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Exploring the Opencv Library for Image Processing in Long-Pulse Thermography
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The objective of the present paper is to propose a framework, utilizing the OpenCV library, for 
post-processing infrared images obtained using Long-Pulse Thermography (LPT), with the goal of 
segmenting the images into defective and sound areas. A series of thermograms of a carbon fiber/epoxy 
specimen, containing precision milled flat-bottom holes, was acquired using an LPT system comprised 
of an uncooled microbolometer imager and halogen optical sources. Flaw detectability and planar size 
estimation were used to evaluate the results obtained with the proposed post-processing framework, 
in comparison to raw images, and images subjected only to pre-processing algorithms.
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1. Introduction
Infrared Thermography (IRT) can be considered one 

of the most promising Nondestructive Testing (NDT) 
methods for the inspection of composite structures, mainly 
due to its non-contact nature, high inspection rate and easy 
data interpretation1,2. IRT for NDT applications, or simply 
Thermal NDT (TNDT)3, can be classified as passive or active, 
depending on the available control of the thermal radiation 
source. In passive mode, the object under analysis is naturally 
at a temperature higher or lower than the environment, 
creating a measurable thermal contrast on its surface. On the 
other hand, in active mode, the object is thermally excited 
by an external source and its thermal response is analyzed. 
Stimulation sources include optical radiation, ultrasonic wave 
propagation, eddy current and others1. Particular attention 
will be given here to optical TNDT.

The most common optically stimulated thermography 
methods applied to aerospace structures are Pulsed Thermography 
(PT) and Lock-in Thermography (LT)2. PT is carried out by 
providing a heat pulse to the object under evaluation and 
monitoring its surface temperature under the transient cooling 
or heating phases. Hence, the technique is also referred to 
as Transient Thermography (TT). Heating is usually done 
with flash lamps but can also be carried out with halogen 
lamps. In the latter case, the heating requires a longer time, 
and the technique is called Long Pulse Thermography (LPT) 
or Step Pulse Thermography (SPT). LT, in the other hand, 
consists of heating the object with a modulated heating source, 
usually halogen lamps. An interesting parallel can be traced 
between these techniques and a vibration test. PT would be 
equivalent to a hammer impact test, and the verification of 
the transient behavior of the inspected component, while LT 
would be equivalent to the periodic excitation of a shaker, 
with evaluation of the steady-state vibration response of the 

component. Obviously, in this comparison, the mechanical 
waves are replaced by heat waves.

Thermograms obtained using optical stimulation are often 
contaminated with different noise sources, such as reflected 
infrared energy from the surroundings, non-homogeneous 
heating, and variations in surface properties (emissivity) of the 
specimen1. These noise sources influence flaw detectability, 
since they produce abnormal thermal patterns in the infrared 
images. In order to enhance the contrast between sound and 
defective areas, a number of signal processing algorithms 
have been developed1,3. The most widely used algorithms 
are grouped in Figure 1.

Data from a typical TT analysis consists of a sequence 
of infrared images (thermograms) that display the surface 
temperature distribution and evolution in time. This allows for 
distinct data processing strategies, namely: one-dimensional 
(temporal), two-dimensional (spatial) or a combination of 
both. 1D algorithms are applied on a pixel-base and analyze 
the pixel temperature evolution (image sequence). On the 
other hand, 2D algorithms are applied to a single image and 
operate on a pixel-to-pixel basis (e.g., contrast adjustment, 
filtering, etc.). Most TNDT processing algorithms rely on 
the pixel temporal evaluation, since more information about 
defect parameters, such as defect depth, can be obtained3. 
However, 2D algorithms are fundamental for image 
segmentation and feature extraction, which are important 
steps in the implementation of automated image processing 
algorithms employing machine learning strategies4.

Bearing this in mind, the objective of the present paper 
is to explore the Open Computer Vision (OpenCV) library 
for spatial processing of thermograms obtained using LPT. 
The general image processing framework consists of: a) 
pre-processing the thermograms utilizing 1D algorithms: 
Thermal Signal Reconstruction (TSR) and Pulsed Phased 
Thermography (PPT); and b) post-processing using OpenCV: 
spatial filtering, contrast enhancement and segmentation. *e-mail: jfaria@ita.br
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The goal of the post-processing step is to segment the image 
into defective and sound areas, removing image background 
and easing defect sizing.

2. Image Processing
This section describes the pre-processing and post-

processing algorithms applied to the thermograms.

2.1. Pre-Processing Algorithms
The basis of the TSR method is the reconstruction, or 

regression, of thermal responses as a function of time by 
low-order polynomials. The technique was proposed by 
Shepard6 and quickly became widely used, for its simplicity 
and for bringing important advantages over the analysis of 
raw data, such as noise reduction and contrast enhancement. 
The cooling of an intact area is modeled considering the 
one-dimensional solution of the conduction equation:
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Where T  is the variable temperature, 0 T  is the initial 
temperature, Q  is the applied heat energy, e  is the thermal 
effusivity of the material and t  is the time. From Equation 1, 
it is possible to model the temperature evolution of a sound 
area as a fixed, straight line with slope equal to -0.5. This 
behavior is independent of material properties and applied heat 
flux. A defective area will present a temperature evolution that 
diverges from this linear response. The polynomial function 
used to fit the temperature evolution data can be written as:
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The number of coefficients used to fit the thermal data 
plays an important role in quality of the processed images5. 
A fourth order polynomial was used in the present study6.

One of the main advantages of the technique is the 
ability to generate images of the derivatives of the thermal 
signal (first and second derivatives). The derivative images 
significantly reduce non-uniform heating effect and provide 
earlier indications of thermal contrast3,7.

The PPT technique is based on the decomposition of the 
temporal thermal response in the frequency domain by means 
of a Fourier series expansion. Originally proposed by Maldague 
and Marinetti8, the technique represents the parallel between 
pulsed thermography and lock-in thermography9. As previously 
discussed, pulsed thermography makes use of square thermal 
pulses, with different durations depending on the type of lamp 
used and the purpose of the analysis. Mathematically, it is possible 
to decompose such a pulse as the combination of sine waves. 
Therefore, it can be said that pulsed thermography consists 
of the simultaneous analysis of thermal signals with varying 
amplitude and frequencies during the transient phase (heating or 
cooling), while lock-in thermography consists of the individual 
analysis of a single thermal signal, with given frequency and 
amplitude, during steady state (thermal equilibrium)2.

According to the superposition principle, a time-domain 
response can be decomposed into a frequency-domain 
response using a Fourier expansion7:

( ) ( ) ( ), , ,n nT x t a T z tω ω= ∑  (3)

Where ( ), ,nT z tω  is a plane thermal wave of angular frequency 
nω  propagating in the z  direction and ( )na ω  is a measure 

of the strength of this component at the given frequency. The 
transformation between the time and frequency domain can 
be performed using the one-dimensional discrete Fourier 
transform (DDT):
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The amplitude and phase of the transform can be estimated 
from Equation 4:
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Figure 1. Most widely used image processing algorithms in TNDT3.
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The components given by Equation 5 and Equation 6 are 
used to reconstruct the thermal image sequence. The amplitude 
image is proportional to local optical and infrared surface 
features, while the phase image, or phasegram, is related to 
the heat propagation time delay. Phasegrams are independent 
of surface and optical features, being particularly interesting 
for subsurface defect characterization8.

2.2. OpenCV
The OpenCV library was originally developed by Intel 

aimed at real-time computer vision applications. The library 
has over 2500 algorithms implemented in C++ language, 
with wrappers and bindings for many other languages, such 
as Python, MATLAB and Java. Many of the implemented 
algorithms have been extensively optimized since the first 
release of the library in 1999 and support models from deep 
learning frameworks such as Torch and TensorFlow. This 
makes the library extremely powerful for the development 
of automated image processing software. Another appealing 
feature of the library is that it is cross-platform and free for 
use under the open-source BSD license10.

The algorithms explored in the present study are part 
of the Image Processing, Histogram and Feature Detection 
modules of OpenCV. The proposed framework is depicted 
in Figure 2. It is noteworthy to mention that the proposed 
framework will be employed to a Region of Interest (ROI) 
covering the complete laminate. An alternative strategy 
would be to delimit smaller ROIs at different areas of the 
laminate in order to account for local temperature variations 
and noise, possibly yielding better segmentation results. 
The choice a broader ROI, covering the complete structure, 
aims to eliminate the necessity of the user to subjectively 
specify localized ROIs of the image for analysis.

Linear filters are the most common type of neighborhood 
operators4. The basic idea of a linear filter is to compute a new 
output value of a pixel based on the weighted combination 
of pixel values in its neighborhood. The entries in the weight 
kernel (mask) are often called filter coefficients. In the present 
work, smoothing filters (e.g., Gaussian blur), or low-pass 
kernels, were used to further reduce high-frequency noise 

from the thermograms. This can aid contrast enhancement, 
avoiding noise propagation.

The proposed framework explores the use of Contrast 
Limited Adaptive Histogram Equalization (CLAHE). 
CLAHE is a variant of ordinary Adaptive Histogram 
Equalization (AHE). AHE is used to improve the contrast 
of images through histogram equalization of several distinct 
sections of the image. This is achieved by transforming 
each pixel with a transformation function computed from a 
neighborhood region, as shown in Figure 3. In comparison to 
ordinary histogram equalization, AHE has the capability of 
improving local contrast and enhancing definitions of edges 
even if the image presents nonuniform lighting. However, 
conventional AHE has the tendency to amplify noise in 
relatively homogeneous regions of an image. CLAHE prevents 
such problem by limiting the contrast amplification factor 
based on the slope of the transformation function. In the 
implementation of CLAHE, two important parameters must 
be set: clip limit and grid size. The clip limit is the threshold 
for contrast limiting and the grid size is the size of the area 
used for histogram equalization.

After contrast enhancement, the thermograms were 
segmented using two approaches: adaptive threshold and 
watershed. Among the adaptive threshold algorithms 
implemented in OpenCV, Otsu’s method11 was chosen. It is 
a nonparametric automatic threshold selection algorithm for 
image segmentation, extensively used in document image 
binarization12. The algorithm returns a single intensity threshold 
used to segment the image in two classes: foreground and 
background. This approach eliminates, to a certain degree, 
the subjectivity of a threshold determination by the user. 
This is achieved by minimizing the intra-class variance, 
defined as a weighted sum of variances of the two classes11:

( ) ( ) ( ) ( ) ( )2 2 2
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Where 0ω  and 1ω  are the probabilities of the two classes 
separated by a threshold k  and 2

0σ  and 2
1σ  are the variances 

of the two classes.

Figure 2. Image post-processing framework.

Figure 3. Schematic of CLAHE applied to an image illustrating the different sections (grids) used to compute the transformation functions.
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In addition to the Otsu’s method, the thermograms were 
also segmented using the watershed algorithm. The method 
has its origins in mathematical morphology, with its general 
concept introduced by Digabel and Lantuejoul13. The idea 
behind the watershed segmentation is the representation of 
a gray scale image as a topographic landscape, with ridges 
and valleys. The elevation values are given by the pixel 
intensity or gradient magnitude. By placing a water source 
in each regional minimum (valley), the topography is flooded 
until different sources meet (See Figure 4). At these contact 
regions, watersheds are placed, forming delimitations. 
OpenCV employs a marker-based algorithm, which reduces 
problems related to over segmentation by specifying locations 
of know background (sure background) and foreground 
(sure foreground)14. These locations are determined by 
performing morphological erosion and dilation, followed 
by distance transform.

The contour localization step was performed using a 
border following algorithm proposed by Suzuki and Abe15, 
also implemented in OpenCV. After computing the contours, 
parameters such as area and equivalent diameter can be 
directly calculated.

The different image segmentations strategies were evaluated 
by comparing the number of identified flat-bottom holes, 
as well as their planar size computed by each algorithm, 
in comparison to measurements obtained directly from 
the pre-processed images, manually measured using the 
ImageJ software16. Since the measurement is performed 
manually, an average of 3 repetitions was considered. 
Additionally, the effect of the histogram equalization is 
analyzed by means of absolute contrast comparison and 
segmentation results (i.e., detectability, defect geometry and 
planar size estimation). The absolute contrast is calculated 
using Equation 82:

d iC S S= −  (8)

Where dS  is the average pixel intensity at the defect, iS  
the average pixel intensity at a sound reference area in the 
vicinity of the defect. Pixel intensity is given by a single 
channel, 8-bit value from 0 to 255. Defective and sound 
pixels were selected delimiting a circular area in the center 
of the defect and an outer ring, with thickness of 5 pixels, 
surrounding the defect, respectively.

3. Materials and Methods
Thermograms of a carbon fiber/epoxy specimen, containing 

precision milled flat-bottom holes, were acquired using a 
LPT system comprised of an uncooled microbolometer 
imager operating in the Long Wave Infrared (LWIR) spectral 
band, with resolution 640x480 pixels and sensitivity of 
70 mK, and halogen optical sources with a total power 
of 2kW (See Figure 5). The specimen was manufactured 
following recommendations of ASTM 2582-1917, with a 
total of 25 flat-bottom holes of varying diameter (20, 15, 
10, 5 and 2 mm) and depth (0.5, 1.0, 1.25, 1.5 and 2 mm), 
resulting in simulated flaws with Aspect Ratios (AR) – ratio 
between diameter and depth – ranging from 40 to 4. The 
total thickness of the laminate is 2.5 mm.

Figure 4. One dimensional representation of the watershed transform, 
based on the flooding from sources at local minima.

Figure 5. a) Hardware and test setup b) Back surface of the specimen with flat-bottom holes with diameters varying from 2-20 mm and 
depths of 0.5-2 mm.
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The specimen was placed at 50 cm from the LPT system 
and heated for a total of 10 seconds, followed by monitoring 
for 10 seconds during free convection cooling. In trial 
runs, this configuration presented the best contrast results. 
An in-house software was developed in C++ for controlling 
the excitation sources and retrieving the thermal data from 
the imager. Pre-processing and post-processing were also 
carried out using the developed software package.

4. Results
In order to analyze the effect of the pre-processing 

algorithms, thermograms in the early stages of cooling were 
processed and compared to the raw data (See Figure 6). It is 
possible to see how the pre-processing algorithms are capable 
of increasing defect contrast. Since the earlier thermograms 
represent lower frequencies, the PPT is capable of revealing 
deeper defects when compared to the TSR. However, the TSR 
first derivative yields higher contrast between defective and 
sound area when the maximum contrast frame is analyzed. 
Table 1 presents the value of maximum absolute contrast for 

the 20 mm flat-bottom holes. The results show that the TSR 
algorithm outperforms the PPT, with significant improvement 
when compared with the raw thermograms.

Figure 7 shows the evolution of the absolute contrast 
for the 20 mm flat-bottom holes, for the raw and TSR pre-
processed thermograms. It is possible to notice a significant 
improvement in contrast for all the simulated flaws. Another 
interesting finding is that for the pre-processed thermograms, 
the maximum absolute contrast of all the flaws occurs roughly 
at the same instant of time, while in the raw thermograms the 
maximum contrast time varies with depth. Shallower defect 
present maximum contrast earlier, while deeper defects later, 
as expected from classical heat transfer theory2.

Figure 8 shows the result of the TSR first derivate at 
distinct times during cooling. It is possible to notice that the 
shallower defects appear with greater contrast in the early 
thermograms, while deeper defects appear later. However, 
as depicted in Figure 7, the maximum contrast of all defects 
occurs at roughly the same instant of time, approximately 
7.75 seconds. The images also reveal that the defects with 

Figure 6. Comparison of raw and pre-processed thermograms, for the maximum absolute contrast frame.

Figure 8. TSR first derivative images at 3.00, 5.00 and 7.75 seconds after heating.

Figure 7. Evolution of the absolute contrast of the 20 mm flat-bottom holes during the transient cooling phase for the raw thermograms 
and thermograms pre-processed using the TSR algorithm (1st derivative).
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diameter of 2 mm cannot be detected, even at 0.5 mm depth 
(aspect ratio of 4). Defects at 2 mm depth also present very 
weak contrast, even for larger diameters. These results may 
be improved by adjusting the testing parameters (e.g., heating 
time) and performing inspections at closer distances (higher 
resolution). Nevertheless, it is not the goal of the present work 
to determine the limitations of LPT, but rather investigate 
how post-processing algorithms can improve data analysis.

Considering that the TSR first derivative image at 
7.75 seconds presented the best absolute contrast when 
compared to the raw and PPT thermograms, it was used 
to evaluate the proposed post-processing framework. 
First, the thermogram was filtered using a median kernel 
(cv::medianBlur) with size of 11x11 pixels. The filter reduces 
high frequency noises, mitigating amplification during 
histogram equalization. After filtering, the image contrast 
was enhanced using CLAHE (cv::createCLAHE) with clip 
limit of 1.3 and grid size of 15x15 pixels. These parameters 
yielded the best results, with an average increase in absolute 
contrast of 37.4% (See Figure 9).

Lastly, image segmentation was evaluated using 
Otsu’s method (cv::threshold) and the watershed approach 
(cv::watershed). From Figure 10, it is possible to see that 
the segmented images retained an acceptable number of 
defects, despite using a global automatic strategy. During 

this step, the ROI was reduced to the laminate only, in 
order to avoid identification of other contours, such as the 
stand support and contour of the laminate itself. The Otsu’s 
binarization output a threshold value of 167, which resulted 
in a good segmentation, but induced a considerable level of 
noise, especially at the laminate edges, which emphasizes 
nonhomogeneous heating effects. The right edge displayed 
higher levels of noise when compared to the left edge. This 
noise can be removed by further processing, such as erosion 
and dilation, for example. Nevertheless, the result allowed the 
successful application of the border following algorithm for 
automatic defect sizing. The watershed method was applied 
using a global threshold of 185, followed by morphological 
opening (cv::morphologyEx), for sure background estimation. 
Sure foreground was computed using the distance transform 
(cv::distanceTransform) of the sure background image. 
The watershed markers were then calculated using the 
subtraction of sure foreground and sure background.

Flaw size estimation was performed using a border 
following algorithm (cv::findContours), which allows 
the computation of the contour area by estimating the 
equivalent diameter of the smallest circle that contains the 
complete contour. Segmentation is essential for this step, 
since the border following algorithm cannot be applied to 
non-binary images. Table 2 summarizes the planar size 

Table 1. Absolute contrast values for the 20 mm flat-bottom holes, for the raw and pre-processed thermograms.

AR = 40 AR = 20 AR = 16 AR = 13.33 AR = 10
Raw 127.80 88.30 52.75 11.18 4.76

TSR 1st Der. 182.89 132.13 77.97 55.13 13.95
PPT Amp. 172.86 104.10 47.89 35.77 16.22

Figure 9. Effects of median filter and CLAHE.

Figure 10. Measurement procedure performed using the ImageJ software on the TSR first derivative image after histogram equalization 
(CLAHE), in comparison with the Otsu’s method and the watershed segmented images.
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estimation of the flat-bottom holes for the segmented 
images in comparison to the sizing retrieved manually 
using ImageJ. Out of the 25 simulated flaws, a total of 
12 flaws were automatically identified and quantified 
using the proposed framework. The flat-bottom holes 
with diameter of 20, 15 and 10 mm at 2.00 mm depth can 
be detected with weak contrast, as well as the flaws with 
5 mm in diameter at 0.50, 1.0, 1.25 and 1.50 mm in depth. 
The watershed segmentation presented more consistent 
sizing results when compared to the Otsu’s binarization, 
both retrieving the same defects.

5. Conclusions
The present work proposed a simple framework, based 

on the OpenCV library, for post-processing thermograms 
acquired during LPT inspections. The framework consists of 
single image techniques used to filter the thermograms and 
segment the image into defective and sound areas (background). 
The thermograms were pre-processed using the TSR and 
PPT algorithms. Results revealed that the framework can 
aid defect detection by automatically segmenting the image 
and can also improve flaw size estimation. The following 
conclusions may be drawn from this study:

• The TSR algorithm outperformed the PPT algorithm 
in terms of absolute contrast.

• Post-processing by means of adaptive histogram 
equalization (CLAHE) can significantly increase 
defect contrast.

• Image segmentation for automatic defect detection 
can be successfully achieved using Otsu’s method 
and the marker-based watershed algorithm.

• The watershed segmentation approach yielded more 
accurate defect size estimations when compared to 
Otsu’s method.

The OpenCV library offers a wide variety of powerful, 
built-in algorithms that can be further used to enhance image 
processing of thermograms for TNDT. Moreover, the library 
also offers tools for the development of machine learning 
algorithms, such as Convolution Neural Networks (CNNs) 

and Support Vector Machines (SVMs), that can be used to 
develop automatic defect classification strategies.
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