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On the Intrinsic Limits of the Convolution Method to Obtain the Crystallite Size 
Distribution from Nanopowders Diffraction
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The present work briefly reviews the convolution of crystallite shape functions and discusses 
its experimental limitations. The diffraction from a theoretical spherical shape powder is used to 
exemplify the limits of the convolution procedure. Mean lattice distortions were not considered 
since the discussed limitations are inherent to the convolution method using Fourier transforms. 
The diffraction pattern and the convolution were calculated using appropriate macros for the Topas 
program. It is shown that very small crystallites require a large 2θ convolution span and the smallest 
subdivision for the distribution will depend on this convolution span. To show the importance of the 
convolution limits and its application, the nanocrystalline CeO2 round-robin diffraction pattern was 
evaluated. The chord frequency distribution by XRD showed conformity with the chord distribution 
calculated from a grain size histogram obtained by transmission electron microscopy for this sample.
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1. Introduction

The profile analysis of diffraction lines has been around 
for a very long time. The first systematic theory was proposed 
by Bertaut1 and has been extensively addressed by André 
Guinier in his book on X-Ray Diffraction2, first published in 
1956. The deconvolution approach by Fourier transforms has 
been widely used by many authors. Langford et al.3 discussed 
the different approaches used to determine the crystallite size 
and its distribution profile and suggested the use of lognormal 
distribution and a predefined shape to avoid the mathematical 
instabilities frequently present when obtaining column-length 
distributions from the second differential of Fourier transform 
coefficients. They emphasized that the major drawback of all 
methods is to assume the same shape for all crystallites. Although 
Armstrong and Kalceff4 used a Bayesian maximum entropy 
method to deconvolve and remove the instrument broadening 
and also to determine the column-length distribution, they did 
not comment on the inherent limits of the convolution process.

Berkum et al.5,6 developed an approach to calculate the 
peak profile including both the crystallite size and strain 
contributions and compared it to the Warren-Averbach 
analysis7. The Whole Powder Pattern Modelling (WPPM) 
approach proposed by Scardi and Leoni8 is essentially a 
procedure that convolutes mathematical functions that 
describe the peak profile with different contributions from 
the instrument and the sample microstructure. Kojdecki et 
al.9 proposed a description of the crystallite size distribution 
following closely Wilson's approach10 which also includes 
the strain distribution. All these approaches rely basically 
on the same Fourier transform relationship to describe the 

peak profile and there were no discussions on the limits 
inherent from the signal processing with Fourier transforms.

Ida and Toraya11 discussed the propagation of errors during 
the deconvolution of the instrumental functions in the diffraction 
profile, but they did not analyze the errors related to the sampling 
process for a Fourier transform. Dykhne et al.12 provided a proper 
discussion of the deconvolution limit related to the determination 
of the atomic pair distribution from X-ray diffraction profile. 
However, they did not point out that the similar limits are also 
present in all methods that attempt to extract crystallite size 
distribution and lattice distortions from diffraction peak profile.

The present work reviews Bertaut's approach1 to the effect 
of domain size and shape on peak profile, following closely 
the Guinier's presentation2. It also discusses the limitations of 
the convolution procedure using the quite simple theoretical 
profile due to spheres for the peak profile and convoluting the 
shape of prisms with the base parallel to the diffracting plane 
to determine the column-length distribution as proposed by 
Bertaut and Guinier. The column-length distribution was used 
as an example that is independent from the crystallite shape 
and has a relatively simple mathematics. Further, it addresses 
the errors related to the Nyquist Theorem13 from sampling 
the X-ray diffraction pattern for a convolution with Fourier 
transforms. The column-length distribution is used as an example 
for spherical crystallites without considering lattice strains, 
but the same limitations are present if one includes the lattice 
strain, since the discussed errors are always present in digital 
signal processing. Topas macros were employed to simulate 
the peak profile of the spherical crystallites and to convolute 
prisms shapes to determine their column-length distribution.
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2. Profile Shape Review

The following review follows Guinier's book2. The 
calculated diffracted amplitude depends on the electron 
density inside a unit cell, ρ(x), centered on the lattice points 
which are accounted for by a sum of Dirac functions, z(x), 
and the form factor of the crystallite, i.e., the finite diffracting 
domain, σ(x), which equals to 1 inside the diffracting domain 
and zero outside. So the amplitude of the diffracted wave is:

            (1)

the integration being extended to all the object space. s is 
a vector of the reciprocal space and i 1= - . The intensity 
must be proportional to:

            (2)

where r *
hkl points to reciprocal space node corresponding 

to the hkl plane, Fhkl
2  is the structure factor of the crystal, 

V is the volume of the diffracting crystal containing N unit 
cells of volume Vc. Equation 2 is Guinier's equation 4.28 and

            (3)

is the Fourier transform of the volume which is common 
to the object and to its ghost obtained by displacing the 
object by the distance x. |Σ(s)|2 is the Fourier transform of 
the convolution of form factor function σ(x) and σ(-x). Since 
the form factor function σ(x) is real, the reflection domain 
in reciprocal space is always centrosymmetric and the line 
profile due to any domain shape must also be symmetric.

The Fourier transform of |Σ(s)|2 is:

            (4)

If one considers the node hkl distant r *
hkl from the origin of 

the reciprocal space, O, one may decompose any vector s in the 
domain region around the node by one vector parallel to r *

hkl, so, 
and another, u, perpendicular: s = so+u. Further, one may consider 
a vector t in object space, of length t, that is normal to the hkl 
lattice planes of the crystal producing the diffraction, so that the 
previous equation may be rewritten for this particular vector:

            (5)

The double integral

            (6)

corresponds to the scattering power over the cross-
section of the domain at a distance so from the origin. 
Therefore, it is proportional to the intensity of the powder 

profile line at the abscissa corresponding to so, or i(so), 
the profile of the diffracted line. Hence, one may rewrite:

            (7)

which shows that the function V(t) is the Fourier transform 
of i(so) and depends on a single variable:

            (8)

The geometric interpretation of V(t) is straightforward. It is 
the volume common to the crystal and to its ghost obtained by 
a translation t in the direction normal to the diffracting lattice 
planes, divided by the volume of the crystal. This expression 
is similar to Equation 7 presented by Kojdecki et al.9, or Equa-
tion 2 presented by Langford et al.3, which is fundamental for 
the Whole Powder Pattern Modelling approach proposed by 
Scardi and Leoni8,14. Equation 8 is the Fourier transform of the 
crystallite shape used to describe the peak profile. This equation 
is the essential step in digital signal processing. The limits of 
the convolution of Fourier transforms apply to this equation for 
any function used to describe the morphology of the crystallites.

The vector so may be calculated with respect to the 
center of each diffraction node, which is equivalent to 
consider the node at the origin, and is given by:

            (9)

where the angles are given in radians and the last relationship is 
an approximation valid for small displacements around 2θhkl angle.

If the crystal is a sphere of diameter D, V(t) will not depend 
on any particular chosen diffracting plane and is given by

            (10)

and, according to Eq. 8, the line profile produced 
by the diffraction of a powder with spheres of the same 
diameter is proportional to the Fourier transform of V(t):

            (11)

Equations 10 and 11 have been used by Langford 
et al.3 and Scardi et al. 15 and have been coded in their 
PM2K program. Wilson 10 and Langford and Wilson16 
provided similar expressions for different shapes.

However, it is unlikely that nanocrystals will always 
have spherical domains. It is probable that the shape and size 
distribution of the crystallites in a powder will be a complex 
function. Bertaut1 and Guinier2 had suggested that a crystal with 
complex geometry may be divided into prisms with columns 
normal to the lattice planes hkl and with cross-section (base) 
area da. Figure 1 shows a sphere with the column drawn in 
dark grey. The height of the column is the thickness of the 
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crystal D at the considered point. Therefore, the volume of the 
column has the length D-|t| for |t|≤D and zero for |t|>D, hence:

            (12)

The above expression can be rewritten as:

            (13)

Where

            (14)

is the distribution function for the column heights. It represents 
the volume fraction of the crystallite for which the length of the 
column normal to the plane hkl lies between D and D + dD. 
This distribution function applies to the heights of all crystallites.

The Fourier transform of

            (15)

Is

            (16)

which is the interference function for an object with 
the form of a segment of a straight line of length D and the 
profile of the diffraction line is given by:

            (17)

This function is similar to the profile functions employed 
by Scardi and Leoni8, except that they have considered 
specific shapes and distributions. If the distribution is not a 
priori known, one may substitute the integration by the sum:

            (18)

and determine the values for g(Di) for an approximate 
normalized distribution with N bins, considering the 
language of statistics. If during the fitting process the 
distribution is not normalized, the fitted values must be 
divided by the integral of g(Di) over the range of interest.

3. Convolution Limits

The diffraction pattern is a signal that results from 
the convolution of the X-ray emitted by a source with the 
sample and the apertures and other features along the light 
way. The possibility of describing the peak profile due to 
the equipment geometry by appropriate functions provides 
the starting point to convolute the effects due to the sample. 
Particularly important to the study of nanomaterials are 
the shape and size effects of very small particles, briefly 

described in the previous section. Distortions are also 
important and may be included in the convolution8,17, but 
they will not be considered in the present article since they 
will not add to the discussion of the convolution limit.( ) ( )VV t D t daD
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Figure 1. A sphere with the column-lenght drawn inside it

The convolution of the approximate sum equation, Eq. 
18, brings some major questions to the practical use of 
this relationship, all them concerned with the errors from 
sampling the peak profiles. What is the interval 2θ-range 
around a peak that must be used? What is the maximum 
interval of column-lengths that may be considered? What is 
the smallest subdivision, dD of the maximum interval? Or 
the equivalent: what is the maximum number of subdivisions, 
N, of the maximum interval? These questions must be 
answered within the scope of digital signal processing since 
Eq. 18 is indeed the convolution of Squared Sinc functions 
to the peak profiles obtained from the powder diffraction.

The first step in digital signal processing is to define the 
window, the s-range, or 2θ-range, around a peak that includes 
all the intensity data distinct from the background and a small 
background region on both sides of the peak. This problem 
had also been identified by Bertaut1. Figure 2 compares the 
peak profile due to a sphere and the squared sinc function 
using the dimensionless abscissa πsD. It is important to notice 
that this figure does not depend on the size of the sphere, or 
the length of the column. The figure clearly shows that the 
window strongly depends on the background to peak ratio. 
It is common to have values for the background to peak 
ratio between 10-3 to 10-4, so the half of the window range, 
πsD will be about 31.4 and 100, respectively.

Further, the s-range window will depend on the choice of 
the smallest chord length D, i.e., the crystallite size. Smaller 
D value requires greater s-range, and vice-versa. However, 
since the X-ray data is usually collected using 2θ angle, 
Equation 9 may be used to determine the 2θ-range associated 
with D value and background to peak ratio. This range will 
depend on the wavelength and the Bragg angle of the peak, 
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2θhkl. Figure 3 shows the 2θ-ranges as a function of the chord 
length D for two different wavelengths, corresponding to Ag 
(0.056 nm) and Cu (0.154 nm) radiation, and for the two most 
used background to peak signal ratio. If one considers that 
±20º is a reasonable range around a Bragg peak to compute 
the convolution, then the figure shows very clearly that the 
minimum D chord length varies from 1.9 nm for silver 
radiation and a background to peak ratio equal to 10-3 to 15 
nm for copper radiation and a background to peak ratio equal 
to 10-4. Therefore, the minimum chord length to be used in 
Eq. 18 is very dependent on both wavelengths used in the 
diffraction experiment and the range around the selected 
peak. In order to reduce the minimum chord value, greater 
energy radiation (smaller wavelength) is required. Last, since 
the 2θhkl Bragg peak was 30º for Fig. 3, Bragg peak angles 
greater than 30º will require larger windows for the same D 
chord length. Nonetheless, the chord length lower than 3 nm 
may not be feasible due to the background level and noise.

oscillations are inherently to the convolution of sinc functions if 
the sinc frequency is greater than half the sampling frequency. 
This is the Nyquist theorem13 and it sets a frequency rate to 
be used during the digital signal processing. This is the major 
restriction to digital signal processing and also provides the 
proper choice of minimum chord value to be used in Eq. 18.

If one considers a peak at 2θhkl, it corresponds to the 
reciprocal space position:

            (19)

The convolution should be done in the reciprocal 
space, but it is usual to define the range in the diffraction 
angle space [2θhkl-δθ,2θhkl +δθ] which corresponds to the 
following range in the reciprocal space:

            (20)

Even though the peak is not a periodic function 
like a sinc wave, the range defines the period for the 
Fourier convolution space. The inverse of this period is 
proportional to the frequency of the signal, the peak and 
its surrounding background, and the sampling frequency 
must be greater than half this signal frequency. In order 
to gain insight for the proper choice of fitting interval 
and minimum column height D, one may calculate the 
period, ∆s. If one considers that the half angular range, 
δθ (radian), is small compared to unity so that the sinc 
may be approximated by the angle, the period is given by:

            (21)

The inverse of the ∆s corresponds to a signal frequency 
and has unit of length. Proper sampling requires, at least, 
two points inside the θhkl ± δθ range, so the minimum 
chord length must be twice the signal frequency:

            (22)

This equation is similar to Scherrer equation and 
shows that the minimum chord length will increase with 
smaller δθ-range and greater 2θhkl. For most diffraction 
measurements 2θ=120º is a typical upper bound for the 
full diffraction range, so it provides an estimate for the 
minimum sampling frequency. For copper radiation, 
0.154 nm, and δθd in degrees, the minimum value is:

            (23)

The minimum column-length also establishes the 
maximum number of column-length domains (bins) that 
one must divide the expected maximum column-length.

Further, Equation 21 may also be used to estimate the 
maximum step size acceptable to collect the X-ray data and 

Figure 2. Theoretical peak profile due to spherical crystallites 
superposed with the squared sinc function

Figure 3. Calculated range limits as a function of the chord length 
D, the wavelength and the background to peak signal ratio

As pointed out by Le Bail and Louër18, Fourier analysis 
of diffraction peaks may lead to crystallite size distributions 
perturbed by oscillations. They proposed a least squares smoothing 
procedure to eliminate the problem. Nonetheless, the observed 
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probe the maximum chord length, Dmax. If δθs is the step 
size in degrees, then twice this value corresponds to Dmax:

            (24)

As the crystallite size increases, the full-width half-
maximum of the peaks will tend to a finite minimum value 
and it will be impossible to differentiate the contribution of 
the crystallite size from the equipment. Thus, a reasonable 
upper bound must be set experimentally within the limits 
of each equipment. It means that there will be no crystallite 
sizes above this value, so the last bin may be set to this 
range and its value fixed to zero. Now the number of 
intervals may be arbitrarily set constrained to the minimum 
column-length (Equation 23, for copper radiation). Next 
section presents the results for a theoretical peak.

4. Results

Figure 4 shows the theoretical diffraction pattern 
calculated for spheres with 30 nm diameter, simulated 
with the Fundamental Parameters approach provided 
by the Topas-Academic19: Bragg peak at 2θ= 30º , step 
angle = 0.02°, a 0.154 nm Lorentz profile monochromatic 
radiation with halfwidth 10-6 nm and zero background. 
This is a non-realistic peak but the purpose is to show 
the effect of sampling choices. This pattern was fitted 
considering different angular ranges around the peak and 
bin sizes (chord lengths). The red dots correspond to dxi 
= 0.125 nm and range of 4°. The line in Figure 5 shows 
the theoretical distribution of chords inside a sphere of 30 
nm diameter. The distribution was normalized so that the 
integration of the distribution is 1 (one). The smallest and 
largest chord in this sphere are 0 and 30 nm, respectively. 
The fitted results showed that there are no chords with 
length much greater than 30 nm, so the bins with zero 
frequency distribution were not included in the figure. The 
scattered points correspond to the frequency distribution 
for chord lengths, Di, obtained from fitting Equation 18 
to the simulated diffraction peak. For the minimum chord 
length of 1.25 nm, Equation 23 provides for the range 
of 4° a minimum sampling frequency, i.e., the minimum 
column length, already smaller than the used subdivision 
of the allowed range of chords. One may observe that the 
experimental data fits the theoretical chord distribution 
for a sphere very well for the 4° range, but does not fit 
properly for smaller ranges. Indeed, the experimental 
results scatter badly around the theoretical line for the 1° 
and 2° ranges, red cross and blue x, respectively, which 
correspond to minimum sampling frequencies greater than 
1.25 nm according to Eq. 23. Further, the experimental 
data for chords near 30 nm show clearly deviations from 
the theoretical distribution. This deviation appears when 
Fourier functions are used to describe jump discontinuities, 

as the one found at the 30 nm end of the distribution 20,21. 
So the proper choice of 2θ ranges around the diffracted 
peak and minimum column-length are essential to get the 
correct distribution. One may expect similar deviations 
for any other shape description whenever the sampling 
frequency does not satisfy the Nyquist Theorem.
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Figure 4. Theoretical diffraction pattern for a crystallite powder 
with spherical particles with 30 nm diameter and 0.154 nm radiation, 
the fitted convoluted pattern and difference curves

Figure 5. Theoretical chord length distribution for spherical particles 
with 30 nm diameter (line according to Eq. (10)) and results from 
fitting the corresponding theoretical peak profile at 30o, calculated 
with 0.02 o step, with different ranges and two minimum column-
lengths. Clearly the + and x deviate from the theoretical distribution

Further insight comes from the experimental determination 
of the volumetric mean chord of a sphere with diameter D. The 
mean chord of a sphere is given by 0.75 D with the use of Eq. 
10. So for a sphere with 30 nm diameter, the mean chord is 22.5 
nm. Figure 6 shows that, for a fixed minimum chord length of 
1.25 nm, increasing the fitting angular range around the peak 
position reduces the weighted profile residual error, (Rwp) and 
the experimental mean chord approaches a constant value 
slightly greater than the theoretical one. Figure 7 shows that, 
for a fixed fitting angular range of 4°, decreasing the minimum 
chord length within the limits allowed by Eq. 23 reduces Rwp 
and the experimental mean chord approaches the theoretical 
value. Although the overall difference of the estimated mean 
value is small, the change of the residual error is significant.
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peaks were chosen to be analyzed (0 2 2) and (0 0 4). The 
first is well separated from the neighboring peaks which 
allowed to use a ± 4.5° 2θ interval around the peak, while 
the other required a ± 3.6° 2θ interval. The smallest bin 
sizes were calculated using these ranges and Eq. 23 but the 
fitting showed that the minimum acceptable bin size for peak 
(0 2 2) was 3 nm,which is consistent with the discussion 
presented in the previous paragraph, and 3.5 for the (0 0 
4) peak, which conforms with the smaller 2θ range. The 
fitting quality was Rwp=5.00 and GoF=1.63 for peak (0 2 2) 
and 3.5 nm bin size and Rwp=7.87 and GoF=1.34 for peak 
(0 0 4) and 3.5 bin size. The reduction of the bin size for 
peak (0 2 2) caused a modest improvement of the fitting.

Figure 8 shows that the chord distribution estimated 
from the peak (0 2 2) for two different bin sizes seems to 
follow the same bimodal distribution. If one uses peak (0 0 
4), the obtained distribution is slightly different but follows 
the overall behavior observed for peak (0 2 2), also with a 
clear bimodal distribution. The same sample analyzed by 
XRD was evaluated by transmission electron microscopy, 
TEM, 853 particles were measured to obtain the grain size 
distribution 24. The solid black line and black circles (Figure 
8) were calculated from the original size distribution obtained 
from TEM analysis using a 2 nm bin width. Armstrong et 
al. observed a quasi-spherical particles 25, so to convert the 
diameter distribution to chord, M, it was assumed that the 
particles were spherical and that the chord distribution for 
each sphere with diameter D was given by the expression:

            (25)

Figure 6. Mean crystallite size and weighted profile residual error 
as a function of fitting range angle around a peak for the smallest 
chord length, 1.25 nm

Figure 7. Mean crystallite size and residual error as a function of 
minimum chord length

Further, the effect of the minimum chord length is much 
stronger than the fitting angular range on the experimental 
mean chord. Therefore, one may always consider to use the 
smallest chord length consistent with Eq. 23 and the largest 
acceptable angular fitting range. For experimental diffraction 
patterns, the minimum chord length used (1.25 nm) is not 
acceptable since most peaks will probably be within the 
background noise of the normal diffraction pattern. So the 
minimum chord length will probably be around 3 nm.

To evaluate the application of the above limits to a 
real material, it was selected the diffraction pattern for a 
CeO2 nanocrystalline material prepared for a round-robin 
sponsored by the Commission on Powder Diffraction of 
the International Union of Crystallography 22. The chosen 
pattern was collected with a common laboratory setup in 
the University of Le Mans and may be downloaded from 
Davor Balzar's website 23. Two patterns were downloaded, a 
standard ceria with sharp peaks and a nanocrystalline ceria 
with broad peaks. The standard ceria was used to determine the 
laboratory intrinsic diffraction profile which was convoluted 
with the expression provided by Eq. 18. The broadening of 
the round-robin sample line peaks is due primarily to domain 
size effects 22,24. Even though a very small strain effect is also 
reported 22,24, it was not considered in the present study. Two 

( )g M
D
M3 3

2

=

Figure 8. Chord length distribution for CeO2 round-robin 
sample22. The solid line with circles is the chord distribution 
calculated from the grain size distribution of this sample 
determined by transmission electron microscopy 24

This distribution is already normalized (integral = 1). 
The experimental TEM distribution follows the overall 
behavior observed from the diffraction, even suggesting 
also a bimodal distribution. However, the TEM approach 
assumed that the particles were spherical while the 
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proposed approach in this paper carries no presupposition 
on the particle geometry. The mean grain size determined 
from the TEM distribution 25 was 17.3 ± 0.3 nm while 
Paolo and Scardi 24 determined the size of 22.8 nm from 
X-ray diffraction pattern convolution. The mean chord 
dimension from the present study varied from 22.7 
to 23.1 nm depending on the peak and bin size. For a 
sphere the mean chord size is 0.75 of its diameter 10, so 
the present study points for a mean diameter about 30.5 
nm, if one assumes a spherical morphology.

5. Conclusion

The convolution of functions describing the shape of the 
nanocrystalline powders on their X-ray diffraction profile 
was reviewed and the limitations of this mathematical 
procedure was addressed. The present study shows that 
the fitting range around the peaks determines the minimum 
crystallite size to be used in the distribution of chord lengths 
when sinc functions are convoluted to obtain the whole 
powder pattern. A simple equation is deduced to correlate 
the 2θ-range and the minimum crystallite size considering 
the convolution of columns (chords) to the experimental 
profile. However, it is also proposed that the minimum chord 
length will be around 3 nm due to the background noise.

It is shown that the correct distribution of crystallite 
size was obtained when the sampling frequency satisfied 
the Nyquist Theorem. It was observed that the distribution 
oscillates around the theoretical values when the sampling 
frequency did not satisfy the Nyquist Theorem. The 
proposed limits are intrinsic to the convolution approach 
so they need to be considered for all similar methods.

The proper convolution limits were applied for a 
nanocrystalline CeO2 to evaluate the size-strain line broadening 
of diffraction peaks. The frequency distribution showed a 
good overall agreement with the one obtained by transmission 
electron microscopy. Further, the method proposed was 
able to unequivocally show a bimodal distribution that was 
barely visible in the grain size distribution obtained by TEM.
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