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The aim of this work is to determine effective elastic properties of pultruded Glass Fiber Reinforced 
Polymer using micro-CT in conjunction with a two-step numerical homogenization technique. The 
two-step homogenization involves the segmentation of the material’s layers, which was made here 
by means of a machine learning approach. The segmentation was validated through the comparison 
between the phase’s volume fractions of samples obtained from the segmented images and laboratory 
tests. Further, a standard accuracy analysis in a 10-fold cross validation was performed. The samples’ 
effective axial Young’s modulus obtained by our numerical homogenization were compared to results 
obtained from experimental tests. For both the experimental tests and the image-based numerical 
analysis we considered samples extracted from the same profile. The two-step methodology allowed the 
homogenization of large volumes of the composite corresponding to the whole thickness of the profile, 
imaged with a high resolution. In addition to the axial effective Young’s modulus, our methodology was 
also able to successfully provide all the other elastic properties along the three orthogonal directions, 
even the ones that are arduous to be obtained in laboratory setups.

Keywords: Glass Fiber Reinforced Polymer, Numerical Homogenization, Non-destructive testing, 
Image Segmentation, Finite Element Method, Micro-CT.

1. Introduction
Pultruded Glass Fiber Reinforced Polymer (GFRP) has 

received substantial attention from engineers and researchers 
due to its qualities as structural material. In the last decades, 
there has been developed plenty of work on this material 
including characterization of physical and mechanical 
properties, stability, durability, and others. The mechanical 
properties of materials, such as effective elastic properties, 
are important means to assess their structural behavior. 
The physical properties, on the other hand, such as void 
content and volume fractions, have a strong influence on 
the mechanical properties and durability of the material, 
and they can also be a good measure in quality control 
for the manufacture. The determination of both physical 
and mechanical properties is usually performed through 
experimental laboratory tests that are in general destructive, 
time-consuming and do not provide a deep understanding 
of the material’s microstructure.

An attractive alternative or even a complementary analysis 
to laboratory tests is the use of virtual characterization through 
image analysis and simulation. In such case, virtual samples 
generated by X-ray micro-computed tomography (micro-CT) 
can be used to extract valuable information such as void 
content, constituents’ volume fraction, void connectivity, 
and effective properties that can be computed by numerical 
homogenization. Virtual characterization is non-destructive 

by nature and allows the extraction of different properties 
at once. On the other hand, in physical laboratory there is a 
need to perform different tests to obtain specific properties 
of the material1.

Studies2-4 on the physical characterization of fiber 
reinforced polymers (FRP) through image analysis usually 
focus on the content and distribution of material phases (fiber, 
resin and voids). However, most studies employ traditional 
image processing strategies, which are based on the grey 
level intensity of voxels. These strategies are limited when 
applied to pultruded GFRP, because they cannot determine 
the percentage of phases within each layer of the material 
in a straightforward manner, due to the high complexity of 
the material microstructure, i.e., all the layers contain the 
same resin and fibers and are not perfectly straight (the layer 
thicknesses vary considerably along the profile length).

In the scope of mechanical characterization using 
image-based simulations, the determination of effective 
elastic properties is usually carried out through numerical 
homogenization. There are different strategies to perform 
numerical homogenization: the classical homogenization 
technique in one step5-10; the homogenization applied to 
multiscale analyses, in which the macroscale analyses 
relies on the effective properties of the material points that 
are obtained by the homogenization of microstructural 
models11-13; and the two-step homogenization, in which two 
homogenizations are sequentially performed, with the results 
of the first homogenization being used in the second one14-16.*e-mail: rafaelvianna@id.uff.br
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Although homogenization has already been applied to 
FRP characterization, most contributions used synthetic or 
idealized models5,6,12-15. In addition, there is a lack in the 
literature of works on homogenization of pultruded GFRP 
containing roving layers and continuous strand mat (CSM) 
either in one-step or two-step methodologies that use image-
based models. This material has a lot of peculiarities and 
brings new challenges due to its high heterogeneity.

The fine-scale heterogeneities within the layers of the 
pultruded GFRP are usually on the range of few micrometers. 
On the other hand, the thickness of the profile, which 
contains all the layers, is usually of order of millimeters to 
centimeters. Capturing the whole thickness of the profile 
considering a high level of details in the microscale, usually 
leads to models with a huge amount of information that can 
easily make impracticable the numerical simulations due to 
limited computer memory and processing capacity.

Therefore, the numerical homogenization in two steps 
seems to be the most suitable strategy to homogenize pultruded 
GFRP samples. In this case, the effective properties of each 
layer are obtained by homogenizing them individually. 
Subsequently, the effective properties of the whole sample 
are determined by an additional homogenization step 
considering now all previously determined layer effective 
properties. In that sense, it is possible to use different 
resolutions in each homogenization step and manage the 
required computational resources: in the microscale, the 
fine-scale characteristics can be considered by modeling 
each layer with high resolution images; in the macroscale, 
the whole sample can be modeled with lower resolution, 
reducing the amount of necessary computational resource.

In the macroscale, the model generation requires the 
segmentation of the material’s layers explicitly. However, 
since they have the same constituents, traditional strategies 
of segmentation are not efficient. The main idea proposed 
here is to perform the separation of the layers by applying 
a texture-based segmentation taking advantage of the 
fibers’ arrangements. There are several approaches17-19 in 
image texture analysis. Nevertheless, machine learning-
based segmentation is one interesting technique to identify 
different textures in image. Segmentation with machine 
learning has been normally used to make the segmentation 
process automatic, reducing the interference of the users. 
But, since it works with a combination of filters, regions 
with different textures can be identified using filters with 
different texture descriptors.

Machine learning algorithms (e.g., k-nearest neighbors 
(k-NN), support vector machine (SVM), Random Forest and 
others) have been employed for image segmentation in several 
fields, from medicine to material science20-23. Nonetheless, no 
work aiming to segment the layers of pultruded GFRP has 
been found. In this work, a Random Forest classifier is used 
to segment the layers of this type of material, as required in 
the two-step homogenization procedure.

In summary, this work aims to predict the effective elastic 
properties of pultruded GFRP profile by homogenization in two 
steps, allowing the simulation of large volumes of the material 
in cases of limited computational resource. The segmentation 
of the layers of the material is made by machine learning. 
The classifier was trained with a bank of Gabor filters for 

identification of textures, and it was validated through a 
stratified cross-validation. The combination of segmentation 
of layers with the segmentation of the constituents in the 
overall composite was made to obtain a more complex 
analysis for each sample, i.e., the constituents’ volume 
fraction in each layer, or the content of glass fibers in the 
roving layers and the content of glass fibers in the CSM. Those 
information’s are important for the manufacture and serve 
as parameters for quality control of the production process 
of the material. The final results from the segmentation, i.e., 
the contents of fiber glass in each type of layer are compared 
to experimental results.

The proposed methodology allowed the use of high-
resolution images within each layer and a lower resolution 
for the profile sample (containing the whole profile thickness) 
to perform the homogenization of the samples with the 
available computational resource. Finally, the computed 
effective properties of the samples were compared with 
experimental results. The comparisons validated the 
proposed methodology as effective and promising method to 
physically and mechanically characterize pultruded GFRP, 
i.e., by successfully extracting effective elastic properties 
along all three orthogonal directions and volume fractions 
of the phases.

2. Material
The GFRP profile was made with vinyl ester resin 

reinforced with E-glass fibers. The fiber architecture is 
composed by roving and continuous strand mat (CSM). 
The roving layer is made of longitudinal fibers embedded 
with resin. The CSM layer is made of randomly arranged 
fibers embedded with the same resin. The density, the Young’s 
Modulus and the Poisson ratio of the fiber and matrix are 
2.57 g/cm3, 72.0 GPa and 0.21; and 1.12 g/cm3, 3.5 GPa 
and 0.3, respectively.

The pultruded GFRP profile was manufactured by a 
Brazilian company. Three samples were extracted from 
a C-shape profile with thickness of 7.75 mm (Figure 1a). 
The extracted sample dimensions were chosen to achieve 
a scanned region of interest (ROI) of approximately 7.75 × 
7.75 × 7.75 mm3 (Figure 1b). Figure 1 shows the profile in 
which the samples were extracted, the samples prepared for 
micro-CT acquisition and the reconstructed micro-CT image 
(Figure 1c). In Figure 1c, the X-direction is the direction 
parallel to the direction of pultrusion and longitudinal 
fibers in the roving layer. The Y-direction is the direction 
correspondent to the profile thickness and the Z-direction 
is the transversal direction.

3. Micro-CT
The accuracy of the results generated from numerical 

homogenization relies on trustworthy models. Therefore, 
imagining techniques are essential to generate virtual 
models in which the simulation will be performed. Micro-
CT scanning is a 3D imaging technique that allows the 
representation of the internal structure of a material in the 
scale of a micrometer.

The result of a micro-CT scanning is a 3D digital image, 
which is referred here to micro-CT. A micro-CT is formed 
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by a collection of small elements called voxels (pixels in 
three dimensions). The number of voxels are related to the 
quality of the image. An important parameter to measure the 
image quality is the resolution. The resolution is the density 
of pixels or voxels used in a unit length of an image. Images 
with low resolution will have lower quality, while images with 
higher resolutions will have higher quality. For each voxel, 
a set of bits of memory is used to store a number associated 
to the color that the voxel presents. It means that in a fixed 
ROI, the amount of memory required to store the image 
will increase as the resolution increases, leading to a huge 
computational effort to run subsequent analysis. Therefore, 
the resolution plays an important role in the digitalization 
of the sample through micro-CT.

The resolution must be defined considering the scale 
of the heterogeneities within the sample. Heterogeneities 

smaller than the voxel size will not be represented in the 
images. Therefore, the resolution of the micro-CT must be 
defined having in mind the size of the heterogeneities that 
must be represented in the images. Simultaneously, the 
resolution must also be chosen considering the size of ROI 
to be digitalized. As shown in Figure 2, for a fixed grid, i.e., 
fixed number of voxels, larger the ROI, lower the quality.

For the two-step homogenization, we used a low-resolution 
virtual sample for each profile sample and a high-resolution 
virtual sample for each type of layer (roving and CSM). 
Therefore, the homogenization of each sample requires three 
micro-CT. For a given sample, the three acquired micro-CT 
images are represented in Figure 3. For simplification, the 
micro-CT acquisitions will be called Tomo 1, Tomo 2 and 
Tomo 3, according to the ROI. The parameters used for the 
micro-CT acquisitions are shown in Table 1.

Figure 1. Workflow from sample extraction to micro-CT scanning: (a) C-shape pultruded GFRP profile; (b) extracted samples; (c) micro-
CT image. The cut in the sample presented in (b) was made to facilitate the sample positioning in the support for the micro-CT acquisition.

Figure 2. Relation between image quality and size of ROI for a micro-CT image with fixed number of voxels. In the left, a small region 
can be digitalized with small voxels obtaining a good quality to represent the details. On the other hand, the image on the right represents 
a bigger region with bigger voxels resulting in lower quality.
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In Figure 4, a micro-CT of a profile sample (Tomo 1) is 
shown to highlight the high heterogeneity of the material. 
It is possible to observe the differences on fiber arrangements 
and that the layers of the material are not well-behaved, 
neither internally nor at the interfaces between the layers.

4. Image Segmentation
After digitalization, a 3D image of the sample is 

generated. The internal microstructure of the sample can 
be visualized and inspected through 2D planes. However, 
for quantitative measurements such as volume fractions and 
elastic properties, the images must be treated. In general, the 
image treatment embraces two processes: image enhancement 
and segmentation.

In the segmentation process, the voxels that represent 
each phase of the material must be labeled. There are 
different techniques available for image segmentation. As the 
segmentation is very application-dependent, the choice of a 
technique will depend on the type of image and the features 
someone desires to capture.

Therefore, to extract the complete information of 
constituent’s contents as well as to prepare the data to the 
homogenization in two steps, we performed three segmentations 
for Tomo 1, one segmentation for Tomo 2 and one for Tomo 3. 
The segmentations performed for each type of micro-CT are 
summarized in Table 2 and detailed in the next subsections.

4.1. Segmentation A: Phases in the profile sample
For determination of physical properties of the material, 

in special the volume fractions within each layer, first and 
foremost, Tomo 1 must be segmented into fibers, voids and 
resin. In this stage, a simple technique of thresholding is 
used, in which the pixels are classified by their respective 
intensities of grey. Although being a simple technique, the 
thresholding is very effective when the image has good 
contrast between phases.

Since the raw data of Tomo 1 had low contrast and 
presented some noise, the images had to be pre-processed 
to perform a thresholding. Different pre-processing steps 
were used to highlight different features of the image, as 
shown in Figure 5. To highlight the void space, a histogram 
normalization with a median filter was applied. To highlight 
the fibers, a histogram equalization with an unsharp mask 
was applied. Finally, the image is ready to perform the 
segmentation by thresholding.

The fibers and voids were segmented using their respective 
pre-processed images. Then, the segmentation of resin 
was easily obtained by a sequence of Boolean operations. 
Figure 6 depicts a slice of Tomo 1 segmented by the 
combination of the images with different segmented phases.

4.2. Segmentation B: Layers in the profile sample
The segmentation of the layers was carried out by using 

a machine learning-based approach. Machine learning is a 

Figure 3. Micro-CT acquisition of the profile sample, roving layer and CSM layer.

Table 1. Parameters of micro-CT scanning used to digitalize the samples of pultruded GFRP.

Micro-CT

Source-
sample 
distance 

(mm)

Detector-
sample 
distance 

(mm)

Lens Binning Power (W) Source 
Voltage (kV)

Exposure 
Time (s)

Voxel Size 
(µm)

Tomo 1 30 158 0.4X 2048×2048 4 50 30 5.5
Tomo 2 30 172 4X 1024×1024 7 80 30 1.0
Tomo 3 33 78 4X 1024×1024 4 50 33 2.0
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subset of artificial intelligence in which the machine acquires 
the ability to make decisions based on previous given data. 
The application of machine learning algorithms to image 
segmentation aims to classify each pixel of the image based on 
a collection of pixels previously labeled. Please, notice that a 
single slice of a 3D image of size 1000×1000×1000 contains 
106 instances, which usually represents an acceptable dataset 
in the context of segmentation by machine learning. Because 
of that, a single manually segmented slice of the sample 
containing both types of layers of the material will be used 
to train the model to segment the other thousands of slices 
of the 3D images.

The classification model can be constructed using different 
types of machine learning algorithms. In this work, a Random 
Forest classifier implemented in Python using the library 
Scikit-Learn was used. The accuracy of the classification 
model is related to the features in which the machine will 
be trained. Therefore, one of the most important steps for 
the training of machine learning algorithms is the feature 
extraction. The selection of the right features is fundamental 
for the reduction of overfitting, the increase of accuracy of 
the model, and the reduction of the processing time.

In case of the segmentation of the layers, the best strategy 
to separate the roving and CSM is by using the XZ-planes. 

Figure 4. Micro-CT image of a pultruded GFRP sample with different 2D slices to emphasize the heterogeneity of the sample and its 
constituents, i.e., to show how difficult it is to separate the layers.

Table 2. Segmentations for the correspondent micro-CT images and the respective labeled phases.

Segmentation Micro-CT Segmented Phases (Labels)
A Tomo 1 Resin, fibers and voids
B Tomo 1 Roving layers and CSM layers
C Tomo 1 Roving fibers, CSM fibers, resin and voids
D Tomo 2 Resin, fibers and voids
E Tomo 3 Resin, fibers and voids
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In these planes, it is possible to identify two very distinct 
patterns due to the different fiber arrangements and distributions. 
The ability to identify these patterns naturally leads to a 
texture-based segmentation. Therefore, filters capable to 
identify different textures are necessary for the creation of 
the classifier that will segment the layers. The Gabor filters 
were employed here because they are useful to identify lines 
and edges on specific directions allowing the distinction of 
fibers from roving and CSM layers.

The most important Gabor filters were chosen based on 
their visual effects in some slices of the pultruded GFRP 
image and by evaluating the feature importance in the 
Random Forest algorithm (a technique from the algorithm 
to measure the most effective features during classification 

test). The Gabor filters used in the classification model are 
presented in Table 3 with their respective parameters (kernel 
size, σ, λ, γ, θ) and the visual effect of some of those filters 
are illustrated in Figure 7. In Figure 7, it is possible to see that 
the Gabor filters were able to highlight the fibers in specific 
directions, which contributes to the segmentation based 
on texture. Other filters for denoising and edge-detection 
were also included in the filter bank, such as Sobel, Prewitt, 
Roberts, Canny, Gaussian and median.

After selecting the features, a classification model was 
created with the previously labeled data. Nonetheless, before 
the application of the classification model to segment new 
images, it is important to measure the accuracy of that 
model. For that purpose, the labeled data is split into a set 

Figure 5. Different processing operations for highlighting fibers and voids for subsequent segmentation.

Figure 6. Segmentation workflow of fiber, voids and resin.

Table 3. Parameters used for the creation of the Gabor filter bank.

Filter Kernel size σ λ γ θ
Gabor 1 10 5 10π/3 5 0, π/8, π/4, 3π/8, π/2, 5π/8, 2π/ 3, π
Gabor 2 150 1 π/8 0.05 0, π/8, π/4, 3π/8, π/2, 5π/8, 2π/ 3, π
Gabor 3 50 1.5 π/2 0.05 0, π/8, π/4, 3π/8, π/2, 5π/8, 2π/ 3, π
Gabor 4 50 50 2π 0.05 0, π/8, π/4, 3π/8, π/2, 5π/8, 2π/ 3, π
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of training data and a set of test data, in which the model 
will have its quality measured. There are many classification 
metrics that can be used to evaluate a classifier. In this work, 
we evaluated the accuracy of the model using a stratified 
k-fold cross-validation.

The k-fold cross-validation is a method in which the 
labeled data is split into k groups, and then, the metrics are 
evaluated in k different tests. In each of those tests, k-1 groups 
are used as training data to create the classification model 
while the remaining group is tested with the created classifier. 
The stratified k-fold is a variation of the k-fold sampling 
technique in which the data splitting respects the percentage 
of instances of each class in each group. The importance 
of stratified k-fold cross-validation is that it is possible to 
avoid the creation of groups that would be easier to classify, 
reducing the variance of the metrics in the cross-validation 
process. In this work, we used a stratified 10-fold cross 
validation to evaluate the accuracy of the created model. 
That means that, for a single slice of size approximately 
1000×1000 pixels, each test had around 9×105 data for 
training and around 1×105 data for testing. The accuracy of 
each test is presented in Table 4.

The classification model presented a mean accuracy of 
approximately 94%, as observed in Table 4. The misclassified 
voxels should be adjusted by removing outliers and performing 
morphological operations. Figure 8 presents an example of 

a slice of Tomo 1 after the segmentation with the created 
classifier and after the subsequent post-processing step 
consisting of removing outliers and morphological operations.

It is also important to verify the other orthogonal 
planes. Figure 9 shows the final result of segmentation and 
morphological operations in different slices and orthogonal 
planes for a pultruded GFRP sample.

4.3. Segmentation C: Differentiating the fibers 
from CSM and roving layers

In subsection 4.1, we described how to segment Tomo 
1 into the three material phases: fibers, resin and voids. 
Nevertheless, the fibers that constitute the layers of roving 
could not be distinguished from the fibers that constitute 
the CSM. It is possible to make that differentiation once 
the layers of the material are identified (subsection 4.2). 
Segmentations A and B are combined by Boolean operations 
to generate a new segmentation that distinguishes the roving 
fibers from CSM fibers. Figure 10 depicts the generation of 
this additional segmentation.

4.4. Segmentation D: Phases inside the roving 
layer

The segmentations previously discussed were employed 
only in the second step of the homogenization process since 
they have lower resolution. The first step of the homogenization 

Figure 7. Response of different Gabor filters: (a) original image; (b) Gabor 1 with theta equal to 0; (c) Gabor 1 with theta equal to π/2; 
(d) Gabor 2 with theta equal to 0; (e) Gabor 3 with theta equal to 0; and (f) Gabor 4 with theta equal to 0.

Table 4. Accuracy of the tests in the stratified 10-fold cross-validation.

Test 1 2 3 4 5 6 7 8 9 10 Average
Accuracy 0.92 0.96 0.95 0.94 0.96 0.95 0.94 0.93 0.94 0.94 0.94
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requires the segmentation of micro-CT images with higher 
resolutions. The resolutions used in the micro-CT of the 
roving and CSM layers allow to identify the occurrence of 
fillers that are in fact normally used in the manufacturing 
process of the material. Since these objects do not interfere 
in the stiffness of the material, they will be labeled as resin.

The fillers usually have the same brightness of the fibers, 
which make the separation of these two phases very difficult. 
To identify only the fibers, we firstly performed a thresholding 
segmentation. Then, a sequence of morphological operations 
was used to eliminate the fillers. Figure 11 displays how the 

fibers could be successfully segmented without the interference 
of most of the fillers in different slices of the roving layer.

The segmentation of voids is performed following the 
procedure employed in section 4.1. Finally, with the binary 
images of voids and fibers, the resin and fillers are easily 
segmented by Boolean operations. Figure 12 presents a slice 
of the roving layer fully segmented.

4.5. Segmentation E: Phases inside the CSM layer
The last segmentation required to perform the homogenization 

is the identification of the phases inside the CSM layer. 

Figure 8. Result of the classification model and the post-processing step applied to a slice of Tomo 1: (a) original image in the XZ-plane; 
(b) result from segmentation with the created classification model; (c) final segmentation after the post-processing steps.

Figure 9. Results of the segmentation (of roving in blue) in different slices (different orthogonal planes) of a pultruded GFRP sample.
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The CSM layer represented by Tomo 3 contains regions 
with poor contrast between voids and resin. In this case, the 
application of a thresholding would result in images with 
many misclassified voxels in the void space. Therefore, we 
employed also here a machine learning-based segmentation. 
For this task, the Trainable Weka Segmentation with the default 
configuration was used. The Trainable Weka Segmentation 
was considered satisfactory for this task, not requiring a 

specific machine learning classifier implementation, as 
demanded in subsection 4.2. Figure 13 depicts a slice of 
Tomo 3 fully segmented.

5. Two-step Homogenization
Obtaining effective elastic properties of materials 

through numerical homogenization means dealing with 

Figure 10. Combination of segmentations A and B to generate segmentation C.

Figure 11. Slices of Tomo 2 and their respective segmentations: (a), (b) and (c) original images; (d), (e) and (f) the respective segmentations 
of fibers without considering the fillers.
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multiple scales, as depicted in Figure 14. First, a unitary 
deformation Ωε  (at the macro scale) is applied. Then, 
the stress field corresponding to this unitary deformation 
is computed at the micro scale and averaged throughout 
the domain. This is the uniform stress considered at the 
macro scale and represented as Ωσ  in the figure. Finally, 
the effective property is computed via generalized Hooke’s 
law at the macro scale using the average fields. Notice that 
each column of the effective elastic matrix is obtained by 
applying a unitary deformation (normal or shear) in each 
direction. Therefore, we need six tests in total to obtain the 
6×6 effective elastic matrix. More details on this procedure 
can be found in24.

For linear elastic solid mechanics, the governing equation 
(in the weak form) in the absence of body force is:

( ) ( )
 

, , , ,
1 1 0
2 2i j j i ijkl k l l ku u C u u dδ δ

Ω
+ + Ω =∫  (1)

with Ω representing the domain, iu  and iuδ  representing 
the displacement field and the virtual displacement field, 
respectively, and ijklC , the constitutive stiffness tensor.

As mentioned above, at the macro scale, the effective 
constitutive elastic tensor, containing all the effective properties 

of the material, can be calculated by means of the Hooke’s 
law, as in Equation 2, by relating a known strain applied in 
the micro scale and the resultant average stress:

Figure 12. Result of segmentation of the roving layer: (a) original image; (b) segmented image.

Figure 13. Result of segmentation of Tomo 3 using Trainable Weka Segmentation: (a) original image; (b) segmented image.

Figure 14. Homogenization procedure of a heterogeneous material: 
Application of a unitary deformation at the macro scale; computation 
of a stress field in the micro scale; computation of the average 
stress; and calculation of the effective tensor in the macro scale 
using the Hooke’s law.
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Ω Ω=σ εC  (2)

in which 1 d= Ω
Ω ∫σ σ , and 1 dΩ

Ω

= Ω
Ω ∫ε ε .

The solution of the governing equations at the micro 
scale requires dealing with partial differential equations. 
In this work, we used an in-house developed finite element 
implementation to solve those equations with a strategy 
known as voxel-based (or image-based) numerical 
homogenization. In the voxel-based numerical homogenization, 
the discretization of the domain is such that each voxel of 
the image is taken as a regular hexahedral finite element. 
In addition to the voxel-based strategy, for both steps of the 
homogenization, our program features linear interpolation 
as shape functions and periodic boundary conditions in all 
directions. A similar implementation of the voxel-based 
strategy and the periodic boundary conditions applied in 
the context of fluid mechanics can be found in25. Finally, 
we used the Preconditioned Conjugate Gradient (PCG) 
in conjunction with the Element-by-Element technique 
(EbE), as in reference26, to solve the usually large resulting 
linear systems. In that sense, we never assemble and store 
the whole system of equations. Instead, we recompute the 
non-null coefficients of the global stiffness matrix whenever 
they are needed. The use of the EbE technique opens up the 
possibility for solving very large problems using ordinary 
personal computers, as the resulting implementation is very 
efficient in terms of memory management.

In voxel-based numerical homogenizations, the compu-
tational resource required to solve the governing equation 
with the Finite Element Method (FEM) is directly related 
to the image size. An image with 1024×1024×1024 voxels 
has more than three billion degrees of freedom and, 
therefore, represents the same number of equations to be 
solved. Solving these equations imply in storing large data 
in the RAM, even with the EbE technique. For the case 
under investigation, the composite has glass fibers with a 
diameter between 15 and 25 µm. Therefore, to represent 
the heterogeneities of the material, the chosen resolution 
should be sufficient to resolve the fiber diameter. We defined 
that a good resolution should be achieved with a voxel 
size between 1 µm and 2 µm. However, representing the 
whole composite with a voxel size of 1 µm, would require 
about 7000×7000×7000 voxels, which means more than 
1 trillion degrees of freedom, and an amount of RAM that 

is not available in PCs. Therefore, the alternative is to use 
a two-step homogenization approach. In this approach, we 
take advantage of the material architecture, assuming a meso 
scale in which the material is represented by two phases: 
roving and CSM layers. Figure 15 depicts the different 
scales of the material.

The procedures for the two-step homogenization of 
pultruded GFRP are represented in Figure 16. In the first step 
of homogenization, the effective properties of each layer are 
computed considering small volumes with high resolutions 
(up to 500×500×500 voxels). Then, the effective properties 
(the constitutive matrices) of the homogenized layers are 
assigned to their respective layers in the mesoscale. In the 
second step of homogenization, the effective properties of 
the profile in the macroscale are obtained by homogenizing 
the sample modeled in the mesoscale (higher volume, but 
low resolution).

6. Results
The results obtained with the proposed methodology 

were compared to experimental results and analytical 
formulas (when available), allowing to confront with other 
methodologies that aim to characterize the material physically 
and mechanically.

6.1. Volume fractions
The segmentation is validated through the comparison 

between the phase’s volume fractions for each pultruded 
GFRP sample measured in the image analysis and results 
from burn-off tests performed according to EN ISO 117227. 
The fiber contents are presented in Table 5.

Samples 1 and 2 presented CSM fiber contents that differs 
less than 8% from the experimental result. On the other 
hand, Sample 3 presented a difference of almost 21% from 
experimental result. In the case of roving fiber content, the 
three samples presented differences from experimental results 
varying from 5.4% to 8.5%. Nonetheless, high variance was 
also observed in experimental results. This just highlights 
the high heterogeneity of this type of pultruded GFRP. Even 
though we obtained this difference, the present methodology 
was considered satisfactory.

Another result that can be extracted from the segmentation 
of layers is the content of each type of layer in the profile. 
This can also be a good measure of quality control of profile 
production and is an important information for the estimation 

Figure 15. Pultruded GFRP at different scales.
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of effective properties by the rule of mixture that will be 
discussed in the next sections. The contents of each type of 
layer in the profiles are presented in Table 6.

As we can see, all the analyzed samples presented more 
CSM than roving layers, which can impact the effective 
elastic properties of the material.

The content of each phase inside each type of layer is 
also important. This information can be useful to verify if the 
fibers in each type of layer are being well impregnated with 
the resin, and to locate the regions with higher occurrence 
of voids. Table 7 summarizes the volume fraction of each 
phase by layer type for the three analyzed samples.

From Table 7 we can observe that the roving layers 
usually have much lower percentage of resin than the CSM 
layer, and the voids are more present in the CSM than the 
roving layer.

6.2. Effective elastic properties

6.2.1. Roving layer
The effective elastic properties of the layers of pultruded 

GFRP were obtained through the homogenization of a 

Representative Volume Element (RVE) for each layer. The RVEs 
were obtained from the analysis of different sizes of ROI 
(from smaller to larger ROIs). The homogenization of the 
increasing ROI sizes was made to achieve the convergence 
of the ROI effective elastic properties to the effective elastic 
properties of an RVE. The chosen sizes of ROI were 1003, 
2003, 3003, 4003 and 5003 voxels.

The convergence of the Young’s modulus in X, Y and 
Z directions (as presented in Figure 4) of a virtual sample 
of the roving layer is present in Figure 17. The effective 
properties seemed to be converging until the volume of 
4003 voxels, however the volume of 5003 voxels presented a 
reduction of the effective properties which could be explained 
by the presence of big void or a region with an expressive 
number of fibers irregularly distributed. However, since it 

Figure 16. Two-step homogenization methodology.

Table 5. Content of fibers for CSM and roving layer from each 
sample compared to the experimental results.

Phase
Volume Fraction (%)

Experimental 
results Sample 1 Sample 2 Sample 3

CSM 
fibers 22.05 23.60 23.78 27.20

Roving 
fibers 25.49 24.14 24.18 23.42

Table 6. Content of roving layers and CSM layers in each sample.

Layer Sample 1 Sample 2 Sample 3 Average
CSM 58.86% 64.36% 60.11% 61.11%

Roving 41.14% 35.64% 39.89% 38.89%

Table 7. Phase’s content (in volume) in CSM and roving layer for 
the samples.

Sample Layer % Fiber % Resin % Void

1
CSM 23.78 30.12 4.95

Roving 24.18 16.92 0.05

2
CSM 27.20 31.36 5.80

Roving 23.42 12.15 0.07

3
CSM 23.60 28.50 7.97

Roving 24.14 15.70 0.09
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was the maximum volume that could be analyzed it will be 
considered the RVE for the roving layer.

The effective properties of the roving layer obtained by 
homogenization can be compared to the elastic properties 
estimated by the Reuss-Voigt model (or so-called rule of 
mixture and the inverse of rule of mixtures) developed for 
composite materials reinforced with unidirectional fibers as 
presented in Equations 3-4.

X fiber fiber resin resinE V E V E= +  (3)

1

,
fiber resin

Y Z
fiber resin

V VE
E E

− 
 = +
 
 

 (4)

In Equations 3-4, fiberV  and  resinV  correspond to the 
volume fractions of fibers and resin, and fiberE  and resinE  
represent the elastic modulus of fiber and resin, respectively. 
Considering 52.66 %fiberV =  and 46.42 %resinV =  for the 
volume fractions (the values obtained by image analysis for 
the roving layer) and 72.0fiberE =  GPa and 3.5resinE =  GPa for 
the elastic moduli as described in section 2, Equations 3 and 
4 give the values of 39.54 GPa and 7.15 GPa, respectively.

The effective property in the longitudinal direction obtained 
from homogenization represents a difference of 5.75% from 
the rule of mixture, which is considered satisfactory. On the 
other hand, the rule of mixture underestimates the effective 
properties in the Y and Z directions by 62.8% and 38.42%, 
respectively. However, the rule of mixture was idealized for 
equally spaced and unidirectional regular fibers with no voids 
and defects, which is not the case for the roving layer in the 
pultruded GFRP. Although the defects and heterogeneities 
of the material had little effect to the estimation of effective 
properties in the longitudinal direction in the rule of mixture 
method, they led to a significant difference for the estimation 
of effective properties in the transversal directions to the 
fiber orientation.

6.2.2. CSM layer
The convergence of the Young’s modulus of a virtual 

sample of the CSM layer in all directions is represented in 
Figure 18. It is possible to see that the Young’s modulus of 
the CSM layer in the direction of the thickness of the profile 
is smaller than the Young’s modulus in the longitudinal 
and transverse direction of the profile. That was expected 
since the fibers in the CSM layer is in the transverse and 

Figure 17. Convergence of effective properties in X, Y and Z directions in the roving layer.

Figure 18. Convergence of effective properties of CSM layer in all directions.
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longitudinal directions, increasing the stiffness of the layer 
in these two directions.

The effective property obtained by means of homogenization 
can be compared to the traditional equation for estimating 
elastic property of in-plane random long fiber laminae, as 
presented in28:

3 5  
8 8CSM 1 2E E E= +  (5)

in which CSME  is the elastic property of the CSM layer in 
both X and Z directions, and 1E  and 2E  are, respectively, 
the moduli in the fiber and transverse to the fiber directions of 
a unidirectional layer having the same fiber volume content 
of the CSM layer under study. Considering the fiber volume 
fraction of 31.10% and the resin volume fraction of 62.54% 
for the CSM layer, 1E  and 2E  are estimated by Equations 
3 and 4 to be, respectively, 25.30 GPa and 5.46 GPa. Thus, 
Equation 5 results in an elastic property of 12.90 GPa for 
the CSM in the X and Z directions, validating the result 
obtained by numerical homogenization.

6.2.3. Profile samples
With the homogenized constitutive matrix of each layer, 

the second step of the homogenization was carried out. 
In the second step, the heterogeneities that the virtual model 
needs to represent are basically the interfaces between each 
layer. Therefore, the resolution of the images was reduced 
in order to achieve a more suitable voxel size in which the 
interfaces could be still well represented while reducing 
drastically the computational cost for homogenization. Then, 
the images were resampled in 4 times, that means that a 
cluster of 64 voxels became a single voxel in the resampled 
image. The homogenization in the second step considered 
the anisotropy of each layer. The effective elastic properties 
of the samples are presented in Table 8.

The effective elastic property in the longitudinal direction 
obtained by two-step homogenization can be compared to 
the conventional rule of mixture for composite materials 
presented in29 Equation 6:

, ,X fiber fiber roving CSM fiber CSM resin resinE E V E V E V= + +  (6)

in which, fiberE , CSME  and resinE  represent the Young’s 
modulus of fiber, fibers arranged as CSM and resin, respectively. 

,fiber rovingV  and ,fiber CSMV  represent, respectively, the volume 
fraction of fibers from roving layer and volume fraction of 
fibers from CSM layer. resinV  represents the volume fraction 
of resin. Considering 72.0fiberE =  Gpa, 12.9CSME =  Gpa, 

3.5resinE =  Gpa, , 23.91 %fiber rovingV = , , 24.86 %fiber CSMV =  
and 44.92 %resinV = , Equation 6 results in an elastic modulus 
of 21.99 Gpa.

Nonetheless, the rule of mixture in Equation 6 does not 
consider the defects on the material such as the voids and 
the high heterogeneity such as the different arrangement of 
fibers along the profile. It could lead to a value overestimated 
for the elastic properties of the material. Therefore, we also 
compare the laminate’s effective properties obtained in 
Equation 6 with the weighted average of the layers’ effective 
properties, as presented in Equation 7:

roving roving CSM CSME E V E V= +  (7)

In Equation 7, rovingE  and rovingV  represent the elastic 
modulus and the volume fraction of the roving layer and 

CSME  and CSMV  represent the elastic modulus and volume 
fraction of the CSM layer. The Young’s modulus of each 
direction can be estimated by the application of the weighted 
average of effective properties of each layer considering their 
effective properties in the homogenization of the layers and 
their volumetric fraction obtained by segmentation of layers. 
Table 9 summarizes the results obtained in this work by 
two-step homogenization and the weighted average equation 
making a comparison with the experimental results obtained 
in30 and the traditional rule of mixture for laminates.

The two-step homogenization result in the longitudinal 
direction has a difference of 5.86% from the experimental 
result. Considering the margin of error, we can consider that 
the homogenization in two steps can efficiently estimate the 
effective properties of pultruded GFRP.

The effective properties in the direction of the thickness 
of the profile and the transversal direction determined by the 
two-step homogenization are close to the ones estimated by 
the weighted average. The difference between the effective 
property in the longitudinal direction estimated by the two-step 

Table 8. Effective elastic properties of samples obtained by two-step homogenization (CoV in parenthesis).

Effective Property Sample 1 Sample 2 Sample 3 Average
EX (GPa) 16.56 15.73 16.36 16.22 (2.20)
EY (GPa) 9.55 9.14 9.46 9.38 (1.86)
EZ (GPa) 11.59 11.69 11.61 11.63 (0.36)

νYZ 0.19 0.20 0.20 0.20 (1.19)
νXZ 0.25 0.25 0.25 0.25 (0.35)
νXY 0.22 0.21 0.22 0.22 (1.81)
νZY 0.11 0.11 0.11 0.11 (1.19)
νZX 0.17 0.18 0.17 0.17 (2.06)
νYZ 0.26 0.26 0.26 0.26 (0.12)

GYZ (GPa) 4.36 4.38 4.37 4.37 (0.18)
GXZ (GPa) 3.46 3.39 3.45 3.43 (0.93)
GXY (GPa) 4.41 4.19 4.35 4.32 (2.15)
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homogenization and the weighted average can be explained 
by the wave aspect of the layers as shown in Figure 10.

The elastic property in the direction of the profile thickness 
of the two proposed methods are close to each other, which 
leads us to believe that the effective property should be 
around those values. It means that these two methods could 
be used to give a good estimative of the effective property 
in the direction of the thickness of the profile, which is a 
very difficult test to perform in laboratory. Furthermore, 
the homogenization in two steps can be an efficient way to 
estimate all effective properties of the pultruded GFRP at once. 
Noteworthily, the experimental result is extremely important 
to verify the quality of the numerical results and give the 
notion if the numerical results are either overestimating or 
underestimating the effective properties in the other directions.

7. Conclusions
In this work, we presented a methodology to characterize 

pultruded GFRP physically and mechanically by means of 
micro-CT image analysis and numerical homogenization. 
The physical characterization of the material includes void 
content analysis and material phase’s content. For that purpose, 
this work proposed a new methodology to segment the layers 
of pultruded GFRP made up of the same constituents, in 
which we were able to analyze the phase content within each 
layer. The layers of the material were successfully segmented 
with a machine learning technique. A classification model 
was created with a Random Forest algorithm. The creation 
of the model used several filters with different objectives, 
such as denoising, edge detection and texture identification. 
The classification model was validated through stratified 
10-fold cross-validation with mean accuracy of 94%. 
The misclassified voxels remained from the segmentation 
of layers were eliminated using morphological operations. 
The presented methodology avoided the necessity of manual 
segmentation of thousands of images per sample, leading 
to a much more productive workflow.

The phases’ content in the different types of layers were 
identified by the combination of the segmentation of individual 
constituents with traditional techniques and the segmentation 
of layers with the machine learning approach. The volume 
fraction of phases in the CSM and the roving layers of three 
analyzed samples were compared to experimental results. 
The experimental results for physical characterization of the 
material validated the methodology presented in this work. 
The developed methodology for physical characterization 
also allows a much more detailed analysis of phase’s content 
and was essential for the numerical simulation in two steps 
to mechanically characterize the material.

The mechanical characterization aimed to extract 
effective elastic properties of the material. This type of 
characterization was made by means of numerical simulation 
based on a two-step strategy of homogenization. In the first 
step of homogenization, the effective elastic properties of 
the roving and CSM layers were determined. The effective 
properties of the roving layer were compared to analytical 
results from the conventional rule of mixture.

In the second step, the constitutive matrix of each 
anisotropic layer was assigned to segmented layers that 
modeled the material profile in the mesoscale. Then, the 
effective elastic properties of the overall composite were 
calculated. The strategy of two-step homogenization allowed 
the analysis of big samples containing the thickness of the 
profile while still being able to run on PCs. The numerical 
results of the homogenization of the composite were compared 
to experimental results and to the weighted average of the 
layers’ effective properties.

The two-step homogenization methodology showed 
up a good methodology to estimate effective properties of 
pultruded GFRP. Besides presenting satisfactory results, this 
methodology can determine all effective elastic properties 
at once, along all three orthogonal directions. Nonetheless, 
the knowledge of at least one effective property obtained 
in laboratory tests is essential for the verification of the 
quality of the numerical results and to give the notion 
whether the numerical results are over- or underestimating 
the other effective properties. Thus, the combination of an 
experimental test with the two-step homogenization can be 
extremely powerful for the characterization of all effective 
elastic properties of pultruded GFRP.
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