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The development of both versatile and inexpensive sorbents for CO2/CH4 separation has become 
one of the greatest challenges to the environment and natural gas processing. This study reports the 
preparation and characterization of polyurethane (PU)/ cellulose based poly(ionic liquid)(CPIL) 
composites for CO2/CH4 separation. PU matrix was reinforced with CPIL in the range of 10-30 
wt%. Several characterization techniques (TGA, DSC, DMTA and FESEM ) were used to study 
the physical properties of composites when the PU matrix is reinforced with cellulose based poly 
(ionic liquids) (CPIL) up to 30%. CO2 sorption, reusability and CO2/CH4 selectivity were assessed 
by pressure-decay technique. Results showed that CPIL addition in PU matrix promoted the increase 
in both thermal stability and mechanical properties when compared to PU. The best result for CO2 
sorption (35.0 mgCO2/g) was obtained for  PU/CPIL-TBP 10% which presented a higher sorption 
value when compared to PU (24.1 mgCO2/g) and PU/CELLULOSE 10% (26.8 mgCO2/g). PU/
CPIL-TBP 20% demonstrated higher CO2/CH4 selectivity. PU/CPIL composites appear as promissory 
materials for CO2 capture. These compounds combine the benefits of ionic liquids (ILs) (high ionic 
conductivity, chemical and thermal stability) and cellulose (thermal stability) with PU properties 
(mechanical stability, processing and tunable macromolecular design).
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1. Introduction

Carbon capture technologies from natural gas appear 
as one of main strategies to mitigate global warming, meet 
fuel performance requirements for a given application and 
prevent corrosion problems in pipeline1. The development 
of both versatile and inexpensive sorbents for CO2 capture 
has been one of the most relevant challenges in this field2.

Chemical absorption processes using aqueous alkanolamine 
solutions have been extensively used in industry during the 
recent years3–5. Using these solvents in capture processes 
have shown some drawbacks, including amine degradation/
evaporation, equipment corrosion and high energy penalty 
for solvent regeneration3–5. It has been demonstrated that the 
use of solid adsorbents e.g. Poly(ionic liquid)s (PILs) present 
advantages compared to aqueous alkanolamine solutions as 
such as elimination of corrosion problems, reversible CO2 
sorption/desorption performance and low energy for sorbent 
regeneration2,6–11. However, high cost is the main drawback 
as compared with alkanolamines.

Poly(ionic liquid)s (PILs) are an emerging new subclass of 
polyelectrolytes containing each repeated ionic unit connected 

through a polymeric backbone to form a macromolecular 
structure12,13. PILs syntheses are generally performed via 
direct ionic liquid monomer polymerization or chemical 
modification of existent polymers through ion exchange11–15.

Our previous work16 reported the chemical modification 
of cellulose fibers extracted from rice husk with different 
ionic liquid cations (imidazolium, phosphonium, ammonium 
and pyrrolidinium). These cellulose based poly(ionic liquids) 
(CPIL) obtained from agroindustrial residues (rice husk) 
can be a promising alternative for CO2 capture because 
they combine the benefits of ILs (high ionic conductivity, 
chemical and thermal stability) with waste reduction. The 
countercation introduction into cellulose structure promoted 
CO2 sorption increase and a completely reversible CO2 
sorption/desorption process.

Polyurethanes (PUs) are an important class of polymers 
containing urethane group as the major repeating unit. 
Nevertheless other groups such as esters, urea, ethers and 
aromatic may also be present in the structure. PUs are versatile 
materials and widely used in industry17,18. Literature describes 
that the introduction of  polar groups (usually O, N) into 
the polymer structure may be an effective way to promote 
CO2 affinity19,20.

aEscola Politécnica, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brasil
bPrograma de Pós-Graduação Engenharia e Tecnologia de Materiais (PGETEMA), Pontifícia Universidade 

Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brasil

https://orcid.org/0000-0003-1364-0325


Bernard et al.2 Materials Research

PU formulation can be tuned to deliver desirable properties 
in specific applications21. Furthermore, composites may also 
be used as alternative to improve mechanical and thermal 
properties of PU21–23. The use of cellulose as reinforcing filler 
in PUs to promote improvements of both mechanical and 
thermal properties have been reported21–23. Cellulose based 
poly(ionic liquid) use aiming to obtain  PU/CPIL composites 
are not described in literature needing further studies.

Herein, we report for the first time the preparation and 
characterization of PU/CPIL composites. The effect of cation 
present in CPILs structure (1-butyl-3-methylimidazolium 
(BMIM), tetrabutylammonium (TBA), tetrabutylphosphonium 
(TBP) and 1-butyl-1-methylpyrrolidinium (BMPYRR) as well 
as CPIL concentration on the CO2 sorption capacity, and both 
thermal and mechanical properties of the composites were 
studied. Our study also investigated CO2/CH4 separation.

2. Experimental

2.1 Materials

Synthesis and characterization of cellulose-based poly(ionic 
liquids) (CPILs) (1-butyl 3-methylimidazolium - CPIL-BMIM, 
tetrabutylammonium-CPIL-TBA, tetrabutylphosphonium-
CPIL-TBP and 1-butyl-1-methylpyrrolidinium-CPIL-
BMPYRR), were  previously described by our group 16. ILs 
cations TBPB, TBAB, BMPYRR and BMIM were inserted  
into the cellulose structure in contents of 1.16 x 10-4 mol/g, 
0.68 x 10-4 mol/g, 1.57 x 10-4 mol/g and 0.5901 x 10-4 mol/g, 
respectively16. Surface area values obtained  for CPLIs TBP, 
TBA, BMPYRR and BMIM were extremely small (0.6430 
m2/g,1.7370 m2/g, 0.5901 m2/g, 0.6984 m2/g respectively16.

PU was synthesized following procedures adapted from 
literature24. Poly(tetrahydrofuran) polyol (PTMG-2000 g/
mol, Sigma aldrich) (0.09 mol) and 0.1% wt of dibutyltin 
dilaurate (DBTDL, 95% Sigma aldrich ) were dissolved in 
methyl ethyl ketone (50 mL) (MEK, P.A Dinâmica)  in a 
five-necked flask. Then, hexamethylene diisocyanate (HDI, 
≥98.0%, Sigma Aldrich) (0.153 mol) was slowly added 
to the reaction mixture by a dropper funnel and stirred at 
60°C for 90 min to obtain NCO-terminated polyurethane 
prepolymer. The NCO/OH ratio of 1.7 (0.153 mol HDI/0.09 
mol OH) was used. The solid content was quantified as well 
as the polymer NCO free isocyanate (%NCO). In order to 
neutralize the NCO free isocyanate content, the system was 
cooled to 55°C and chain extender (1,6-Hexanediol)  was 
charged into the reactor. Molecular weight (Mn) of 68000 
g/mol and DPI = 1.5 was acquired from a Gel Permeation 
Chromatograph (GPC), equipped with a Waters 1515 pump 
and a Waters 2412 refractive index detector, using THF as 
eluent at a flow rate of 1 mL/min. PU/CPIL composites 
were labeled as PU/CPIL-X-Y, where X is cation, Y is CPIL 
concentration, For example, PU/CPIL-TBP-10% means TBP 
cation, 10%wt CPIL in PU matrix.

2.2 Preparation of composites

The PU and CPILs (PU/CPILs) were mixed in different 
ratios to obtain dry films of 0.15 mm thickness with CPILs 
content ranging up to 30 wt%. CPILs and PU chemical 
structures can be seen in Fig.1. Initially, 30%wt PU 
solution was prepared by dissolving 7.5 g PU into 25 ml 
dimethylformamide (DMF, P.A Dinâmica) via magnetic 
stirring until PU was completely dissolved (Fig.2I). In 
another glass bottle a suspension of CPILs was obtained 
using magnetic stirring in dimethylformamide for 6 h 
(Fig.2II).The mixtures were magnetically stirred for one 
day (Fig.2III). They were then sonicated by means of 
high power ultrasound disperser during 20 min (Fig.2IV). 
Finally, films with a thickness close to 0.15 mm were 
produced by casting and dried under vacuum at 60°C 
for 72 h (Fig.1IV).

2.3 Characterization

Samples were characterized by Universal Attenuated 
Total Reflectance sensor (UATR-FTIR) using a Perkin-Elmer 
Spectrum One FTIR Spectrometer, 4000 - 650 wavenumber 
range. Field emission scanning electron microscopy 
(FESEM) was performed using a FEI Inspect F50 equipment 
in secondary electrons (SE) mode. Differential Scanning 
Calorimetry (DSC) thermograms were attained by using 
a TA Instrument Q20 differential scanning calorimeter in 
the range of −90°C–170°C, or 200°C at a heating rate of 
10°C/min under nitrogen. Thermogravimetric Analysis 
(TGA) was performed using a TA Instrument SDT-Q600 
between 25°C and 600°C at a heating rate of 20°C/min in 
a nitrogen atmosphere. Tensile tests (stress x strain curves) 
were carried out at 25°C with rectangular shape films (12 
mm long; 7 mm wide) with a thickness close to 0.15 mm, 
on a DMTA equipment (model Q800, TA Instruments) with 
1 N/min. The Young Modulus of materials was determined 
according to ASTM D638. The analyses were carried out 
in triplicate.

2.4 Sorption experiments

2.4.1 CO2 sorption measurements

A dual-chamber gas sorption cell was used to 
measure CO2 sorption by pressure-decay technique25. 
The experiments were carried out in triplicate. Samples 
(Ws≈1g) were previously degassed at 70°C (343.15K)  
during 2 h. CO2 sorption measurements were carried out 
at 25° C (298.15 K) and 0.1 MPa. A detailed description 
of sorption apparatus and measuring procedure can be 
found in previous works 26–28. Five CO2 sorption/desorption 
cycles were also performed in PU/CPIL composites. CO2 
sorption was evaluated at 25°C (298.15 K)  and 0.1 MPa  
with desorption following each cycle  using  heating 70°C 
(343.15K)  during 2h.
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Figure 1. CPILs (a) and PU (a) chemical structure.

Figure 2. Preparation scheme of composites
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2.4.2 CO2/CH4 separation selectivity

The separation of CO2 from CO2/CH4 gas mixture 
(35 mol % of CO2 and CH4 balance) also was determined 
using a dual-chamber gas sorption cell by pressure-decay 
technique which has been previously described in detail 27,29–31. 
Samples (Ws≈1g) were also previously degassed  at 70°C 
(343.15K) during 2 h. Selectivity experiments were also 
carried out in triplicate at 25°C and 2.0 MPa.

3. Results and Discussion

PU/CPIL-TBP composites were chosen to be characterized 
and to study the effects of CPIL addition in PU on both 
thermal and mechanical properties due to higher CO2 sorption 
capacity compared to PU. The PU/ CELLULOSE 10% 
composite was also characterized for comparative purposes.

FTIR analysis was used to identify polymer formation 
and the effect of CPIL presence in PU matrix. The FTIR 
spectra of PU, PU/CELLULOSE-10% and PU/CPIL-TBP 
composites are shown in Fig.3. The completion of urethane 
reaction can be observed by the absence of band at about 
2270 cm−1 corresponding to free NCO group stretching 
vibration 32,33. The N-H absorption region in spectrum 
indicates the presence of band at about 3322 cm-1 associated 
with the N-H stretching of bonded hydrogen34,35. Band area 
at 3322 cm-1 tends to increase with both the incorporation 
and concentration of fillers in PU matrix. Bands at about 
1720 and 1693 cm-1 are attributed to “free” C=O stretching 
and 'bonded hydrogen' C=O stretching, respectively34. 
The band area increase at about 1693 cm-1 upon the filler 
addition suggests a hydrogen bond formation increase. 
Band area at about 1693 cm- 1 of PU/CPIL-TBP is higher 
than PU/CELLULOSE 10%. FTIR analysis also showed 
others characteristic PU and cellulose adsorption bands36: 
2936 - 2840 cm−1 (C-H), 1532 cm−1 (HN), 1246 cm−1 
(C-N and C-O of urethane), 1100 cm−1 (C-O-C).

PU and PU composites thermal stability was investigated 
by thermogravimetric analysis (TGA) (Fig.4). PU thermal 
stability tended to increase with the addition of cellulose/ 
CPIL in PU matrix. TGA curves showed two stages of thermal 
degradation. The first thermal event is due to degradation 
of both hard segment (urethane bond)37–39 and cellulose/
CPIL structure16. T1onset for PU, PU/CELLULOSE 10%, PU/
CPIL-TBP 10%, PU/CPIL-TBP 20% and PU/CPIL-TBP 
30% occurred at 306.6°C, 344.2°C, 311.1°C, 311.0°C and 
333.2°C, respectively.  The second weight loss is associated 
to dissociation of soft segments (PTMG polyol)40. T2 onset 
for PU, PU/CELLULOSE 10%, PU/CPIL-TBP 10%, PU/
CPIL-TBP 20% and PU/CPIL-TBP 30% occurred at 450.6°C, 
456,13°C, 458.6°C, 451.5°C and 447.6°C, respectively.

Figure 3. FTIR spectra of PU and PU composites

Figure 4. TGA thermograms of PU and PU composites.

DSC curves (Fig. 5) obtained for PU and PU 
composites showed an endothermic peak (Tm)  (PU 
=19°C, PU/CELLULOSE 10% = 12°C, PU/CPIL-TBP 
10% = 13°C, PU/CPIL-TBP 20%= 21°C and PU/CPIL-
TBP 30%= 21°C) associated to the melting of crystalline 
microphase due to molecular weight (Mn= 2000) of 
soft segments (PTMG) promoting crystallization41,42. 
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DSC curves also showed an exothermic peak related to 
crystallization of microphase (TC) was also observed for all samples 
(PU = - 32.0°C, PU/CELLULOSE 10% = - 29.0°C, PU/CPIL-TBP 
10% = - 30.0°C, PU/CPIL-TBP 20%= - 31°C and PU/CPIL-TBP 
30%= - 29°C). Melting and crystallization enthalpy tended to 
decrease with the addition of cellulose/CPIL in PU matrix (PU 
ΔHm= 36.5 J/g and ΔHc= 36.4 J/g; PU/CELLULOSE 10% ΔHm= 
18.4 J/g and ΔHc= 14.6 J/g; PU/CPIL-TBP 10% ΔHm= 20.4 J/g 
and ΔHc= 17.8 J/g; PU/CPIL-TBP 20% ΔHm= 23.3 J/g and ΔHc= 
15.2 J/g; PU/CPIL-TBP 30% ΔHm= 15 J/g and ΔHc= 9.24 J/g).

Homogeneous structures with a relatively uniform 
dispersion were obtained in PU composite filled with a fiber 
concentration up to 10 wt% (Fig.6). Holes (pores) were also 
observed after the filler addition in PU matrix.

Tensile properties and Young moduli are presented in 
Figs 7 and 8. Mechanical properties increased with the filler 
addition in PU matrix. PU/CPIL-TBP 10% showed higher 
Young moduli than PU/CELLULOSE 10%. The presence 
of hydrogen bonding tends to enhance the mechanical 
properties of PU43,44. FTIR band areas associated with 
the bonded hydrogens in PU/CPIL-TBP were higher 
than PU/CELLULOSE 10% (see Fig.3). However, the 
Young moduli reduced from 35 MPa in PU/CPIL-TBP 
10% to 32.7 MPa in PU/CPIL-TBP 20%, probably due 
to homogeneity reduction observed by FESEM analysis 
(Fig.6). PU/CPIL-TBP 30% demonstrated fragility to 
perform tensile tests.

PU and PU composite CO2 sorption capacity at 0.1 MPa 
and 298.15 K is shown in Fig.9. PU exhibited a CO2 sorption 
capacity of 24.1mgCO2/g (1 bar) due to polar groups into 
the polymer structure that may promote CO2 affinity 19,20. 
CO2 sorption increased after the filler addition in PU matrix. 
The cellulose structure also has polar groups (ether, ester 
and hydroxyl groups) that may promote interactions with 
CO2

16,26. PU/CPIL CO2 sorption capacity was higher than 
PU/CELLULOSE 10%, indicating that the carboxylate ion 
and IL countercation present in CPIL promote CO2 sorption 
in PU matrix. The best result was found for PU/ CPIL-TBP 
10% (35.0 mgCO2/g). Computational studies showed that 
TBP cation exhibit weaker coordination of carboxyl group 
promoting CO2 sorption through electrostatic binding of 
CO2 and carboxylate ion 16,45.

Figure 5. DSC thermograms obtained for PU and PU composites.

Figure 6. Micrographs obtained for PU and PU composites. (a)PU, (b) PU/CELLULOSE 10%, (c) PU/CPIL-TBP 10%, 
(d) PU/CPIL-TBP 20% and (d) PU/CPIL-TBP 30%
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The effect of filler concentration increase in PU matrix 
on CO2 sorption capacity is shown in Fig.10. CO2 sorption 
decreased with the increasing content of CPIL-TBP in PU 
matrix. This behavior can be associated with increase of 
hydrogen bonds (see Fig.3) and/or homogeneity reduction 
of PU composite (see Fig.6) that may reduce PU−CO2 
interactions.

Figure 7. Stress/strain curves obtained for PU and PU composites.

Figure 8. Young moduli of PU and PU composites.

Figure 9. PU and PU composite CO2 sorption capacity values at 
0.1 MPa and 298.15 K.

Table 1. Comparison of PU/CPIL - TBP -10% CO2 sorption capacity values with competitive PILs.

Sorbent CO2 sorption (mg/g) Conditions (P, T) Ref.
P[VBIH][PF6] 3.22 0.079 bar, 295.15K 6

P6 [BIEMA][acetate] 12.46 0.1 MPa, 278.15K 46
P[VBTEA][PF6] 14.04 0.1 MPa, 278.15K 47
PIL-8.1.BF4 24.76 0.1 MPa, 273.15K 48
PU-TBP 15.70 0.082 MPa, 303.15K 45
PUIS-02-TBP 26.70 0.082 MPa, 303.15K 28
PU/CPIL-TBP-10 % 35.00 0.082 MPa, 298.15K This study

Figure 10. PU/CPIL-TBP composites CO2 sorption capacity values 
at 0.1 MPa and 298.15 K.

Table 1 presents the comparison of CO2 sorption capacity 
of PU/CPIL - TBP -10% with competitive PILs described 
in literature. At comparable temperatures and pressures, 
PU/CPIL-TBP 10% CO2 sorption capacity is higher when 
compared to reported PILs. Results suggest that PU/CPIL-
TBP 10% presents potential for CO2 capture.

PU/CPIL-TBP 10% stability was evaluated over five 
CO2 sorption/desorption cycles (Fig.11). PU/CPIL-TBP 
10% sorption capacity was constant for all cycles indicating 
that PU/CPIL-TBP 10% sorbent offers necessary stability 
for CO2 capture processes. This result evidences a typical 
behavior of a physical sorbent. Moreover, the advantage 
in this case is the low temperature needed for desorption 
process.

PU composites CO2/CH4 selectivity results are presented 
in Fig.12. PU/CPIL-TBP composites showed higher selective 
response than PU/ CELLULOSE 10%. Preferential affinity 
of CO2 for PU/CPIL-TBP composites compared to PU/
CELLULOSE 10% is probably due to strong interactions 
between CO2 and carboxylate ion of CPIL -TBP 45. 
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Results provide evidence that the addition of CPIL-TBP can 
increase the selectivity of PU for CO2 over CH4. PU/CPIL-
TBP 20% composite presented higher CO2/CH4 selectivity 
as compared with polyurethane-based poly(ionic liquid)
s  (PILPC-TBP: CO2/CH4 selectivity of ∼2.22 at 303.15 K 
and 2 MPa)49 and PU foam/ILs composite (PUF BF4 40: 
CO2/CH4 selectivity of 1.42 at 3 MPa)29.

4. Conclusions

PU/ CPIL composites for CO2 capture from natural gas 
were successfully prepared. PU/CPIL composites showed 
improvement in both thermal stability and mechanical 
properties when compared to PU. The best CO2 sorption 
result was obtained for PU/CPIL - TBP -10%. PU/CPIL - 
TBP 10% CO2 sorption capacity is highest then competitive 
PILs described in literature. PU/CPIL - TBP 20% Selective 
capacity for CO2/CH4 was higher than PU/CPIL - TBP 10%.
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