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A Characterization of Hot Flow Behaviors of Invar36 Alloy by an Artificial Neural Network 
with Back-Propagation Algorithm
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In order to investigate the hot deformation behaviors of Invar36 alloy, isothermal compressive tests 
were conducted on a Gleeble 1500 thermo-mechanical simulator at the temperatures of 873, 948, 1023, 
1098 and 1173 K and the strain rates of 0.01, 0.1, 1 and 10 s−1. The effects of strain, temperature and 
strain rate on flow stress were analyzed, and a dynamic recrystallization type softening characteristic 
with unimodal flow behavior is determined. An artificial neural network based on back-propagation 
algorithm was proposed to handle the complex deformation behavior characteristics. The ANN model 
was evaluated in terms of correlation coefficient and average absolute relative error. A comparative 
study was performed on ANN model and constitutive equation by regression method for Invar36 alloy. 
Finally, the ANN model was applied to the finite element simulation, and an experimental study on 
trial hot forming of a V-shaped part was conducted to demonstrate the precision of the finite element 
simulation based on predicted flow stress data by ANN model. The results have sufficiently showed 
that the well-trained ANN model with BP algorithm is able to deal with the complex flow behaviors 
of Invar36 alloy and has great application potentiality in hot deformation.

Keywords: Invar36 Alloy, artificial neural network, constitutive equation, finite element simulation.

1. Introduction
As a special functional material, Invar36 alloy is 

especially attractive for electronics industry, LNG storage 
tanks, long-distance power transmission lines, the forming 
mold of composite material and other fields on account of its 
extremely low coefficient of thermal expansion (CTE) below 
Curie temperature1-3. It is well known that the deformation 
behaviors of metals in hot forming process, significantly 
affected by the deformation parameters including strain, 
strain rate and temperature, have an important influence on 
the dimensional accuracy and mechanical properties of final 
products. In the process of plastic deformation under various 
conditions, a variety of interrelated metallurgical phenomena 
including work hardening (WH), dynamic recrystallization 
(DRX) and dynamic recovery (DRV) coexist with one being 
predominant. WH increases the flow stress and reduces the 
plasticity, while softening phenomena like DRX and DRV 
decreases the flow stress and thereby increases the ductility. 
The metallurgical phenomena and their interactions in the hot 
deformation condition cause complex deformation behaviors. 
Therefore, the constitutive relationships between flow stress 
and processing parameters, contribute significantly to the 
deep understanding of flow behaviors and even further 
optimization of hot deformation process4.

At present, the analytical constitutive models and 
phenomenological constitutive models are the most popular 
in hot flow behaviors modeling5. Closely connected with 
physical theories, the analytical model is obtained based on 

a large amount of experimental data through a very clear 
and deep understanding of flow behaviors and deformation 
mechanisms of metallic materials, making it difficult to analyze 
the constitutive relationships under limited experimental 
conditions. However, the phenomenological model, which 
is less rigorously related to physical theories in comparison 
with the analytical model, is widely adopted for effective flow 
behaviors modeling. Typical phenomenological models are 
using regression method to develop the constitutive equations, 
including the Arrhenius-type constitutive equations based on 
exponential law, power exponential law and hyperbolic sine 
law6, in which only a reasonable number of constants need 
to be calculated through regression analysis with a limited 
amount of experimental data. However, these phenomenological 
models are not quite satisfied due to the low accuracy in 
predicting the highly nonlinear constitutive relationships 
of the metallic materials in a very large parameter range.

Compared with regression method, the artificial neural 
network (ANN), as a relatively new Artificial intelligence 
algorithm, is able to solve the complex problems well by 
means of simulating the behavior of biological neural systems 
in computers7. This approach makes it possible to manage the 
constitutive relationships of the flow stress, strain, strain rate 
and temperature with a collection of representative examples 
from the expected mapping functions for training instead 
of a well-defined mathematical model8-10. As a result, the 
flow stress can be predicted through the constitutive model 
obtained by ANN method. For the past few decades, the 
description of constitutive relationships by ANN method 
has attracted many researchers. Peng et al. compared the *e-mail: zzy0518@msn.cn
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constitutive relationships of as-cast Ti60 titanium alloy through 
Arrhenius-type and ANN model11. Zhu et al. successfully 
developed an ANN model to predict the flow stress of 
as-cast TC21 titanium alloy6. Quan et al. developed an ANN 
constitutive model of as-forged Ti-10V-2Fe-3Al alloy in a 
wide temperature range involving phase transformation12 and 
Lin et al. established the optimized hot forming processing 
parameters for 42CrMo steel on basis of ANN model13. The 
results of stress prediction in these researches agree well with 
the experimental data, indicating that ANN is an effective 
tool available to model the highly nonlinear constitutive 
relationships of metallic materials.

Aiming at developing an ANN constitutive model for 
Invar36 alloy using back-propagation algorithm, twenty 
compression tests were performed at different temperatures 
and strain rates in present work. The stress-strain data 
collected in the compression tests were used to develop the 
artificial neural network model. The evaluation of ANN 
model has been conducted by several statistical parameters. 
A three-dimensional plot for the semi-continuous visualized 
description of the constitutive model was developed based 
on several groups of flow stresses at different strain rates 
and different temperature conditions predicted by the well 
trained ANN model. Subsequently, a comparative analysis 
to evaluate the ANN model and the constitutive equation by 
regression method has been conducted based on standard 
statistical parameters. The results reveal that the ANN model 
has better accuracy and it is more excellent to model the 
flow behaviors of Invar36 alloy.

As the well-trained ANN model could provide a wide 
range of flow stress data, it can be applied in numerical 
simulation with high accuracy. Quan et al. developed an 
ANN model for 42CrMo high strength steel and improved 
the accuracy of finite element method (FEM) simulation by 
importing a wide range of stress-strain data predicted by the 
ANN model14. In current work, the ANN model for Invar36 
alloy was successfully applied to numerical simulation by 
using FEM on DEFORM-3D software, and the dependability 
of finite element simulation based on stress-strain data 
predicted by ANN model has been demonstrated through a 
hot forming experiment of a V-shaped part.

2. Materials and Experimental Procedure
The chemical compositions (wt.%) of Invar36 alloy used in 

the current investigation are as follows: Ni-36, C-0.01, Si-0.2, 
Mn-0.3, S-0.002, P-0.007, Cr-0.15, Co-0.4, Fe (balance). The 
homogenized sheet was scalped to 20 cylindrical specimens 
with a diameter of 8 mm and a height of 12 mm. All the 
specimens were homogenized under temperature 1033 K 
for one hour. Before compression tests, two thermocouple 
wires were welded on two spots with a distance of 1mm at 
the mid-span of each billet where a temperature differential 
is experienced by the two different conductors. Subsequently, 
the specimens were placed in a servohydraulic Gleeble 
1500 thermomechanical simulator, and then resistance heated 
at a heating rate of 5 K/s and held at a fixed temperature for 
180 s by thermo-coupled feedback-controlled AC current, 
which decreased the material anisotropy in flow behaviors 
effectively. Next, all the 20 specimens were compressed to 
a fixed true strain of 0.9 (height reduction of 60%) at five 

different temperatures of 873, 948, 1023, 1098 and 1173 K 
and four different strain rates of 0.01, 0.1, 1 and 10 s−1.

During these compressions, the variations of nominal 
stress and nominal strain were monitored continuously 
by a personal computer equipped with an automatic data 
acquisition system during the compression process. The true 
stress and true strain were derived from the measurement 
of the nominal stress-strain relationships according to the 
following formula: ( )T N N 1σ σ ε= + , ( )lnT N 1ε ε= + , where 

Tσ  is true stress, Nσ  is nominal stress, Tε  is true strain and
 Nε  is nominal strain.

3. Results and Discussion

3.1. Flow behavior characteristics of Invar36 
alloy

The true compressive stress-strain curves of Invar36 alloy 
recorded automatically in the isothermal compression process 
are shown as Figure 1. The shapes of the stress-strain curves 
are sensitively dependent on temperature, strain and strain 
rate. Comparing these curves with one another, it is found 
that the stress level decreases with temperature increasing 
or strain rate decreasing. It is induced by the fact that lower 
strain rate and higher temperature provide more time for 
energy accumulation and higher mobilities at boundaries that 
result in nucleation and growth of dynamically recrystallized 
grains and dislocation annihilation15,16.

It can be summarized from all the true stress-strain 
curves that there are two kinds of variation tendencies in the 
stress evolution with strain. At compression conditions of 
1098 K–1173 K and 0.01 s−1-0.1 s−1, the flow stress curves 
are characterized by a single peak followed by a continuous 
descent towards a steady state, which exhibits the occurrence 
of DRX during hot deformation. At the compression conditions 
of 873 K–1023 K and 0.01 s−1-0.1 s−1, 873 K-1173 K and 
0.01 s−1-10 s−1, the flow stress curves are characterized by a 
steady state without any peak, which is commonly accepted 
the process of DRV. In summary, as for Invar36 alloy, the 
response of stress to the three deformation parameters 
including strain, strain rate and temperature shows highly 
nonlinear behaviors.

3.2. Development of ANN model for Invar36 alloy

3.2.1. ANN model
The back-propagation (BP) algorithm, one of the most 

efficient learning algorithms for the multilayer feed-forward 
artificial neuron networks in materials modeling, was 
employed in this research to get a good understanding of 
the constitutive relationships between the inputs and outputs 
since it is a typical means of adjusting the weights and biases 
by gradient descent to minimize the target error17 and it has 
a great representational power for dealing with complex and 
strongly coupled relationships18.

The structure of ANN applied in present work was 
schematically illustrated in Figure 2. The input variables 
in this investigation include deformation temperature ( T ), 
strain ( ε ) and strain rate ( ε ), while the output variable is 
flow stress (σ ), as shown in Figure 2. In addition, two hidden 
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layers were adopted to ensure the accuracy of ANN model. 
About 900 regular datasets have been extracted from the 20 
stress-strain curves, in which the datasets at strain of 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 were chosen as the 
testing sets, while the datasets remained were used to train 
the model. The experimental data including temperature, 

strain, strain rate and stress were measured in different 
units, which may result in the decrease of the convergence 
speed and accuracy of the model. As a result, the input and 
output variables should be normalized into dimensionless 
units before training to reduce the effects caused by different 
units. It can be found from the stress-strain data that the input 

Figure 1. The true stress-strain curves of Invar36 alloy under the different temperature with strain rates of (a) 0.01 s-1, (b) 0.1 s-1, (c) 1 s-1 
and (d) 10 s-1.

Figure 2. Schematic illustration of the neural network architecture.
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strain data vary from 0.02 to 0.9, strain rate data vary from 
0.01 s-1 to 10 s-1, and temperature data vary from 873 K to 
1173 K, the output flow stress data vary from 87.44 MPa 
to 348.14 MPa. The data of temperature, strain and the 
flow stress were normalized within the range from 0.05 to 
0.3 using the relation given by Equation 1. Meanwhile, the 
strain rate data, after taking logarithm of the values, were 
normalized by the relation of Equation 2, since the range 
of the data is much too wide.

min

max min

.. .
. .n
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= + ×

− 	 (1)
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where ny  is the normalized value of y, y is the experimental 
data, maxy  and miny  are the maximum and minimum value 
of y respectively.

The structure parameters of ANN, involving hidden 
layer number, transfer function, training function and neuron 
number for each hidden layer, is of great significance for an 
excellent model. Firstly, two hidden layers were adopted in 
current investigation to ensure high accuracy. Subsequently, 
an associated transfer function, which can represent how 
the weighted sum of its inputs is transferred to the results 
into outputs, was set for each layer. The selected transfer 
function is ‘tan sigmoid’ for each hidden layer, and ‘pure 
linear’ for output layer. In addition, the training function 
is ‘trainbr’. Finally, the neuron number for each hidden 
layer was set by means of trail-and-error method according 
to experience and the training sample size. If the neuron 
number of each hidden layer in ANN model is too small, 
the model may be insufficient to learn the process correctly 
in training process. On the contrary, too many neurons may 
slow down the convergence rates or over fit the data. The 
ANN model in current research was trained firstly with 3 
neurons in each hidden layer, and then the neuron number 
was adjusted continually to 18 for the purpose of approaching 
the expected accuracy.

3.2.2. Evaluation of the performance of the ANN 
model

The value of mean square error (MSE), expressed by 
Equation 318, is introduced to evaluate the ability of the 
ANN training work and determine the neuron number for 
each hidden layer.

( )
N 2

i i
i 1

1MSE E P
N =

= −∑ 	 (3)

where E  is the sample of experimental value, P  is the 
sample of predicted value by ANN model, N  is the number 
of stress-strain samples.

The MSE-value of each actual training work was calculated 
as the training work of ANN models with different neuron 
number was accomplished. As a result, the MSE values of 
the models are in the range of 0.0000262 to 0.00000014. In 
order to obviously exhibit the small differences and variation 
trend with different neuron numbers, the MSE values were 
measured in logarithm, as shown in Figure 3. It is obviously 
been found in Figure 3 that the MSE decreases to a minimum 

value when the neuron number in each hidden layer is 13, 
showing that the ANN model with 13 neurons in each hidden 
layer shows excellent performance.

As the ANN model with 13 neurons in each hidden 
layer had been well trained, the performance was measured 
in terms of the correlation coefficient (R) and the average 
absolute relative error (AARE)18-20, as expressed by Equation 
4 and Equation 5, respectively. The correlation coefficient is 
a widely used in measuring the strength of linear relationships 
between experimental and predicted values, while the 
average absolute relative error indicates the accuracy of 
the prediction. Low level of AARE-values and high level 
of R-values indicate that the predicted values of flow stress 
agree very well with the experimental value.

)( )

) ( )

N
i ii 1

2 2N N
i ii 1 i 1

(E E P P
R

(E E P P
=

= =

− −
=

− −

∑

∑ ∑
	 (4)

-(%)
N

i i

i 1 i

E P1AARE 100
N E=

= ×∑ 	 (5)

where E  is the sample of experimental value, P  is the 
sample of predicted value by ANN model, E  and P  are 
the mean value of E  and P  respectively, N  is the number 
of stress-strain samples.

Figure 4a and b shows the correlation relationships of 
experimental and predicted values for the training procedure 
and testing procedure, respectively. As shown in Figure 4, the 
correlation coefficient (R) values for the training procedure 
and testing procedure were calculated to be 0.99998 and 
0.99979, respectively. Meanwhile the AARE values for the 
training procedure and testing procedure were calculated to 
be determined percent of 0.1190 and 0.2638, respectively. 
The excellent AARE values and R-values indicate a good 
correlation between experimental and predicted flow stress 
values by the ANN model, indicating that the well-trained 
ANN model has reached the ideal accuracy and is able to 
predict the flow behaviors of Invar36 alloy well.

As the well-trained ANN model has reached excellent 
accuracy, it can be adopted to predict the flow stress in a 
wide range of processing parameter. Figure 5 shows the 
comparison between the datasets predicted by ANN model 
and the stress-strain curves obtained from compression tests. 

Figure 3. Performance of the network at different hidden neurons level.
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It is obviously been found in Figure 5 that the predicted 
datasets matches well with the experimental curves in a 
wide temperature range of 873~1173 K, a wide strain rate 
range of 0.01~10 s-1, and a wide strain range of 0.1~0.9.

3.2.3. Generalization capability of ANN model

As stated above, the well-trained ANN model for 
Invar36 alloy is efficient in flow behavior modeling under 
limited experimental data. For the purpose of measuring the 
generalization capability of the well-trained ANN model for 
Invar36 alloy, several groups of flow stress data in and out of 

experimental conditions were predicted by the well-trained 
ANN model. Taking the datasets at temperature range of 
873–1173 K with an interval of 37.5 K, logarithm strain rate 
range from–2 to 1 with an interval of 0.5, and strain range 
from 0.05 to 0.9 with an interval of 0.05 as input data, the 
corresponding flow stress data were outputted through the 
well-trained ANN model. Figure 6 shows the stress–strain 
curves of Invar36 alloy in and out of experimental conditions 
predicted by the ANN model. It can be noticed that the predicted 
stress curves articulate similar intrinsic characteristics with 
experimental strain–stress curves. In addition, a 3D plot for 

Figure 4. Correlation between experimental and predicted flow stresses for (a) the training procedure and (b) the testing procedure.

Figure 5. Comparison between the experimental and predicted flow stresses by ANN model at different temperatures and strain rates of 
(a) 0.01 s−1, (b) 0.1 s−1, (c) 1 s−1 and (d) 10 s−1.
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Figure 6. The true stress–strain curves of Invar36 alloy in and out of experimental conditions predicted by the well-trained ANN model 
with logarithm of strain rate (a) –2, (b) –1.5, (c) –1, (d) –0.5, (e) 0, (f) 0.5 and (g) 1.
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the semi-continuous visualized description of the ANN model 
within the temperature range of 873–1173 K, logarithm strain 
rate ranging from –2 to 1 and strain range from 0.05 to 0.9 
were developed, as shown in Figure 7. In Figure 7, the axes 
of X, Y and Z represent the strain rate in log, temperature 
and strain, respectively. Meanwhile, the level of flow stress 
was measured in different colors, as shown on the color bar. 
The 3D plot visually reflects the variation of flow stresses 
with the variation of temperature, strain and strain rate. The 
increase of temperature, as well as the decrease of strain rate, 
results in the decrease of stress level. The variation of flow 
stresses matches well with the characteristic of experimental 
flow curves within the temperature range of 873–1173 K, 
logarithm strain rate ranging from –2 to 1 and strain range 
from 0.05 to 0.9, indicating a good generalization capability 
of the ANN model for Invar36 alloy in this investigation.

3.3. Comparison of constitutive equation by 
regression method and ANN model for 
Invar36 alloy

3.3.1. Constitutive relationship by regression method 
for Invar36 alloy

It is widely known that the constitutive equation between 
the steady-state flow stress, strain rate and deformation 
temperature are represented by Zener-Hollomon parameter 
in an exponent-type equation, and the hyperbolic law in the 
Arrhenius type equation gives better approximations between 
Z  parameter and stress, as expressed in Equation 621-24

exp( ) ( )QZ AF
RT

ε σ= = 	 (6)

where,

.
( ) exp( ) .

[sinh( )]
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n

0 8
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for all
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
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in which, ε  is the strain rate (s-1), R  is the universal gas 
constant (8.314 J·mol-1·K-1), T  is the absolute temperature 
(K), Q  is the apparent activation energy for hot deformation 
(kJ·mol-1), σ  is the flow stress (MPa) for a given stain, A , 
α  and n  are the material constants, mα β= .

The constitutive model by regression method for Invar36 
alloy was obtained in the form as Equation 6 through nonlinear 
multivariate regression analysis. The experimental datasets 
involving deformation temperature, strain rate and stress at 
strain of 0.5 were fitted into Equation 6. The relationships 
between ln lnε σ− , lnε σ− , ( )ln ln sinh αε σ−     and 

( )ln sinh 10000 Tσα −    in α β+ -phase temperature range 
are shown in Figure 8. The value of m  and β  was obtained 
through taking average slope of the lines in Figure 8a and 
Figure 8b respectively. Thus the α  value was calculated to 
be 0.003404. Subsequently, the calculation of n  and Q  has 
been performed according to the following relationships:

Q Rns= 	 (7)

Figure 7. The 3D plot of flow stress within the temperature range of 873–1173 K, logarithm strain rate range from –2 to 1 and strain 
range from 0.05 to 0.9.
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Hence the value of n  and Q  was calculated to be 
29.4212 and 582.479 kJ/mol respectively from the slope of 
the lines in Figure8c and Figure 8d. The value of A  was then 
obtained to be 3.312×1029 from the intercept of the fitted line 
in Figure 9. Finally, the constitutive equation by regression 
method at strain of 0.5 can be presented as Equation 10.

..exp( ) . [sinh( . )]29 29 4212582 479Z 3 312 10 0 003404
RT

ε σ= = ×

	 (10)

3.3.2. Comparison of the performance of the two 
models

Figure 10 show the correlation relationships between 
the experimental and predicted data at the strain of 0.5 from 
the regression model and the well-trained ANN model, 
respectively. The R-value and the AARE-value calculated 
from the ANN model is 0.99999 and 0.08599% respectively, 
better than the 0.90399 and 9.6735% from the regression 
method, indicating that the ANN model has better capacity 
to predict the flow behaviors of Invar36 alloy.

Additionally, as expressed by Equation 11, the relative 
percentage error (η ) is introduced to compare different 

measurements of the relative difference at strain of 0.5, 
besides the correlation coefficient and the AARE.

( ) %i i

i

P E% = 100
E

η −
× 	 (11)

Where E is the sample of experimental value, P is the 
sample of predicted value by ANN model, N is the number 
of stress-strain samples.

The comparison of η -values of the ANN model and the 
regression model is shown in Figure 11. It can be demonstrated 
that the η -values obtained from ANN model vary from 

Figure 8. Relationships between (a) ln lnε σ− , (b) lnε σ− , (c) ( )( )ln ln sinhε σα− , (d) ( )( )ln sinh 10000 Tσα − at strain of 0.5.

Figure 9. Variation of the Z parameter with flow stress (at strain of 0.5)
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-0.1820% to 0.1998%, whereas for the regression model, 
the η -values are in the range from -13.847% to 47.46%. 
The smaller η -value of the ANN model indicates that the 
predicted stress-data is closer to the experimental stress-data, 
i.e. the ANN model is more reliable in flow stress prediction 
of Invar36 alloy.

3.4. Application potentiality of ANN model in 
finite element simulation

3.4.1. Finite element simulation of hot forming process 
of a V-shaped part

As stated earlier, the flow stresses predicted by the 
well-trained ANN model within the temperature range of 
873–1173 K, logarithm strain rate ranging from –2 to 1 
and strain range from 0.05 to 0.9 agree very well with the 
experimental flow stress data. In current work, the flow 
stress data extracted from the ANN model were successfully 
implanted in DEFORM-3D, a commercial software of finite 
element analysis, since they were proved to be reliable in 
flow stress prediction of Invar36 alloy.

For the purpose of demonstrating the reliability of 
finite element simulation based on predicted flow stress 
data by ANN model, a hot forming process of a V-shaped 

part was introduced in current work. The geometry size 
of the V-shaped part and the 3D model of the forming die 
is shown in Figure 12a  and 12b, respectively. The billet 
is an Invar36 sheet of 25.4 mm thickness with a width of 
700 mm and a length of 2100 mm. The 3D finite element 
model of the forming process was constructed based on 
the thermal-mechanical multi-field coupling method, as 
shown in Figure 13. The top die and bottom die were set as 
rigid body, while the billet was set as plastic body, so as to 
overlook the elastic deformation and reflect the computing 
method of plastic yielding condition. A four-node tetrahedral 
finite element formulation was selected for the billet of this 
assembly and the movement of top die was set to hydraulic 
press controlled by constant speed of 5 mm/s. In addition, 
the physical parameters such as Initial temperature of billet, 
friction coefficient, heat transfer coefficient, etc. in the finite 
element model are listed in Table 1.

The hot forming process of the V-shaped part was simulated 
on software DEFORM-3D, and the results were shown in 
Figure 14. Figure 14a shows the distribution of the effective 
plastic strain. It can be clearly found from Figure 14a that 
the deformed work piece is inhomogeneous. On account of 
the friction between billet and dies, metal in top areas of the 
V-shape is in a free state for most of the time in the forming 
process and difficult to deform. Meanwhile, metal in the 
bottom areas of the V-shape undergoes severe deformation 
due to smaller deformation constraints aroused by friction. 
In a word, the simulation agrees well with the hot forming 
process of the V-shaped part. Figure 14b shows the forming 
load with the top die stroke of the hot forming process. The 
simulation load-stroke curve in the whole deformation stage 
shows a typical hot forming variation characteristic in which 
the forming load increases slowly within majority stroke 
of the forming process and then reaches rapidly increasing 
state in the last deformation stage.

3.4.2. Experimental study on trial hot forming of a 
V-shaped part

An Invar36 sheet of 25.4 mm thickness with a width 
of 700 mm and a length of 2100 mm was employed in this 
work and the exact chemical composition are as follows: 
Ni-36, C-0.01, Si-0.2, Mn-0.3, S-0.002, P-0.007, Cr-0.15, 
Co-0.4, Fe (balance). A set of hot forming die with cast steel 

Figure 10. Correlation between experimental and predicted flow stresses at strain of 0.5 by (a) regression model and (b) ANN model.

Figure 11. Comparison of relative percent error of predicted value 
by ANN and calculated value by regression model with experimental 
value at strain of 0.5.
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Table 1. Physical parameters of finite element simulation.

Physical parameter Value
Initial temperature of billet (K) 1023
Initial temperature of dies (K) 293
Environment temperature (K) 293
Friction coefficient 0.3
Heat transfer coefficient between billet and die 5
(N/(s·mm·K) between billet and environment 0.02

Figure 12. 3D model of (a) the V-shaped part and (b) the forming die.

Figure 13. The finite element analytical model of the forming process of the V-shaped part.

Figure 14. The simulation results of the hot forming process of the V-shaped part: (a) distribution of the effective plastic strain and 
(b) forming load with top die stroke.
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of the V-shaped part and a hydraulic press of THP10-8000 
was utilized in the experiment. The speed of top die was set 
to 5 mm/s and the billet was heated to about 1023K, which 
is the same as the processing parameters in finite element 
model. Figure 15 and Figure 16 show the trial hot forming 
process of the V-shaped part and the formed V-shaped part, 
respectively. The forming loads were monitored continuously 
by a computer equipped with an automatic data acquisition 
system during the forming process. Figure  17 shows 
the comparison of logarithm load-stoke curves between 
experimental conditions and simulation conditions.

It is obvious that the logarithm load–stroke curve at stroke 
range of 100-400 mm under simulation condition matches 
well with the experimental logarithm load-stroke curve, and 
the maximum load calculated in the simulation during the 
final stage of the forming process is 55681.88 KN, which 
is much closed to the 60681.63 KN in the experiment. The 
finite element simulation based on predicted flow stress data 
by ANN model shows good performance in the case of hot 
forming process, which have illustrated that the well-trained 
ANN model is available to numerical simulation for the hot 
deformation behaviors with high accuracy.

Figure 15. The trial hot forming process of the V-shaped part: (a) pressing process and (b) after unloading.

Figure 16. The formed V-shaped part.
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4. Conclusions
An ANN model has been developed to deal with the flow 

behaviors of Invar36 alloy using experimental data from hot 
compression tests in the temperature range of 873–1173 K 
and strain rate range of 0.01-10 s-1. The following conclusions 
can be drawn:

1.	 The flow stress curves of Invar36 alloy show highly 
nonlinear characteristics. The flow stress curves at 
high temperature and low strain rate are characterized 
by a single peak following a continuous decline 
towards a steady state, indicating the occurrence 
of DRX during hot deformation. Other flow stress 
curves are identified by a steady state without any 
peak, which commonly exhibits the process of DRV.

2.	 The ANN model with BP algorithm for Invar36 alloy 
has been developed based on the experiment data 
from the isothermal compression tests on Gleeble 
1500 thermal simulator. The developed ANN model 
is effective in modeling of complex hot deformation 
behaviors and has excellent generalization capability 
in a wide processing parameter range.

3.	 A comparative study on constitutive equation by 
regression method and ANN model for Invar36 alloy 
at strain of 0.5 was performed. Lower AARE value 
and higher R-value, better distribution of relative 
percentage error indicate a better performance 
of the ANN model under limited experimental 
conditions than that of constitutive equation by 
regression method.

4.	 The applications of ANN model on the finite element 
simulation have been realized and illustrated by a 
hot forming experiment of a V-shaped part. The 
great results have demonstrated that the application 
potentiality of the ANN model is excellent in the 
field of hot forming processes.
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