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The solidification of metals and alloys and the resulting microstructures, which as a function of 
thermal and solutal parameters can evolve as planar, cellular and dendritic, are important from a practical 
point of view, since they strongly influence the properties and quality of the final product. In many 
practical situations it is impracticable to develop analytical solutions permitting reliable predictions 
of microstructural growth during unsteady-state solidification conditions. The Phase Field method 
has become very popular and effective in modeling complex solid/liquid interfaces due to its ability 
to simulate the interface kinetics and the formation and evolution of different morphologies along 
the solidification process. In this work, a numerical analysis of the microstructural evolution during 
the transient solidification of dilute alloys of the Al-Cu-Si system is developed, which uses a phase-
field approach for the simulation of ternary alloys. The phase-field, energy and solute concentration 
equations were numerically solved for the correspondent ternary system, varying the mesh parameters, 
temperature and alloy composition. The analysis performed were confronted with existing theoretical 
models and the results obtained are in agreement with the solidification theory.

Keywords: Phase field method; Aluminum alloys; Multicomponent alloys; Microstructural 
development.

1. Introduction
Understanding the solidification process and the main 

microstructures arising from it, are extremely important 
from a practical standpoint, given that they exert a strong 
influence on the resulting properties of the products. Although 
significant advances have been achieved in understanding 
microstructural formation in past decades, our knowledge 
concerning microstructural growth is mainly based on 
experiments and idealized theoretical models. Appreciable 
attention has been paid, in the open literature, to the simulation 
of microstructural growth and related phenomena. Several 
different numerical approaches have been, and continue to 
be, proposed to that end.

The phase-field models are known to be an interesting 
methodology for simulating the pattern evolution of the interface 
between mother and new phases under non-equilibrium state 
due to all its governing equations are written in a unified 
manner in the whole space of the computational domain. 
Furthermore, direct tracking of the interface position is not 
needed during calculations of the solidification evolution. 
It should be noted that the morphology of the solid/liquid 
interface, that is, the solidification front, as calculated by 
phase-field model, reproduces the known patterns of the 

microstructures resulting from the solidification process. 
The state of the computational domain is represented by a 
distribution of the single variable known as “order parameter” 
or “phase-field variable”. In the present study, the solid 
state will be represented by a phase field variable equal to 
+1 while in the liquid region its value is 0 (zero). The region 
in which it changes progressively from 0 to +1 is defined 
as the liquid/solid interface, the region where solidification 
effectively takes place.

The phase-field models were developed mainly for 
simulating solidification of pure materials, being subsequently 
extended to the solidification of binary, ternary and quaternary 
alloys. The first models focused on pure materials, such was 
the case of Kobayashi1, Kim et al.2 and Furtado et al.3. Binary 
alloys were then investigated by Lee et al.4 and Kim et al.5. 
Next, ternary alloys were explored by Ode  et  al.6 and 
Ferreira et al.7. Quaternary Fe-C-Mn-P alloys were examined 
by Salvino et al.8.

Solidification is the main phenomenon taking place during 
casting. This, in turn, has long been known as an inexpensive 
means for producing metallic parts. Nowadays, a sizable 
portion of the concepts and methods developed over the 
years in support of the research on solidification processes 
can be successfully and economically translated to industrial *e-mail: ileao@ufpa.br
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scale. Copper, silicon and magnesium are the main alloying 
elements added to aluminum-based casting alloys. It is widely 
recognized that moderate addition of copper to aluminum, 
especially when added together with silicon, significantly 
improves the resulting mechanical properties as far as it 
decreases surface tension and viscosity as demonstrated 
by Ferreira et al.9. The automotive industry is the main area 
where aluminum-based casting alloys are applied. This is 
due to their good casting characteristics, weldability and 
corrosion resistance, according to Sales et al.10.

The mechanical properties of as-cast alloys are strongly 
influenced by the microstructures resulting from the 
solidification process. In order to obtain aluminum billets 
that will give the best mechanical properties, it is very 
important to distinguish and control the as-cast structures. 
The microstructure resulting from solidification directly 
influences the material properties, not only the morphology 
of the structure itself, such as dendrites and cells, but also 
inclusions, porosities and segregation, as discussed by 
Paradela et al.11.

Concerning the relation between dendrite microstructural 
development and mechanical properties. Kim et al.12, proposed 
an analysis of the relationship between microstructure and 
mechanical properties of Al–Cu–Si ultrafine eutectic composites 
and its dependence on the length scale, volume fraction, 
and crystallinity. Kim  et  al.13 studied the microstructure 
and mechanical properties of hierarchical multi-phase 
composites based on Al-Ni-type intermetallic compounds 
in the Al-Ni-Cu-Si alloy system. Kim et al.13 investigated 
the cooperative deformation behavior between the shear 
band and boundary sliding of an Al-based nanostructure-
dendrite composite and noticed that high yield strength 
and intermediate plasticity are both due to the evolution of 
dislocations in the microscale dendrites associated with the 
cooperative deformation of the shear band, and interfacial 
sliding throughout the volume14.

Segregation is an important phenomenon that can induce 
non-uniformity in mechanical properties and affect corrosion 
resistance. Microsegregation, which refers to localized 
differences in composition between cells or dendrite arms, 
cannot be avoided during solidification since it is the result 
of the solubility difference between liquid and solid regions. 
An understanding of the way microsegregation occurs in 
the solidification process can be of great importance for 
mechanical properties of as-cast materials and in designing 
post-casting process such as heat treatments. The design of 
the homogenization heat treatment of as-cast materials is 
dependent on the microsegregation level8.

It is in this general framework that the present work is 
developed, i.e. a numerical investigation by a phase-field 
model with focus on solidification of hypoeutectic Al-Cu-Si 
alloys. In order to analyze the microstructural evolution 
during the transient solidification, simulations were carried 
out for the set of dilute alloys compositions. The governing 
equations (phase-field itself, energy and concentrations) were 
numerically solved for ternary alloys considering variable 
mesh parameters, temperature and composition. The analysis 
performed is confronted with fundamental theoretical models 
(Lever Rule and Scheil’s equation).

2. Phase Field Formulation
Kim at al. have considered the idea to their thin interface 

limit model in a thermodynamically consistent way2. 
According to Ode et al.6 the model is equivalent to the WBM 
model15 but the free energy density at the interface has a 
different definition. The extra potential in the WBM model 
disappears in the model because of the free energy function 
corresponding to the common tangent itself, thus permitting 
to make calculations with a larger mesh size. This makes 
possible to apply a vanishing kinetic coefficient by adjusting 
the parameters with any mesh size. Ode et  al.6 extended 
the Kim  et  al.2 model to ternary alloys, but considering 
an isothermal solution applied to Fe-C-P alloys. Here, we 
extend their model for non-isothermal quaternary alloys and 
applied it to the Al-Cu-Si alloy system.

As described by Ode  et  al.6 for ternary alloys, the 
governing equations for a quaternary non-isothermal phase 
field model for dilute alloys consists in the following set of 
chemical potential equations,
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where ,
0
i Sµ  is the standard state chemical potential of 

species i. Subscripts L and S represent liquid and solid 
phases, respectively. The superscript Eq means equilibrium 
state. iγ  is the activity coefficient of the species i. R is the 
universal gas constant. T  is the absolute temperature and ∀ 
is the solvent molar volume.

The free energy density is the linear combination of 
the free energy for liquid and solid bulk phases and the 
double-well potential6, expressed as,
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where, W  is the height of the double-well potential. ( )h φ  
and ( )g φ  are defined as,

	 ( ) ( )3 2h 6 15 10φ φ φ φ= − + 	 (7)

and

	 ( ) ( )22g 1φ φ φ= − 	 (8)
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The phase field equation is taken as,

	 2 21 f
M t φ

φ ε φ∂
= ∇ −

∂
	 (9)

where φ  is the phase-field denoting liquid ( 0φ = ) and solid 
( 1φ = ) phases, ε  is the gradient energy coefficient and M  is 
the phase-field mobility.

The concentration field equation for quaternary dilute 
alloys, in the same way as assumed by Ode et al.6, is derived as
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where the subscripts under f  means the first and second partial 
derivatives with respect to the concentration of species .

In Equation 10 the diffusion coefficient must obey the 
following conditions:

	 ( ) ( ),   .i i SD D if 0 9φ φ φ= > 	 (11)

or,

	 ( ) ( ),   .i i LD D if 0 9φ φ φ= ≤ 	 (12)

where ,i SD  and ,i LD  are the solid and liquid phase diffusion 
coefficients [m2/s]. For all species in the present model, the 
chemical potential of solid and liquid phases are assumed 
to be the same. The concentration is assumed in terms of 
solid and liquid concentrations as,

	 ( ) ( ), , i i S i LC h C 1 h Cφ φ= + −   	 (13)

For dilute quaternary alloys, the set of governing 
equations for the phase-field, solute diffusion and energy 
transport are the following:
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where, ( )h φ′  and ( )g φ′  are derivatives of Equation 7 and 
Equation 8 with respect to φ, respectively.

Ode  et  al.6 proposed a solute diffusion equation for 
ternary alloys, here extended for quaternary alloys, as follows,
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According to Zhao et al.16, the energy equation can be 
written as,

	 ( )'  P P
Tc k T H h
t t

φφ∂ ∂
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where T  is the absolute temperature, k  is the thermal 
conductivity, H∆  is the latent heat of fusion, and, Pc  is the 
specific heat defined by the mixture rule as,

	 ( )  = + −  P PS P PSc c 1 h cφ 	 (19)

According to Zhao et al.16, the phase field Equations 5-8 does 
not obey any energy dissipation law. Thus, in order to 
properly solve a coupled phase field-energy equation 
system, a consistent temperature discretization scheme 
for the energy equation must consider a first and second 
order time discretization scheme, as the following. In this 
study the energy equation is assumed as a first order time 
discretization scheme, that is,
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3. Microsegregation Relations
The Lever Rule equation can be written in terms of 

solute concentration and solid fraction as,
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0
s

s

kCC
1 1 k f

=
− −  

	 (21)

where, k is the equilibrium partition coefficient, 0C  is the 
initial concentration, sC  concentration of the solid phase 
and sf  is the solid fraction.

Regarding the situation where no solute diffusion in the 
solid phase occurs, infinite diffusion in the liquid phase takes 
place and equilibrium exists at the solid-liquid interface. 
The solidus and liquidus isotherms are assumed as straight 
lines, and the solid concentration can be expressed as,

	 ( )( )k 1
s 0 sC kC 1 f −= − 	 (22)

Regarding partial mixture of solute in the liquid phase17, 
taking into consideration that the solute mixture occurs 
only by diffusion for a diffusion length scale δ , and for the 
remaining volume of liquid the convection streams may be 
enough to keep a uniform concentration *

LC , the expression 
for the effective partition coefficient (keff), which takes into 
account the diffusion coefficient of the liquid, the tip growth 
rate and the diffusion length scale is derived as

	 ( )exp
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kk
vk 1 k
D
δ

=
− + −  
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where, v is tip growth rate, δ  is the diffusion length scale in the 
liquid phase and D is the diffusion coefficient of the liquid phase.

4. Results and Discussion
For the results presented in this section, an isothermal 

solidification regarding 1,5oC of undercooling were 
assumed, as well as a computational domain of 40 x 120 mµ . 
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The physical properties and the phase field parameters used 
for the simulations carried out for dilute Al-Cu-Si alloys were 
obtained from Liu et al.18 and Ferreira et al.7 and presented 
in Table 1 and Table 2, respectively.

The thermophysical properties for the alloys are 
provided in Table  3. As can be seen, the values of the 
thermophysical properties of the alloys are quite similar 
because of the range of solute compositions examined and 
were calculated according to the procedures described in 
previous studies9,19,20.

In Figure 1 a phase field non-isothermal simulation is 
performed for a ternary Al-4wt%Cu-0,1wt%Si considering 1,5oC 
of undercooling and a total simulation time of t = 0,008506816s, 
where: (A) the phase field variable, (B) temperature field, 
(C) concentration of copper and (D) concentration of silicon. 
The results observed for phase field, temperature and for 
solute concentration of copper and silicon are physically 
consistent with a cellular growth.

Figure. 2 represents the normalized concentrations as a 
function of the solid fraction for the following aluminum-based 

Table 1 – Physical properties of dilute Al-Cu-Si alloys

Thermophysical Properties, symbol Units
Value

Al Cu Si
Partition coefficient, ik 0.14 0.114

Slope of liquidus isotherm, im . 1K mol− 
  724.63 678.81

Diffusion coefficient in the solid phase, ,S iD . 2m s− 
  8.43x10-13 2.91x10-12

Diffusion coefficient in the liquid phase, ,S iD . 2m s− 
  4.33x10--09 2.46 x10-09

Molar volume of the solvent, ∀ .3 1m mol− 
  1.095x10-5

Solvent melting temperature, mT [ ]K 933.15

Interface energy, σ . 2J mol− 
  0.093

Table 2 – Phase field computational parameters.

Parameter, symbol Units Value
Magnitude of anisotropy, eδ 0.03

Phase field gradient energy, 0ε
/

.
1 21J m− 

  1.055x10-3

Height of double-well potential, W . 3J m− 
  673.2x103

Time step, dt [ ]s 1.0x10-8

Mesh size, x y∆ = ∆ [ ]m 1.0x10-8

Noise amplitude, a 0.03

Table 3 – Thermophysical properties of the examined alloys.

Property, symbol Units
Values

Al-0.5Cu-0.5Si Al-2.0Cu-0.1Si Al-2.0-Cu-1.0Si Al-4.0Cu-0.1Si

Density in the solid phase, Sρ . 3kg m− 
  2646.76 2676.40 2673.07 2711.51

Density in the liquid phase, Lρ . 3kg m− 
  2404.12 2424.12 2429.15 2460.0

Specific heat in the solid phase, PC . 1 1J kg K− − 
  1076.0 1069.0 1066.0 1056.0

Specific heat in the solid phase, LC . 1 1J kg K− − 
  1169.0 1156.0 1151.0 1136.0

Thermal conductivity in the solid, Sk . 1 1W m K− − 
  192.5 193.35 192.6 193.6

Thermal conductivity in the liquid, Lk . 1 1W m K− − 
  82.7 82.5 82.3 82.2

Latent heat, H∆ . 1J kg− 
  395500 366800 368500 349800
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alloys: Al-0.5wt%Cu-0.5wt%Si, Al-2.0wt%Cu-0.1wt%Si, 
Al-2.0wt%Cu-1.0wt%Si and Al-2.0wt%Cu-1.0wt%Si under 
isothermal solidification subjected to 1,5oC undercooling for 
the Lever Rule, Scheil Equation21 and phase field model. As can 
be noticed, the Cu concentrations have strong trend towards 
the Lever Rule, nevertheless, the level of back diffusion in 
the solid is lower than that yielded by the equilibrium phase 
diagram, i.e., the Lever Rule, characterizing the so-called 
finite back-diffusion in the solid. This phenomenon is better 
understood in terms of the back-diffusion parameter in the 
solid (β ) whose limit cases are, 1β =  infinite back-diffusion 
in the solid (Lever Rule), 0β =  no back diffusion in the solid 
(Scheil Equation) and 0 1β< < , finite back-diffusion in the 
solid22,23. The Cu concentrations predicted by phase-field 
simulation have a trend to be closer to the Lever Rule, while 
the Si concentrations are closer to the Scheil Equation, as 
observed in Figure 2 (A2) and (B2). In the case of Figure 2 (C2) 
the phase-field concentration of Si is found to be in between 
the Lever Rule and the Scheil Equation.

Figure 3 shows the partition coefficient ( ek ) as a function of 
position for the Al-0.5wt%Cu-0.5wt%Si, Al-2wt%Cu-0.1wt%Si, 
Al-2wt%Cu-1.0wt%Si and Al-4wt%Cu-1.0wt%Si alloys for 
Cu and Si, calculated by the phase-field model. The results 
state that this behavior is in accordance with the theoretical 
limits, i.e. the equilibrium partition coefficient ( 0k ) and the 
effective partition coefficient ( effk ). At the final instances 
of the phase-field calculations, an approximation towards 

the curve of the effective partition coefficient is observed. 
Indeed, the values provided by the phase-field model have 
a gradual growth. It means that for all cases, the effective 
partition coefficient overestimates the solute redistribution 
predicted by the phase-field model.

Figure 4 presents the diffusion length scale for Cu and 
Si as a function of the solid fraction. As can be observed, 
there’s a predominance of higher diffusion length scale values 
for Cu in relation to those of Si, which directly contribute to 
raise the corresponding effective partition coefficients24,25.

Figure 5 shows the tip growth rate as a function of time 
for all the analyzed alloys. The tip growth rates are around 
a mean value for each alloy for all times, with lower solute 
concentrations providing higher tip growth rates, except for 
the Al-2wt%Cu-1.0wt%Si and Al-4wt%Cu-0.1wt%Si alloys 
that have similar values. Nevertheless, the initial behavior 
follows the concentration trend, and after that, both curves 
are very close to each other until solidification is complete. 
It is worth noting that the computational domain is very 
small ( 120 mµ ), and decrease in the solidification growth 
rate with time is not expected because of the considerably 
low thermal resistance.

Figure 6 represents the cellular spacing (λc) as a function 
of position. It can be noticed that the cellular spacing grows 
for all alloys, as the solidification proceeds until it stabilizes 
around certain value at the final stages of solidification. 
An exception is verified in the case of Al-2wt%Cu-0.1wt%Si 

Figure 1. Phase-field simulation for a ternary Al-4wt%Cu-0.1wt%Si alloy for t = 0.008506816s at liquidus temperature (A) magnification 
of phase field variable of a cellular microstructure, (B) temperature distribution, (C) copper concentration and (D) silicon concentration.
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Figure 2. Normalized concentration as a function of the solid fraction for: (A) Al-0.5wt%Cu-0.5wt%Si, (B) Al-2.0wt%Cu-0.1wt%Si, 
(C) Al-2.0wt%Cu-1.0wt%Si, and (D) Al-4.0wt%Cu-0.1wt%Si alloys.
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Figure 3. Partition coefficient as a function of sample position for: (A) Al-0.5wt%Cu-0.5wt%Si, (B) Al-2.0wt%Cu-0.1wt%Si, 
(C) Al-2.0wt%Cu-1.0wt%Si, (D) Al-4.0wt%Cu-0.1wt%Si alloys.
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alloy, for which a higher rate of coarsening of cellular 
spacing at the initial stage of solidification is observed, then, 
it decreases gradually until the solidification is complete. 
For the case of the Al-2wt%Cu-1.0wt%Si alloy, a higher rate 
of coarsening can be seen until it stabilizes horizontally in the 
range between 3μm and 7μm, then, it increases its rate again 
up to 8μm, from where λc becomes constant. Comparing 
all the cases, the Al-4wt%Cu-0.1wt%Si alloy provides the 
highest rate of coarsening, with two shorts constant intervals 
between the lowest and the highest λc values, until the half of 

the solidification domain is reached, from where a constant 
value remains until the end of the solidification process.

5. Conclusions
The paper presented a numerical analysis of the 

microstructural evolution during transient solidification of 
dilute Al-Cu-Si alloys, by the application of a phase field 
approach. The applied phase-field model was shown to be 
physically consistent with theoretical expressions for the 

Figure 4. Diffusion length scale as a function of solid fraction for: (A) Al-0.5wt%Cu-0.5wt%Si, (B) Al-2.0wt%Cu-0.1wt%Si, 
(C) Al-2.0wt%Cu-1.0wt%Si, (D) Al-4.0wt%Cu-0.1wt%Si alloys.

Figure 5. Tip growth rate as a function of time for: Al-0.5wt%Cu-
0.5wt%Si, Al-2.0wt%Cu-0.1wt%Si, Al-2.0wt%Cu-1.0wt%Si and 
Al-4.0wt%Cu-0.1wt%Si alloys.

Figure 6. Cellular spacing (λC) as a function of position for: Al-
0.5wt%Cu-0.5wt%Si, Al-2.0wt%Cu-0.1wt%Si, Al-2.0wt%Cu-
1.0wt%Si and Al-4.0wt%Cu-0.1wt%Si alloys.
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solidification of alloys, regarding infinite back-diffusion 
(Lever Rule), no back-diffusion (Scheil Equation) and a finite 
back-diffusion in the solid phase (Clyne-Kurz form of the 
Brody Flemings model). The simulation results laid between 
the two limiting cases, i.e., the Lever Rule and the Scheil 
Equation. Concerning the calculated partition coefficient, 
for all cases, they were shown to be located between the 
equilibrium ( 0k ) and the effective ( effk ) partition coefficients. 
In the final stages of solidification, the simulated partition 
coefficients ( ek ) are equal or very close to effk . It was also 
demonstrated that, for all studied cases, effk overestimate 
the solute redistribution between solid and liquid phases. 
The diffusion length scales for Cu and Si were calculated 
for all alloys, and it was shown that Cu provided the highest 
values for all analyzed cases. Concerning the diffusion length 
scales, a predominance of Cu values as compared to those 
of Si was observed to occur. Lower solute concentrations 
were shown to provide higher tip growth rates. For the two 
alloys of highest solute concentrations, a similar behavior 
was observed, except for the growth rate at the first instants 
of solidification. The Al-4wt%Cu-0.1wt%Si alloy presented 
the highest rate of coarsening of all alloys examined. 
The cellular spacing was shown to increase for all alloys as 
the solidification proceeds, until it stabilizes around certain 
value at the final stages of solidification.
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