the computational tool can aid engineers 
during the preliminary project of composite tubes, because 
a parametric study can be performed. For example, based 
on Figure 4a, it is possible to assert that the radial stresses 
σ

r
 do not vary substantially anywhere through the thickness 

as one varies the type of the fiber, or the volume fraction 
of fibers, or even, with the lamination angle, considering 
the analyzed tube. Figure 4b shows similar behavior for 
glass fiber reinforcements, considering stresses in the hoop 
direction σθ, but there is a variation in the behavior for the 
graphite fiber reinforcements. Furthermore, hoop stresses 
for both types of reinforcements tend to increase at the 
inner surface and decrease at the outer surface of the tube 
(Figure 4b). Increasing the lamination angle φ, the hoop 
stresses tend to reduce at the inner surface, because the 
contribution of the fibers in the total stiffness decreases. In 
fact, if the fibers are no longer aligned with the direction 
of the largest loadings, then the response of the structure 
depends mainly on the matrix behavior. These results can be 
observed clearly at the tube with graphite fibers (Figure 2b), 
because this structure is stiffer than the tube reinforced 

by glass fibers (Figure  3b). Thus, these predictions are 
physically consistent and very coherent with literature 
information.

For the axial stresses σ
z
, in Figure 5a, it is interesting 

to observe that the variation of the parameters provides 
different maximums and minimums in each tubes reinforced 
by graphite fibers, concerning an increment of the 
reinforcement volume fraction. For the tubes reinforced by 
glass fibers, an increase of the reinforcement volume fraction 
leads to a slight decrease of the axial stresses at the inner 
surface and an increase at the outer surface (Figure 3c). On 
the other hand, the tube reinforced by graphite fibers behaves 
inversely, because an increase of the reinforcement volume 
fraction contributes to increase the axial stress at the inner 
surface (Figure 2c). This phenomenon occurs due to the 
transversal elastic properties of the fiber glass composites, 
which have properties values very close to the epoxy resin 
(Table 1). However, this phenomenon does not happen to 
the graphite fiber composites, which Young’s modulus, in 
the fiber direction, is much higher than the epoxy resin. This 
explains the different levels of the axial stresses between 
the analyzed tubes. 

Nevertheless, in Figure 2d and 3d, for increments 
of the lamination angle, it can be observed that the axial 
stresses increase, because the stiffness increases due to 
the null displacement imposed on the direction z. The 
inflection region verified at these graphics, around φ 
equal to 60°, occurs due to the formulation via CCA19, 
which predicts smaller stresses for φ higher than 60°. In 
this analytical formulation, the equation terms with the 
highest contribution for the axial stress are multiplied by 
the co-sin trigonometric function, which average value is 
obtained for an angle equal to 60°. Finally, in Figure 5b, 
it can be verified that the maximum and minimum values 
for the radial displacements, shown by Figure 2a and 3a. 
These graphics provide coherent results with the literature 
information, because the reinforcement volume fraction is 
increased, and the tube becomes stiffer. For this case, it has 
the smallest displacement. On the other hand, for larger 
lamination angle, stiffness in the radial direction reduces, 
increasing the respective displacement.

3.	 Laminated Composite Tube
In order to improve the previous analytical formulation, 

the composite tube analyzed in this section consists of 
several sets with different lamination angles and different 
materials per set (Figure 6). The material is considered 
anisotropic in the global coordinate system, i.e., cylindrical 
coordinates system (r-θ-z). The thick-walled tube is made of 
multiple stacked plies sets with fibers aligned in a lamination 
angle φ different of zero. 

Table 1. Mechanical properties of fibers and polymeric matrix.

Material Young’s modulus (E) Bulk modulus (K) Shear modulus (G) Poisson’s ratio (ν)

S-Glass fiber, generic21 86 GPa 52.80 GPa** 35 GPa 0.220

Graphite fiber (T50)22 388 GPa 7.03 GPa 4.6 GPa* 0.358*

EPON 828 (MDA cured)23 3.76 GPa* 5.32 GPa** 1.36 GPa* 0.374*

*Average values; **Calculate values.
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For this second analytical formulation, a specific 
lamination pattern is chosen; so it is possible to calculate 
the laminated tube with orthotropic properties, using the 
same approach performed by the first analytical formulation. 
Thus, the stacking sequence and the directions of the fibers 
for each ply are taken such as the tube material can be 
assumed orthotropic.

3.1.	 Theoretical formulation – part 2

Composite laminates with angle-ply layers (0 < φ < 90°) 
and with symmetric stacking sequence were investigated, 
because this type of configuration is very commonly used 
for laminated tubes. As observed in Figure 7, the line of 
symmetry is not at the center of the laminate thickness 
(Figure 7a), but it is at the center of the tube (Figure 7b). The 
subscript s stands for this symmetry. The angles ±A and ±B 
are arranged in order to avoid the coupling between normal 
forces and shear strains. However the coupling between 
bending and twisting cannot be neglected. It is worth noting 
that, for a fixed stacking sequence, if the thickness of the 
plies is reduced and the number of the plies is increased, 
then this coupling effect can be neglected as much as the 

plies are thin. Thus, when this analytical formulation is 
used, laminated tubes with thinner plies show more accurate 
results. This occurs because the distances between the 
plies +φ and –φ opposed to each other from the center of 
symmetry tend to the same value, minimizing the bending-
twisting coupling effect.

The calculation of the constitutive matrix of these 
laminates [Q] depends on the constitutive matrixes of 
the plies [C] calculated for the plies with negative and 
positive angles at the angle-ply laminate written in a global 
system (r-θ-z). Using these matrixes in the equilibrium 
and compatibility equations, it is possible to define the 
average strains and stresses of this laminate as shown by 
Equations 23-24. Furthermore, the equivalent orthotropic 
matrix of the problem is defined by Equation 25, and the 
respective coefficients by Equations 26-27:

1

1; 1,2,6
Nk k

i i i i
k

i
N =

ε = ε σ = σ → =∑ 	 (23)

1

1 ; 3,4, 5
N k k

i i i i
k

i
N =

ε = ε σ = σ → =∑ 	 (24)

Figure 2. Stress distribution and radial displacement (graphite fiber reinforcement): a) radial displacement for φ = 30°, b) hoop stress for 
w = 50%, c) axial stress for φ = 30°, and d) axial stress for w = 50%.
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Figure 4. Maximums and minimums values of stress: a) radial stress; b) hoop stress.

Figure 3. Stress distribution and radial displacement (glass fiber reinforcement): a) radial displacement for φ = 30°; b) hoop stress for 
w = 50%; c) axial stress for φ = 30°; d) axial stress for w = 50%.
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The value of N is the total number of plies and the 
value of n is the total number of sets in the laminate; k is 
a numeric identification of each ply and r indicates the set, 

which has a material, a lamination angle and a number of 
layers N

S
. In this second analytical formulation, it is very 

strategic to use equivalent properties, because consistent 
values are obtained for composite tubes manufactured by 
filament winding. Applying the same loads and boundary 
conditions uses at the first analytical formulation, the global 
stresses (radial, hoop and axial) and the radial displacement 
are calculated by:
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Figure 6. Thick laminate tube: a) thick walled tube with several 
plies; b) coordinate systems.

Figure 5. Maximums and minimums values: a) axial stress; b) radial displacements.
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The Equations 37-39 combined to the Equations 33‑36 
define the possible variations for the elastic properties. 
Therefore, each modification at E

ij
, for instance, can 

represent a combination of changes for the materials used 
in the manufacturing of the laminate. Thus, not only the 
Young’s moduli can be affected but also all the remaining 
equivalent properties. Then, within a limit for the variations 
of a specific property, one must re-calculate the other ones 
via Equations 37-39 and verify whether the results violate 
the restrictions or not, using Equations 33-36. If any of these 
restrictions is violated, the proposed analytical formulation 
becomes unreliable, because the equivalent elastic properties 
cannot correspond to a real orthotropic structure. Since the 
restrictions have been verified, the theoretical model can be 
applied to calculate the local stresses in each ply k of the 
composite tube. To determine these stresses, it is necessary 
to obtain the strains in each ply in the global system of 
coordinates (r-θ-z) using Equations 23 and 24. Considering 
the pressures applied on the tube, the tensor of the average 
strains is given by:
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0 0 rr
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	 (40)
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The thick-walled tube made of composite material has a 
constitutive matrix, which varies with elastic properties and 
with the lamination angle. The tube herein studied can be 
analyzed as several co-axial orthotropic tubes with specific 
elastic properties each one (E
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12
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31
, 
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 and ν
12

). There are some relations between these elastic 
properties where slight variation of a property value implies 
in an abrupt modification of the others. Thus, these variations 
must follow some restrictions, as shown by Equations 33‑36, 
in order to keep the orthotropic symmetry and guarantee the 
hypothesis used by the proposed analytical formulation.
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It is important to highlight that to predict the laminate 
behavior, using an equivalent orthotropic material, the 
constitutive matrix in Equation 25 should be written in terms 
of the equivalent properties. Therefore, it is possible to check 
if the analysis carried out is physically supported, evaluating 
the restrictions described for each stacking sequence. To 
apply the restrictions, it is necessary to obtain the equivalent 
properties of the tube as a function of the average coefficients 
of the laminate (calculated by Equatiuons 26-27). Using the 
average constitutive matrix of the laminated tube [Q], the 
properties are calculated by following equations:

Figure 7. Lamination symmetry: a) angle-ply and symmetric laminate [+A/‑A/+B/-B]
s
; b) front section of the laminate tube with an 

equivalent symmetry.
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of the laminate for the plies, because the values of radius 
r are chosen according to the relative positions of the plies 
in the laminate and respective thicknesses.

3.2.	 Results for laminated tube

In order to verify the accuracy of the presented analytical 
formulation, a numerical model was developed using a 
finite element software, AnsysTM. The results for stresses 
calculated by analytical and numerical approaches were 
compared. As discussed in the first analytical formulation, 
the second one was implemented via Matlab code as an 
engineering computational tool, also.

To carry out a more trustful comparison, the CCA 
(Composite Cylinder Assemblage) developed by Hashin18 
was not used to obtain the elastic properties for a specific 
material even though the computational tool herein 
developed allows this possibility. Thus, a commercial 
material (unidirectional prepreg manufactured by Hexcel™), 
which the elastic properties and strength values were 
evaluated by Tita et al.17 (Table 2), was selected. Therefore, 
it was studied the influence of the lamination angle, as well 
as the stacking sequence on the mechanical behavior of the 
composite tubes.

The computational tool was used to calculate the stress 
distribution in the tube with stacking sequence equal to 
[45°

10
/-45°

10
/30°

10
/-30°

10
]

s
. The first 20 plies have 0.0005 m 

of thickness whereas the last 20 plies have 0.001  m of 
thickness. The tube has an internal radio equal to 0.12 m 
and an external one equal to 0.15 m. The internal pressure 
applied is equal to 20  MPa and the external pressure is 
equal to 0.1 MPa.

The numerical model has 19200 layered elements 
(SOLID191 - AnsysTM finite element). Each layered element 
has 10 plies defined according to the stacking sequence 
mentioned earlier (Figure  8a). The composite tube was 
modeled with one meter of length. The boundary conditions 
were applied in order to represent a section of a long tube 
analyzed by the analytical formulation. The tube was 
clamped at both ends (Figure 8b). The results were taken 
away from the ends of the tube in order to avoid that border 
effects influence the numerical results. 

The comparison between results from the computational 
tool and the finite element analyses showed coherent results 
(Table 3). The largest difference (37.1%) is presented by the 
axial stress component for only one ply. However, for the 
other plies and stress components, the maximum difference 
is equal to 12.4% in the hoop stress. These differences 
are mainly due to the simplification of the analytical 
formulation, which uses equivalent orthotropic properties 
and shows in Equation  40 that some strain components 
are neglected. Unlike the finite element analyses with 3D 
elements (SOLID 191) consider all components of the strain 
tensor and does not use equivalent orthotropic properties.

Applying Equations 23 and 24 for the strains of the 
plies in global coordinate system, it can be verified that 
these results represent the average local strains, also. Then, 
these strains in the local system of coordinates (1-2-3) of 
each ply k are given by:
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Finally, the local stresses are calculated for the local 
constitutive matrix of each ply [C]k with orthotropic 
features. The local strains in each k ply are calculated by 
the Equations 42-46 in functions of the radius r given by 
Equation 41 and considering the Equations 3, 6 and 23, 24.
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It is important to mention that the local stresses are 
functions of the equivalent properties of the laminate Q

ij
 

as well as the properties of each ply C
ij

*. In the terms [rα-1]

k
 and [r-(α+1)]

k
, the subscript k restricts the generic solutions 

Table 2. Mechanical properties for the M10 prepreg material (Hexcel™).

Young’s modulus Shear modulus Poisson’s ratio Density

E11 E22 = E33 G12 = G13 G23 ν12 = ν13 ν23 
ρ

127 GPa 10 GPa 5.4 GPa 3.05 GPa 0.34 0.306 1580 kg.m–3
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Table 3. Comparison between analytical and numerical results.

Set 1 1 2 2 3 3 4 4

Ply 1 10 1 10 1 10 1 10

Radio [m] 0.12 0.13 0.13 0.14 0.14 0.145 0.145 0.15

σθ (*) [Pa] 1.42E + 08 1.21E + 08 1.20E + 08 1.07E + 08 7.25E + 07 6.95E + 07 6.92E + 07 6.65E + 07

σθ (**) [Pa] 1.61E + 08 1.37E + 08 1.37E + 08 1.21E + 08 8.11E + 07 7.75E + 07 7.75E + 07 7.47E + 07

Δ(%) 11.8 11.7 12.4 11.6 10.6 10.3 10.7 11.0

σz (*) [Pa] 1.69E + 06 3.48E + 06 3.44E + 06 4.81E + 06 6.70E + 06 6.70E + 06 6.80E + 06 6.90E + 06

σz (**) [Pa] 2.69E + 06 3.87E + 06 3.87E + 06 4.90E + 06 6.86E + 06 7.23E + 06 7.23E + 06 7.59E + 06

Δ(%) 37.1 10.1 11.1 1.8 2.3 7.3 5.9 9.1

τθ-r (*)[Pa] –7.27E + 06 –6.16E + 06 6.17E + 06 5.35E + 06 –6.20E + 06 –5.80E + 06 5.80E + 06 5.50E + 06

τθ-r (**)[Pa] –8.21E + 06 –6.85E + 06 6.85E + 06 5.93E + 06 –6.69E + 06 –6.46E + 06 6.46E + 06 6.14E + 06

Δ(%) 11.4 10.1 9.9 9.8 7.3 10.2 10.2 10.4

*ANSYS Results; **computational tool; N/A: not available; Δ = {1-[(*)/(**)]} × 100.

Figure 8. Finite element model: a) finite element mesh; b) boundary conditions and pressure loadings.

Table 4. Failure analyses using the computational tool.

Ply Set Fail Criterion Failure mode

1 1 Yes Hoffman N/A

1 1 Yes Hashin C-M, T-M

1 1 Yes Tita et al.17 C-M, T-M

1 1 Yes Max. Stress C-M (*)

2 1 Yes Hoffman N/A

2 1 Yes Hashin C-M, T-M

2 1 Yes Tita et al.17 T-M

2 1 Yes Max. Stress C-M(*)

10 4 Yes Hoffman N/A

10 4 No Hashin -

10 4 No Tita et al.17 -

10 4 No Max. Stress -

N/A: not available; C: compression; T: tension; M: matrix; (*) failure in 
direction 3 (through the tube thickness).

Although, the axial stress component contributes to the 
failure process of the composite tube, the highest absolute 
stress values are calculated for hoop stress. Thus, the largest 
difference (37.1%) presented by the axial stress component 
will have a very low influence in the failure analyses.

3.3.	 Failure analyses of laminated tube

Four different failure criteria were implemented in the 
computational tool in order to perform failure analyses for 
composite tubes, identifying the damaged plies and the failure 
modes. Thus, three out of the four failure criteria are well known 
(Maximum stress, Hashin and Hoffman18) and a new one 
proposed by Tita et al.17, which was never used to predict failure 
mechanisms for composite tubes. After the implementation, 
it was carried out the stress and failure analyses for the same 
laminated tube shown at section 3.2, but for this case, it was 
applied an internal pressure equal to 100 MPa.

Table 4 shows coherent results and physically consistent 
for all failure criteria implemented. As observed, there 
is a failure close to the inner radio of composite tube. 
Furthermore, it is verified that the failure mode occurs in the 
polymeric matrix under tension and/or compression loading.

4.	 Conclusions
In the first part of the paper, the mechanical behavior 

of a thick composite tube with a single lamination direction 
was analyzed using an analytical formulation, which was 
implemented as an engineering computational tool via 
Matlab. The results obtained by the theoretical model 
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Therefore, the theoretical models implemented as a 
computational tool allows that the user perform very quickly 
preliminary analyses of stress distribution and failure 
mechanisms for pressurized laminated tubes and cylindrical 
geometries with single lamination direction (like composite 
structural repairs). In these preliminary analyses, the user 
can select the composite material (fiber and matrix), the 
reinforcement volume fraction, the lamination angle and 
the stacking sequence most adequate for the project in 
order to improve the mechanical behavior of a composite 
structure in service.
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are physically consistent and coherent with the literature 
information. Therefore, the computational tool is a good 
alternative to predict the mechanical behavior of general 
thick composite tube with a single lamination direction, 
aiding engineers during the conceptual and preliminary 
design. Mechanical behavior of composite structural repairs 
with one single orientation for cylindrical structures can be 
predicted using the computational tool, also.

In the second part of the paper, mechanical behavior of a 
thick laminated tube can be predicted by another analytical 
formulation, which was implemented in the computational 
tool, also. After to compare the results obtained by the 
analytical formulation to finite element analyses, it can be 
concluded that the computational tool is a good alternative 
to predict the stress distribution in thick laminated tube. 
Moreover, the engineering computational tool can perform 
failure analysis, using different types of failure criteria, 
which identifies the damaged ply and the mode of failure. 
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