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Electron magnetic resonance (EMR) spectra of Cr3+ ions in samples of chromium-doped strontium 
titanate (SrTiO

3
) have been studied at room temperature for chromium concentrations between 0.20 and 

1.00 mol%. According to previous studies, chromium substitutes Ti4+ sites in the lattice and its preferred 
valence state is Cr4+, which is EMR silent in the X-band, but the trivalent state can be produced by 
illumination or codoping with Nb. In the present work, the codoping method was used; the results show 
the electron magnetic resonance linewidth of the Cr3+ spectrum increases with increasing chromium 
concentration and that the range of the exchange interaction between Cr3+ ions is about 0.96 nm.
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1.	 Introduction
Strontium titanate (SrTiO

3
) is a high dielectric constant 

ceramic material with several industrial applications1-4, 
such as memory devices, oxygen sensors, electro-optical 
devices and flexible dielectric waveguides, whose electrical 
properties can be changed by the presence of transition metal 
and rare earth impurities such as iron and gadolinium5,6. 
EMR spectroscopy is a convenient method for studying these 
impurities within the SrTiO

3
 structure. In this work, we study 

the effect of chromium concentration on the EMR spectrum 
of Cr3+ in polycrystalline SrTiO

3
 codoped with chromium 

and niobium. The importance of this investigation is twofold. 
First, once the effects of chromium concentration on the 
spectrum are known, it becomes possible to use EMR results 
to study the effects of other impurities7-9 on the valence 
state of the chromium ion in SrTiO

3
. Second, knowledge 

of the range of the exchange interaction between Cr3+ ions 
contributes to a better understanding of the electrical and 
magnetic properties10,11 of doped strontium titanate.

2.	 Background

2.1.	 Crystal structure of strontium titanate

Strontium titanate (SrTiO
3
) crystallizes in the perovskite 

structure12 conforming to the space group ( )13 .hPm m O  
There are two distinct cation sites, one with twelve 
nearest‑neighbor oxygen ions, occupied by Sr atoms, and 
one with six nearest-neighbor oxygen atoms, occupied by 
Ti atoms.

2.2.	 EMR of chromium-doped strontium titanate

Analysis of the EMR spectrum of single-crystal 
chromium-doped strontium titanate13 shows that Cr4+ ions 
substitutionally replace titanium ions in the lattice. Cr4+ ions 
cannot be observed at X band due to a high crystal field 
splitting, but the trivalent state can be produced under 
illumination13 or by codoping with Nb[14]. The spectrum of 
Cr3+ under illumination consists of a central line (g ≈ 1.978) 
due to 50Cr, 52Cr and 54Cr and a hyperfine quartet due to the 
53Cr isotope13.

2.3.	 EMR of dilute solid solutions

The theory of dipolar broadening in diluted solid 
solutions was developed in Kittel and Abrahams15 and 
extended in de Biasi and Fernandes16 to take exchange 
interactions into account. The main results of the theory 
can be summarized as follows:

The lineshape is a truncated Lorentzian;
The peak-to-peak first derivative linewidth may be 

expressed as

∆H
pp

 = ∆H
0
 + ∆H

d
 = ∆H

0
 + C

1
 f

e
 	 (1)

where ∆H
0
 is the intrinsic linewidth, ∆H

d 
is the dipolar 

broadening, C
1
 is a constant and f

e
 is the concentration of 

substitutional ions of the paramagnetic impurity not coupled 
by the exchange interaction, which can be expressed as

( ) ( )
e 1 cz rf f f= − 	 (2)

where f is the impurity concentration, z(r
c
) the number 

of cation sites included in a sphere of radius r
c
 and r

c
 the 

effective range of the exchange interaction.
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The intensity of the absorption line is

I = C
2
 f

e
 	 (3)

where C
2
 is a constant.

The analysis above is based on the assumption of two 
ion populations, one with no exchange, which is responsible 
for the normal paramagnetic line, and another which, 
due to exchange, is either EPR silent (if the coupling is 
antiferromagnetic) or gives rise to a much broader line (if 
the coupling is ferromagnetic).

3.	 Experimental Procedure and Results

3.1.	 Sample preparation

The chromium/niobium doped samples used in this 
study were prepared from high-purity SrTiO

3
 (Aldrich, 

99%), Cr
2
O

3
 (Aldrich, 99.9%) and Nb

2
O

5
 (Aldrich, 99.99%) 

powders by grinding them together and then firing the 
mixture for 24 hours at 1200 °C in air. Since niobium was 
intended to act as an electron donor, we used equal molar 
concentrations of Cr and Nb in each sample. The chromium 
concentrations and reagent masses are shown in Table 1. 
Room-temperature X-ray diffraction patterns (Figure  1) 
of the samples matched, within experimental error, the 
spectrum17 of SrTiO

3
. No other phases were detected.

3.2.	 Magnetic resonance measurements

All magnetic resonance measurements were performed 
at room temperature and 9.50  GHz using a Varian 

Figure 3. EMR spectrum of a SrTiO
3
 sample doped with 1.0 mol% 

Cr and 1.0 mol% Nd.

Figure 2. EMR spectrum of a SrTiO
3
 sample doped with 0.2 mol% 

Cr and 0.2 mol% Nb.

Figure  1. X-ray diffraction pattern of a SrTiO
3
 sample doped 

with 1.0 mol% Cr and 1.0 mol% Nb. The indices were taken from 
JCPDS no. 86-0179.

Table 1. Chromium and niobium concentrations and reagent masses 
for the samples used in this work.

fCr,Nb (mol%) mCr2O3 
(g) mNb2O5 

(g) mSrTiO3 
(g)

0.20 0.0017 0.0030 1.9953

0.40 0.0033 0.0058 1.9909

0.60 0.0050 0.0087 1.9863

0.80 0.0067 0.0117 1.9816

1.00 0.0083 0.0145 1.9772

E-12  spectrometer with 100  kHz field modulation. The 
microwave power was 200  mW and the modulation 
amplitude was 0.1 mT. The magnetic field was calibrated 
with an NMR gaussmeter.

Spect ra  of  samples  of  SrTiO
3
 doped wi th 

0.2 and 1.0 mol% Cr and Nb are shown in Figures 2 and 
3. Only the line due to the Cr3+ –1/2 → 1/2 transition is 
clearly seen; the g-value of this line is 1.978 ± 0.001, in 
good agreement with the value reported in Müller13. The 
lines due to the other transitions, like the Gd3+ lines in the 
same compound18, are broader because of lattice strain and 
are responsible, together with Cr3+-Cr3+ pairs within the 
range of the exchange interaction, for the feature near 0.34 T 
in Figures  2 and 3. Linewidth and intensity data for the 
Cr3+ –1/2 → 1/2 transition are shown in Table 2 for several 
chromium concentrations.

4.	 Discussion
The theoretical concentration dependence of the 

peak‑to-peak linewidth ∆H
pp

, given by Equation 1, is shown 
in Figure 4 for ∆H

0
 = 0.6 mT and eight different ranges of 
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Figure 4. The experimental results fit the theoretical curve 
for n = 7, which corresponds, according to Table 3, to a 
range r

c
  =  0.96  ±  0.10  nm for the exchange interaction. 

Figure 5 shows the theoretical (Equation 3) and experimental 
(Table  2) intensity data, estimated using the expression 
I  =  A(∆H

pp
)2, where I is the line intensity, A is the line 

amplitude and ∆H
pp

 is the peak-to-peak linewidth. The 
vertical scale is arbitrary and was chosen so as to provide 
the best fit of the experimental points to the theoretical 
curve for n = 7, or z(r

c
) = 80. The agreement was found to 

be very good.

5.	 Conclusions
Since the linewidth and intensity of the EMR spectrum 

of Cr3+ in SrTiO
3
 increase with Cr concentration and 

the experimental results are fitted well by a theoretical 
model, niobium codoping seems to be a reliable way 
to change the valence state of the chromium ions 
from Cr4+  to  Cr3+  in substitutional titanium sites of 
chromium‑doped strontium titanate. The fact that the range 
of the exchange interaction of Cr3+ in SrTiO

3
 is much larger 

than in Y
2
O

3
[19] (0.96 and 0.64 nm, respectively) is probably 

due to a more favorable bonding angle in SrTiO
3
, that favors 

indirect exchange20.
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Table 2. Experimental results for the Cr3+-SrTiO
3
 system 

(T = 300 K, ν = 9.50 GHz).

fCr (mol%) ∆Hpp (mT) I (A.U.)

0.20 0.70 0.55
0.40 0.77 0.90
0.60 0.82 1.20
0.80 0.86 1.30
1.00 0.88 1.50

Table 3. Values of r
c
 and z(r

c
) for SrTiO

3

n r
c
 (nm) z(r

c
)

1 0.00 0
2 0.39 6
3 0.55 18
4 0.68 26

5 0.78 32
6 0.87 56
7 0.96 80
8 1.11 92

Figure 4. Concentration dependence of the peak-to-peak linewidth, 
∆H

pp
, in Cr/Nb-doped SrTiO

3
. The circles are experimental points; 

the curves represent results of calculations for eight different ranges 
of the exchange interaction.

Figure 5. Concentration dependence of the line intensity in Cr/
Nb-doped SrTiO

3
. The circles are experimental points; the curves 

represent the results of calculations for eight different ranges of 
the exchange interaction.

the exchange interaction. The values of r
c
 and z(r

c
) for the 

first eight coordinate spheres are listed in Table 3, where n 
is the number of the order of each coordinate sphere (n = 1 
includes no neighboring sites, and so on). The values of 
z(r

c
) are those appropriate to the lattice of SrTiO

3
; the 

values of r
c
 were calculated from the lattice constant at 

room temperature as measured by X-ray diffraction17, 
a

o
 = 0.3901 nm. The experimental data are also shown in 
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